Ejemplo n.º 1
0
def ReadVersionData(dimension):
    global rule_data

    file = settings.GetRecentFile(
        os.path.join(settings.sourcePath, 'Version_Base'),
        'VGC_Version_Weekly')
    ways_data = pd.read_excel(file).loc[:, :'ROLL_MIX']
    if 'FUELTYPE' in dimension:
        ways_data['ROLL_MIX'] = \
            ways_data.query('TP > 0').groupby([*dimension, 'PRICE_DATE'])['ROLL_MIX'].apply(lambda x: x / x.sum())

    # ways_data['MIX'] = \
    #     ways_data.groupby(['SUB_MODEL_ID', 'PRICE_DATE'])['MIX'].apply(lambda x: x / x.sum())
    # ways_data['ROLL_MIX'] = \
    #     ways_data.query('TP > 0').groupby([*dimension, 'PRICE_DATE'])['ROLL_SALES'].apply(lambda x: x / x.sum())
    # ways_data['DISCOUNTR'] = \
    #     ways_data.query('TP > 0').apply(lambda x: x['TP'] / x['MSRP'] - 1 if x['MSRP'] > 0 else None, axis=1)
    # ways_data['SUB_MODEL_MIX_SALES'] = \
    #     ways_data.apply(lambda x: x['SUB_MODEL_SALES'] * x['MIX'] if pd.notnull(x['SUB_MODEL_SALES']) and pd.notnull(x['MIX']) else None, axis=1)
    # ways_data['DIMENSION']= \
    #     ways_data[ShowDimension(dimension)].apply(lambda x: ' '.join(x), axis=1)
    return ways_data.sort_values(by=[
        'BRAND', 'MODELGROUP', '报告车型名称', 'SUB_MODEL_ID', 'VERSION_ID',
        'PRICE_DATE'
    ])
Ejemplo n.º 2
0
def ReadVersionData(dimension):
    from sql import rule_data

    file = settings.GetRecentFile(os.path.join(settings.sourcePath, 'Version_Base'), 'VGC_Version_Weekly')
    ways_data = pd.read_excel(file).loc[:, :'ROLL_MIX'].reset_index(drop=True)
    ways_data[['HALT_PRODUCT_DATE', 'HALT_SALE_DATE']] = ways_data.merge(rule_data[['VERSION_ID', 'HALT_PRODUCT_DATE', 'HALT_SALE_DATE']], on='VERSION_ID', how='left', suffixes=(' ', ''))[['HALT_PRODUCT_DATE', 'HALT_SALE_DATE']].fillna(ways_data)
    if 'FUELTYPE' in dimension:
        ways_data['ROLL_MIX'] = \
            ways_data.query('TP > 0').groupby([*dimension, 'PRICE_DATE'])['ROLL_MIX'].apply(lambda x: x / x.sum())

    return ways_data.sort_values(by=['PRICE_DATE', 'BRAND', '报告车型名称', 'VERSION_ID'])
Ejemplo n.º 3
0
def CalculateDimensionData(ways_data, dimension):
    vgc_data = \
        ways_data.groupby([*dimension, 'YM_ID', 'PRICE_DATE']) \
                 .apply(lambda x: pd.Series({
                    'MSRP': (x['MSRP'] * x['ROLL_MIX']).sum()
                        if any(pd.notnull(x['MSRP'])) and x['ROLL_MIX'].sum() else None,
                    'TP': (x['TP'] * x['ROLL_MIX']).sum()
                        if any(pd.notnull(x['TP'])) and x['ROLL_MIX'].sum() else None,
                    'DISCOUNTR': (x['DISCOUNTR'] * x['ROLL_MIX']).sum()
                        if any(pd.notnull(x['DISCOUNTR'])) and x['ROLL_MIX'].sum() else None,
                    'DIMENSION_SALES': x['SUB_MODEL_MIX_SALES'].sum()
                        if x['SUB_MODEL_MIX_SALES'].sum() else None})) \
                 .reset_index()
    vgc_data['MSRP_INDEX'] = \
        vgc_data.sort_values('PRICE_DATE') \
                .groupby(dimension)['MSRP'] \
                .apply(lambda x: x.div(x.shift(1))) \
                .replace([inf,])
    vgc_data.insert(
        column='DIMENSION',
        loc=list(vgc_data).index('YM_ID'),
        value=vgc_data[ShowDimension(dimension)].apply(lambda x: ' '.join(x), axis=1))
    roll_data = \
        vgc_data[['DIMENSION', 'YM_ID', 'DIMENSION_SALES']].drop_duplicates(subset=['DIMENSION', 'YM_ID'])
    roll_data['ROLL_DIMENSION_SALES'] = \
        roll_data.sort_values('YM_ID').groupby(['DIMENSION'])['DIMENSION_SALES'].apply(lambda x: x.rolling(window=6, min_periods=1).sum().shift(1))
    vgc_data = \
        vgc_data.merge(roll_data.drop('DIMENSION_SALES', axis=1), on=list(roll_data)[:-2], how='left')

