Ejemplo n.º 1
0
def test_fromTrace():
    xp0 = [0.0]
    xp1 = [0.0]
    yp0 = [0.0]
    yp1 = [0.05]
    zp = [0.0]
    widths = [10.0]
    dips = [45.0]

    # Rupture requires an origin even when not used:
    origin = Origin({'eventsourcecode': 'test', 'lat': 0, 'lon': 0,
                     'depth': 5.0, 'mag': 7.0})
    rupture = QuadRupture.fromTrace(
        xp0, yp0, xp1, yp1, zp, widths,
        dips, origin,
        reference='From J Smith, (personal communication)')
    fstr = io.StringIO()
    rupture.writeTextFile(fstr)

    xp0 = [-121.81529, -121.82298]
    xp1 = [-121.82298, -121.83068]
    yp0 = [37.73707, 37.74233]
    yp1 = [37.74233, 37.74758]
    zp = [10, 15]
    widths = [15.0, 20.0]
    dips = [30.0, 45.0]
    rupture = QuadRupture.fromTrace(
        xp0, yp0, xp1, yp1, zp, widths,
        dips, origin,
        reference='From J Smith, (personal communication)')
Ejemplo n.º 2
0
def test_map_rupture(interactive=False):
    xp0 = np.array([-90.898000])
    xp1 = np.array([-91.308000])
    yp0 = np.array([12.584000])
    yp1 = np.array([12.832000])
    zp = [0.0]
    strike = azimuth(yp0[0], xp0[0], yp1[0], xp1[0])
    origin = Origin({
        'lat': 0.0,
        'lon': 0.0,
        'depth': 0.0,
        'mag': 5.5,
        'eventsourcecode': 'abcd'
    })
    interface_width = MAX_DEPTH / np.sin(np.radians(DIP))
    widths = np.ones(xp0.shape) * interface_width
    dips = np.ones(xp0.shape) * DIP
    strike = [strike]
    rupture = QuadRupture.fromTrace(xp0,
                                    yp0,
                                    xp1,
                                    yp1,
                                    zp,
                                    widths,
                                    dips,
                                    origin,
                                    strike=strike)
    map_rupture(rupture)
    if interactive:
        fname = os.path.join(os.path.expanduser('~'), 'rupture_map.png')
        plt.savefig(fname)
        print('Rupture map plot saved to %s.  Delete this file if you wish.' %
              fname)
Ejemplo n.º 3
0
def test_slip():

    # Rupture requires an origin even when not used:
    origin = Origin({
        'id': 'test',
        'lon': 0,
        'lat': 0,
        'depth': 5.0,
        'mag': 7.0,
        'netid': 'us',
        'network': '',
        'locstring': '',
        'time': HistoricTime.utcfromtimestamp(time.time())
    })

    # Make a rupture
    lat0 = np.array([34.1])
    lon0 = np.array([-118.2])
    lat1 = np.array([34.2])
    lon1 = np.array([-118.15])
    z = np.array([1.0])
    W = np.array([3.0])
    dip = np.array([30.])
    rup = QuadRupture.fromTrace(lon0, lat0, lon1, lat1, z, W, dip, origin)

    slp = get_quad_slip(rup.getQuadrilaterals()[0], 30).getArray()
    slpd = np.array([0.80816457, 0.25350787, 0.53160491])
    np.testing.assert_allclose(slp, slpd)

    slp = get_local_unit_slip_vector(22, 30, 86).getArray()
    slpd = np.array([0.82714003, 0.38830563, 0.49878203])
    np.testing.assert_allclose(slp, slpd)
Ejemplo n.º 4
0
def test_slip():

    # Rupture requires an origin even when not used:
    origin = Origin({
        'id': 'test',
        'lon': 0,
        'lat': 0,
        'depth': 5.0,
        'mag': 7.0,
        'netid': 'us',
        'network': '',
        'locstring': '',
        'time': HistoricTime.utcfromtimestamp(time.time())
    })

