Ejemplo n.º 1
0
def bootOK(b):
    canRow = SetlxSet(
        [SetlxString('Mutter'),
         SetlxString('Vater'),
         SetlxString('Polizist')])
    return ((SetlxString('Boot') in b) and
            ((stlx_len(b)) <= 3)) and ((canRow * b) != SetlxSet([]))
Ejemplo n.º 2
0
def stlx_powerset(s):
    """If s is a set, the expression pow(s) computes the power set of s. The power set of s is 
    defined as the set of all subsets of s."""
    def powerset_generator(i):
        for subset in it.chain.from_iterable(
                it.combinations(i, r) for r in range(len(i) + 1)):
            yield set(subset)

    return SetlxSet(SetlxSet(z) for z in powerset_generator(s))
Ejemplo n.º 3
0
def verbotenSide(s):
    boys = SetlxSet([SetlxString('Anton'), SetlxString('Bruno')])
    girls = SetlxSet([SetlxString('Cindy'), SetlxString('Doris')])
    return ((((SetlxString('Verbrecher') in s) and ((stlx_len(s)) > 1)) and
             (not (SetlxString('Polizist') in s))) or
            ((((boys * s) != SetlxSet([])) and
              (SetlxString('Mutter') in s)) and
             (not (SetlxString('Vater') in s)))) or (
                 (((girls * s) != SetlxSet([])) and
                  (SetlxString('Vater') in s)) and
                 (not (SetlxString('Mutter') in s)))
Ejemplo n.º 4
0
def findPath(x, y, r):
    p = SetlxSet([SetlxList([x])])
    while True:
        oldP = p
        p = p + (pathProduct(p, r))
        found = SetlxSet([l for l in p if ((l[stlx_len(l)]) == y)])
        if found != SetlxSet([]):
            return stlx_arb(found)

        if p == oldP:
            return
Ejemplo n.º 5
0
def test_set_powerset():
    s = """
    s1 := { 1, 2 };
    result := 2 ** s1;
    """
    assert_res(
        s, {
            'result':
            SetlxSet(
                [SetlxSet(),
                 SetlxSet([1]),
                 SetlxSet([1, 2]),
                 SetlxSet([2])])
        })
Ejemplo n.º 6
0
def test_set_comprehension_cray():
    s = 'primes := { p:p in {2..100} | { t:t in {2..p-1} | p % t == 0 } == {} };'
    primes = [
        2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
        71, 73, 79, 83, 89, 97
    ]
    assert_res(s, {'primes': SetlxSet(primes)})
Ejemplo n.º 7
0
def test_binop_set():
    s = Template("""
    s1 := { 1, 2 };
    s2 := { 2, 3 };
    result := s1 $op s2;
    """)

    cases = [
        ('op', 'result'),
        ('+', SetlxSet([1, 2, 3])),
        ('-', SetlxSet([1])),
        ('*', SetlxSet([2])),
        ('><', SetlxSet([(1, 2), (1, 3), (2, 2), (2, 3)])),
        ('%', SetlxSet([1, 3])),
    ]
    assert_res_cases(s, cases)
Ejemplo n.º 8
0
def stlx_range(s):
    """ If r is a binary relation, then the equality
        range(r) = { y :[x,y] in R }
        holds.
    """
    lst = [y for unused, y in s]
    return SetlxSet(lst)
Ejemplo n.º 9
0
def test_for_loop_double():
    s = """
    accum := {};
    for(x in {1..2}, y in {-1,-2..-2}) {
        accum += {[x, y]};
    }
    """
    assert_res(s, {'accum': SetlxSet([[1, -2], [1, -1], [2, -2], [2, -1]])})
Ejemplo n.º 10
0
def test_assignment_augmented_set():
    s = Template("""
    s1 := { 1, 2 };
    s2 := { 2, 3 };
    s1 $op s2;
    """)

    cases = {
        '+=': SetlxSet((1, 2, 3)),
        '-=': SetlxSet((1, )),
        '*=': SetlxSet((2, )),
        '%=': SetlxSet((1, 3)),
    }

    for op, result in cases.items():
        source = s.substitute(op=op)
        assert_res(source, {'s1': result})
Ejemplo n.º 11
0
def test_procedure_two():
    s = Template("""
    factors := procedure(p) {
        return {f : f in { 1 .. p } | p % f == 0 };
    };
    primes := procedure(n) {
        return {p : p in { 2 .. n } | factors(p) == { 1, p } };
    };
    result := primes($n);
    """)

    cases = [
        ('n', 'result'),
        ('2', SetlxSet([2])),
        ('10', SetlxSet([2, 3, 5, 7])),
        ('50',
         SetlxSet([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47])),
    ]
    assert_res_cases(s, cases)
Ejemplo n.º 12
0
def printPath(path, all):
    for i in SetlxList(stlx_lst_from_range(1, (stlx_len(path)))):
        left = path[i]
        right = all - left
        if ((stlx_len(left)) == 9) or ((stlx_len(right)) == 9):
            stlx_print(left - SetlxSet([SetlxString('Boot')]),
                       18 * SetlxString(' '),
                       right - SetlxSet([SetlxString('Boot')]))
            stlx_print(SetlxString(''))
        else:
            stlx_print(left - SetlxSet([SetlxString('Boot')]),
                       20 * SetlxString(' '),
                       right - SetlxSet([SetlxString('Boot')]))
            stlx_print(SetlxString(''))