    modify_file = settings.GetRecentFile(os.path.join(settings.sourcePath, 'Modify'), '周报')
    sales_modify = \
        pd.read_excel(modify_file, r'ROLL_DIMENSION_SALES').filter(['DIMENSION', 'PRICE_DATE', 'ROLL_DIMENSION_SALES'], axis=1).drop_duplicates(['DIMENSION', 'PRICE_DATE'], keep='last')
    vgc_data = vgc_data.reset_index(drop=True)
    vgc_data = vgc_data.iloc[:, :-1].merge(sales_modify, on=list(sales_modify)[:-1], how='left').fillna(vgc_data)
    
    vgc_data = ShiftDimensionSales(vgc_data, dimension)

    return vgc_data.sort_values(by=['PRICE_DATE', 'BRAND', '报告车型名称'])
Ejemplo n.º 4
0
if __name__ == "__main__":

    ROOT = tk.Tk()
    ROOT.withdraw()

    file_dict = {
        int(re.match('\d+', x).group()): x
        for x in os.listdir(settings.sourcePath)
    }
    USER_INPUT = simpledialog.askinteger(
        title="选择报告",
        prompt='\n'.join(
            [f'{key} - {value}' for key, value in file_dict.items()]))
    if not USER_INPUT:
        exit(0)
    sourceFileName = settings.GetRecentFile(
        os.path.join(settings.sourcePath, file_dict.get(USER_INPUT)))

    app = xw.App(add_book=False, visible=settings.isVisible)
    app.display_alerts = False

    if USER_INPUT == 2:
        f2(sourceFileName, '原始数据')
    elif USER_INPUT == 3:
        f3(sourceFileName, '数据源')
    elif USER_INPUT == 5:
        f5(sourceFileName, '非百强集团旗下4S店清单(数据源)')
    elif USER_INPUT == 6:
        f6(sourceFileName, '数据源')

    app.visible = 1
    exit(0)
Ejemplo n.º 5
0
def OpenExcel():
    global app, wb

    app = xw.App(add_book=False, visible=settings.isVisible)
    app.display_alerts = False
    wb = app.books.open(settings.GetRecentFile(settings.sourcePath, '.xlsm'))
Ejemplo n.º 6
0
import settings
import province_process
import pandas as pd
import xlwings as xw
import win32com.client as com
from win32com.client import constants as c
import re
import os
import warnings
warnings.filterwarnings('ignore')

app = xw.App(add_book=False, visible=settings.isVisible)
app.display_alerts = False
# app.screen_updating = False

template_wb = app.books.open(settings.GetRecentFile(settings.origPath, '省级地图'))
province = template_wb.sheets['省份'].range(1, 1).options(pd.DataFrame,
                                                        index=False,
                                                        expand='table').value

source_wb = app.books.open(settings.GetRecentFile(settings.sourcePath,
                                                  '.xlsx'))
data = source_wb.sheets[0].range(1, 1).options(pd.DataFrame,
                                               index=False,
                                               expand='table').value.merge(
                                                   province,
                                                   left_on='目标城市',
                                                   right_on='PROVINCE_NAME',
                                                   how='left',
                                                   indicator=True)
if 'left_only' in data._merge.values:
Ejemplo n.º 7
0
                ]
            data = GetSummaryData(segment, sheet_name, index_order)
            UpdateShapeChart(data, chart)

        logger.info(
            f"Done - {slide.SlideIndex:02} {slide.Shapes('Title_').TextFrame.TextRange.Text}"
        )
        del slide


if __name__ == "__main__":

    logger = settings.logger
    logger.info(f"\n开始更新...")