    # Make a rupture
    lat0 = np.array([34.1])
    lon0 = np.array([-118.2])
    lat1 = np.array([34.2])
    lon1 = np.array([-118.15])
    z = np.array([1.0])
    W = np.array([3.0])
    dip = np.array([30.])
    rup = QuadRupture.fromTrace(lon0, lat0, lon1, lat1, z, W, dip, origin)

    slp = get_quad_slip(rup.getQuadrilaterals()[0], 30).getArray()
    slpd = np.array([0.80816457, 0.25350787, 0.53160491])
    np.testing.assert_allclose(slp, slpd)

    slp = get_quad_strike_vector(rup.getQuadrilaterals()[0]).getArray()
    slpd = np.array([0.58311969, 0.27569625, 0.76417472])
    np.testing.assert_allclose(slp, slpd)

    slp = get_quad_down_dip_vector(rup.getQuadrilaterals()[0]).getArray()
    slpd = np.array([0.81219873, -0.17763484, -0.55567895])
    np.testing.assert_allclose(slp, slpd)

    slp = get_local_unit_slip_vector(22, 30, 86).getArray()
    slpd = np.array([0.82714003, 0.38830563, 0.49878203])
    np.testing.assert_allclose(slp, slpd)

    slp = get_local_unit_slip_vector_DS(22, 30, -86).getArray()
    slpd = np.array([-0.80100879, -0.32362856, -0.49878203])
    np.testing.assert_allclose(slp, slpd)

    slp = get_local_unit_slip_vector_SS(22, 80, 5).getArray()
    slpd = np.array([0.3731811, 0.92365564, 0.])
    np.testing.assert_allclose(slp, slpd)

    mech = rake_to_mech(-160)
    assert mech == 'SS'
    mech = rake_to_mech(0)
    assert mech == 'SS'
    mech = rake_to_mech(160)
    assert mech == 'SS'
    mech = rake_to_mech(-80)
    assert mech == 'NM'
    mech = rake_to_mech(80)
    assert mech == 'RS'
Ejemplo n.º 5
0
def test_EdgeRupture_vs_QuadRupture():
    # Sites stuff
    sites = Sites.fromCenter(-122.15, 37.15, 1.5, 1.5, 0.01, 0.01)
    sm_dict = sites._GeoDict
    west = sm_dict.xmin
    east = sm_dict.xmax
    south = sm_dict.ymin
    north = sm_dict.ymax
    nx = sm_dict.nx
    ny = sm_dict.ny
    lats = np.linspace(north, south, ny)
    lons = np.linspace(west, east, nx)
    lon, lat = np.meshgrid(lons, lats)
    dep = np.zeros_like(lon)

    # Construct QuadRupture
    xp0 = np.array([-122.0, -122.5])
    yp0 = np.array([37.1, 37.4])
    xp1 = np.array([-121.7, -122.3])
    yp1 = np.array([37.2, 37.2])
    zp = np.array([0, 6])
    widths = np.array([30, 20])
    dips = np.array([30, 40])

    origin = Origin({
        'lat': 33.15,
        'lon': -122.15,
        'depth': 0,
        'mag': 7.2,
        'id': '',
        'netid': '',
        'network': '',
        'locstring': '',
        'time': HistoricTime.utcfromtimestamp(time.time())
    })
    qrup = QuadRupture.fromTrace(xp0, yp0, xp1, yp1, zp, widths, dips, origin)
    rrup_q = qrup.computeRrup(lon, lat, dep)
    rjb_q = qrup.computeRjb(lon, lat, dep)

    # Construct equivalent EdgeRupture
    toplons = np.array([-122.0, -121.7, -122.5, -122.3])
    toplats = np.array([37.1, 37.2, 37.4, 37.2])
    topdeps = np.array([0, 0, 6, 6])
    botlons = np.array([-121.886864, -121.587568, -122.635467, -122.435338])
    botlats = np.array([36.884527, 36.984246, 37.314035, 37.114261])
    botdeps = np.array([15.0000, 14.9998, 18.8558, 18.8559])
    group_index = [0, 0, 1, 1]

    erup = EdgeRupture.fromArrays(toplons, toplats, topdeps, botlons, botlats,
                                  botdeps, origin, group_index)
    rrup_e = erup.computeRrup(lon, lat, dep)
    rjb_e = erup.computeRjb(lon, lat, dep)