        if i == (stlx_len(path)):
            break

        if SetlxString('Boot') in left:
            m = (left - (path[i + 1])) - SetlxSet([SetlxString('Boot')])
            stlx_print(SetlxString('                                >>>> '), m,
                       SetlxString(' >>>> '))
        else:
            m = (right - (all -
                          (path[i + 1]))) - SetlxSet([SetlxString('Boot')])
            stlx_print(SetlxString('                                <<<< '), m,
                       SetlxString(' <<<< '))

        stlx_print(SetlxString(''))
Ejemplo n.º 13
0
def test_procedure_primes():
    s = Template("""
    primes := procedure(n) {
        s := { 2..n };
        return s - { p*q : [p, q] in s >< s };
    };
    result := primes($n);
    """)

    cases = {
        '2': [2],
        '10': [2, 3, 5, 7],
        '50': [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47],
    }
    for n, result in cases.items():
        source = s.substitute(n=n)
        assert_res(source, {'result': SetlxSet(result)})
Ejemplo n.º 14
0
def test_set_cartesian():
    s = """
    s1 := { 1, 2 };
    result := s1 ** 2;
    """
    assert_res(s, {'result': SetlxSet([(1, 1), (1, 2), (2, 1), (2, 2)])})
Ejemplo n.º 15
0
def test_create():
    x = SetlxSet([5, 4, 4, 2, 5, 1])
    eq_(len(x), 4)
Ejemplo n.º 16
0
def test_get_by_int_key():
    x = SetlxSet([[4, 3, 2, 1]])
    x[3]
Ejemplo n.º 17
0
def test_set_comprehension_cond():
    s = """
    p := 42;
    divisors := { t:t in {2..p-1} | p % t == 0 };
    """
    assert_res(s, {'divisors': SetlxSet([2, 3, 6, 7, 14, 21])})
Ejemplo n.º 18
0
def test_set_comprehension_two_iterators():
    s = 'x := {a ** b: a in {1..3}, b in {2..4}};'
    assert_res(s, {'x': SetlxSet([1, 4, 8, 9, 16, 27, 81])})
Ejemplo n.º 19
0
def test_set_value():
    x = SetlxSet([[1, 2], [3, 4]])
    x[5] = 6
    eq_(x[5], 6)
Ejemplo n.º 20
0
def test_range_set():
    assert_res('x := {1..5};', {'x': SetlxSet([1, 2, 3, 4, 5])})
    assert_res('x := {1..-1};', {'x': SetlxSet([])})
    assert_res('x := {1,3..10};', {'x': SetlxSet([1, 3, 5, 7, 9])})
    assert_res('x := {10,8..1};', {'x': SetlxSet([10, 8, 6, 4, 2])})
    assert_res('x := {-1,-2..-2};', {'x': SetlxSet([-2, -1])})
Ejemplo n.º 21
0
def test_set():
    assert_res('x := {};', {'x': SetlxSet([])})
    assert_res('x := {1};', {'x': SetlxSet([1])})
    assert_res('x := {1,2};', {'x': SetlxSet([1, 2])})
    assert_res('x := {1,2,3};', {'x': SetlxSet([1, 2, 3])})
    assert_res('x := {1+3,2-4,3**0};', {'x': SetlxSet([4, -2, 1])})
Ejemplo n.º 22
0
def test_get_map_by_int_key():
    x = SetlxSet([[1, 2], [3, 4]])
    eq_(x[1], 2)
    eq_(x[3], 4)
Ejemplo n.º 23
0
def cyclic(p):
    return (stlx_len((SetlxSet([x for x in p])))) < (stlx_len(p))
Ejemplo n.º 24
0
def test_get_duplicate():
    x = SetlxSet([[1, 1], [1, 4], [3, 3]])
    eq_(x[1], None)
    eq_(x[2], None)
Ejemplo n.º 25
0
def stlx_cartesian(*args):
    return SetlxSet(it.product(*args))
Ejemplo n.º 26
0
def test_set_comprehension_minimal():
    s = 'x := {2*n : n in [1..5]};'
    assert_res(s, {'x': SetlxSet([2, 4, 6, 8, 10])})
Ejemplo n.º 27
0
def stlx_collect(m):
    d = collections.defaultdict(int)
    for x in m:
        d[x] += 1
    return SetlxSet([SetlxList([k, c]) for k, c in d.iteritems()])
Ejemplo n.º 28
0
def test_set_operations():
    s1 = SetlxSet([1, 2])
    s2 = SetlxSet([2, 3])

    eq_(s1 + s2, SetlxSet([1, 2, 3]))
    eq_(s1 - s2, SetlxSet([1]))
    eq_(s1 * s2, SetlxSet([2]))
    eq_(s1 % s2, SetlxSet([1, 3]))
    eq_(stlx_pow(s1, 2), SetlxSet([(1, 1), (1, 2), (2, 1), (2, 2)]))
    eq_(stlx_pow(2, s2),
        SetlxSet([SetlxSet(),
                  SetlxSet([2]),
                  SetlxSet([2, 3]),
                  SetlxSet([3])]))
Ejemplo n.º 29
0
def stlx_domain(s):
    """"""
    lst = [x for x, unused in s]
    return SetlxSet(lst)
Ejemplo n.º 30
0
def pathProduct(p, q):
    return SetlxSet([
        add(x, y) for x in p for y in q
        if (((x[stlx_len(x)]) == (y[1])) and (not (cyclic(add(x, y)))))
    ])