    reportFileName = settings.GetRecentFile(settings.reportPath, '价格分析报告补充')
    App = com.gencache.EnsureDispatch('Powerpoint.Application')
    ppt = App.Presentations.Open(reportFileName, WithWindow=settings.isVisible)
    App.WindowState = 2  # 窗口最小化

    process.OpenExcel()

    try:
        main(ppt)
    except Exception as e:
        logger.info(e)
        logger.info(f"中断更新.")
    finally:
        resultFileName = re.sub(
            '(\d+年\d+月)(.*?)(\d+.)',
            '{}\g<2>{}.'.format(settings.report_date.strftime('%Y年%#m月'),
Ejemplo n.º 8
0

def GetPriceIndexData(dimension):
    if 'TOTAL' in dimension:
        tmp_data = source_price_index_data
    else:
        tmp_data = source_price_index_data[source_price_index_data.CUST_SEGMENT_NAME_CHN.isin(segment_list)]

    tmp_data = tmp_data.assign(TOTAL='整体')\
                       .groupby(dimension)\
                       .apply(lambda x: pd.Series({'MSRP': (x.MSRP * x.SALES_QTY / x.SALES_QTY.sum()).sum(),
                                                   'TP': (x.AVG_TP * x.SALES_QTY / x.SALES_QTY.sum()).sum()}))
    tmp_data['DISCOUNT_RATE'] = tmp_data.apply(lambda x: (x.MSRP - x.TP) / x.MSRP, axis=1)
    return tmp_data.drop('MSRP', axis=1)


db = common.OracleDB('DBBG')
query = settings.ReadFile(settings.GetRecentFile(settings.sqlPath))\
    .replace('SPECIFICPRICE_DATE', str(settings.price_date))
source_price_index_data = db.query_data(query).query("PRICE_DATE == {}".format(settings.price_date))
price_index_data = GetPriceIndexData(['TOTAL']).append(GetPriceIndexData(['CUST_SEGMENT_NAME_CHN']))
print(price_index_data.shape)

price_level_data = db.query_data_from_procedure('pkg_report_changan.proc_price_level', [settings.price_date]).drop('PRICE_DATE', axis=1).set_index(['CUST_SEGMENT_NAME_CHN', 'PEICE_SEGMENT']).unstack('PEICE_SEGMENT').droplevel(level=0, axis=1)
print(price_level_data.shape)

manf_price_data = db.query_data_from_procedure('pkg_report_changan.proc_manf_wt_tp', [settings.price_date]).drop('PRICE_DATE', axis=1).set_index('MANF_NAME').rename(columns={'WEIGHT_TP':'TP', 'WEIGHT_DISCOUNT':'DISCOUNT_RATE'})
print(manf_price_data.shape)

db.close()
Ejemplo n.º 9
0
import settings
from process import TransformData, AdjustSheetFormat
from win32com.client import constants as c
import pandas as pd
import xlwings as xw
import os
import warnings

warnings.filterwarnings('ignore')

sourceFileName = settings.GetRecentFile(settings.sourcePath)

app = xw.App(add_book=False, visible=settings.isVisible)
app.display_alerts = False

wb = app.books.open(sourceFileName)
data = wb.sheets[0].range(1, 1).options(
    pd.DataFrame, index=False,
    expand='table').value.query(f'YM_ID >= {settings.last_report_date//100}'
                                ).query('ROLL_AVG_SALES > 0').reset_index(
                                    drop=True)

# 筛选两个月都有TP的数据 并重新归一mix
filter_index = data[['VERSION_ID', 'YM_ID', 'TP']].set_index(
    ['VERSION_ID',
     'YM_ID']).unstack('YM_ID').apply(lambda x: all(pd.notnull(x)), axis=1)
data = data[data.VERSION_ID.isin(
    filter_index[filter_index].index.values)].reset_index(drop=True)
data.ROLL_MIX = data.groupby(['DIMENSION', 'YM_ID'
                              ])['ROLL_AVG_SALES'].apply(lambda x: x / x.sum())