    # Check that QuadRupture and EdgeRupture give the same result
    # (we check the absolute values of QuadRupture elsewhere)
    np.testing.assert_allclose(rrup_e, rrup_q, atol=0.35)
    np.testing.assert_allclose(rjb_e, rjb_q, atol=0.35)
Ejemplo n.º 6
0
def test_ss3_m4p5():
    magnitude = 4.5
    dip = np.array([90])
    rake = 180.0
    width = np.array([15])
    rupx = np.array([0, 0])
    rupy = np.array([0, 80])
    zp = np.array([0])
    epix = np.array([0])
    epiy = np.array([0.2 * rupy[1]])

    # Convert to lat/lon
    proj = OrthographicProjection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    # Origin
    origin = Origin({'lat': epilat[0],
                     'lon': epilon[0],
                     'depth': 10,
                     'mag': magnitude,
                     'id': 'ss3',
                     'netid': '',
                     'network': '',
                     'locstring': '',
                     'rake': rake,
                     'time': HistoricTime.utcfromtimestamp(int(time.time()))})

    rup = QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]),
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference='ss3')

    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array(
        [[0.,  0.,  0.,  0.,  0.,  0.],
         [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.]])
    np.testing.assert_allclose(
        fd, fd_test, rtol=1e-4)
Ejemplo n.º 7
0
def test_ss3_m4p5():
    magnitude = 4.5
    dip = np.array([90])
    rake = 180.0
    width = np.array([15])
    rupx = np.array([0, 0])
    rupy = np.array([0, 80])
    zp = np.array([0])
    epix = np.array([0])
    epiy = np.array([0.2 * rupy[1]])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    # Origin
    origin = Origin({'lat': epilat[0],
                     'lon': epilon[0],
                     'depth': 10,
                     'mag': magnitude,
                     'eventsourcecode': 'ss3',
                     'rake': rake})

    rup = QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]),
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference='ss3')

    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array(
        [[0.,  0.,  0.,  0.,  0.,  0.],
         [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.],
            [0.,  0.,  0.,  0.,  0.,  0.]])
    np.testing.assert_allclose(
        fd, fd_test, rtol=1e-4)
Ejemplo n.º 8
0
def test_EdgeRupture_vs_QuadRupture():
    # Sites stuff
    sites = Sites.fromCenter(-122.15, 37.15, 1.5, 1.5, 0.01, 0.01)
    sm_dict = sites._GeoDict
    west = sm_dict.xmin
    east = sm_dict.xmax
    south = sm_dict.ymin
    north = sm_dict.ymax
    nx = sm_dict.nx
    ny = sm_dict.ny
    lats = np.linspace(north, south, ny)
    lons = np.linspace(west, east, nx)
    lon, lat = np.meshgrid(lons, lats)
    dep = np.zeros_like(lon)

    # Construct QuadRupture
    xp0 = np.array([-122.0, -122.5])
    yp0 = np.array([37.1, 37.4])
    xp1 = np.array([-121.7, -122.3])
    yp1 = np.array([37.2, 37.2])
    zp = np.array([0, 6])
    widths = np.array([30, 20])
    dips = np.array([30, 40])

    origin = Origin({'lat': 0,  'lon': 0, 'depth': 0, 'mag': 7.2, 'eventsourcecode': ''})
    qrup = QuadRupture.fromTrace(xp0, yp0, xp1, yp1, zp, widths, dips, origin)
    rrup_q = qrup.computeRrup(lon, lat, dep)
    rjb_q = qrup.computeRjb(lon, lat, dep)

    # Construct equivalent EdgeRupture
    toplons = np.array([-122.0, -121.7, -122.5, -122.3])
    toplats = np.array([37.1, 37.2, 37.4, 37.2])
    topdeps = np.array([0, 0, 6, 6])
    botlons = np.array([-121.886864, -121.587568, -122.635467, -122.435338])
    botlats = np.array([36.884527, 36.984246, 37.314035,  37.114261])
    botdeps = np.array([15.0000, 14.9998, 18.8558, 18.8559])
    group_index = [0, 0, 1, 1]

    erup = EdgeRupture.fromArrays(
        toplons, toplats, topdeps, botlons, botlats, botdeps,
        origin, group_index)
    rrup_e = erup.computeRrup(lon, lat, dep)
    rjb_e = erup.computeRjb(lon, lat, dep)

    # Check that QuadRupture and EdgeRupture give the same result
    # (we check the absolute values of QuadRupture elsewhere)
    np.testing.assert_allclose(rrup_e, rrup_q, atol=0.35)
    np.testing.assert_allclose(rjb_e, rjb_q, atol=0.35)
Ejemplo n.º 9
0
def test_plot_rupture(interactive=False):
    xp0 = np.array([-90.898000])
    xp1 = np.array([-91.308000])
    yp0 = np.array([12.584000])
    yp1 = np.array([12.832000])
    zp = [0.0]
    strike = azimuth(yp0[0], xp0[0], yp1[0], xp1[0])
    origin = Origin({
        'lat': 0.0,
        'lon': 0.0,
        'depth': 0.0,
        'mag': 5.5,
        'id': '',
        'netid': 'abcd',
        'network': '',
        'locstring': '',
        'time': HistoricTime.utcfromtimestamp(time.time())
    })
    interface_width = MAX_DEPTH / np.sin(np.radians(DIP))
    widths = np.ones(xp0.shape) * interface_width
    dips = np.ones(xp0.shape) * DIP
    strike = [strike]
    rupture = QuadRupture.fromTrace(xp0,
                                    yp0,
                                    xp1,
                                    yp1,
                                    zp,
                                    widths,
                                    dips,
                                    origin,
                                    strike=strike)
    plot_rupture_wire3d(rupture)
    if interactive:
        fname = os.path.join(os.path.expanduser('~'), 'rupture_wire_plot.png')
        plt.savefig(fname)
        print('Wire 3D plot saved to %s.  Delete this file if you wish.' %
              fname)

    # Need to get tests to check exception for if an axis is handed off
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    plot_rupture_wire3d(rupture, ax)

    # And raise the exception if it is not a 3d axis
    with pytest.raises(TypeError):
        ax = fig.add_subplot(111)
        plot_rupture_wire3d(rupture, ax)
Ejemplo n.º 10
0
def test_slip():
    # Rupture requires an origin even when not used:
    origin = Origin({'eventsourcecode': 'test', 'lat': 0, 'lon': 0,
                     'depth': 5.0, 'mag': 7.0})
    # Make a rupture
    lat0 = np.array([34.1])
    lon0 = np.array([-118.2])
    lat1 = np.array([34.2])
    lon1 = np.array([-118.15])
    z = np.array([1.0])
    W = np.array([3.0])
    dip = np.array([30.])
    rup = QuadRupture.fromTrace(lon0, lat0, lon1, lat1, z, W, dip, origin)

    slp = get_quad_slip(rup.getQuadrilaterals()[0], 30).getArray()
    slpd = np.array([0.80816457,  0.25350787,  0.53160491])
    np.testing.assert_allclose(slp, slpd)

    slp = get_local_unit_slip_vector(22, 30, 86).getArray()
    slpd = np.array([0.82714003,  0.38830563,  0.49878203])
    np.testing.assert_allclose(slp, slpd)
Ejemplo n.º 11
0
def test_plot_rupture(interactive=False):
    xp0 = np.array([-90.898000])
    xp1 = np.array([-91.308000])
    yp0 = np.array([12.584000])
    yp1 = np.array([12.832000])
    zp = [0.0]
    strike = azimuth(yp0[0], xp0[0], yp1[0], xp1[0])
    origin = Origin({
        'lat': 0.0,
        'lon': 0.0,
        'depth': 0.0,
        'mag': 5.5,
        'id': '',
        'netid': 'abcd',
        'network': '',
        'locstring': '',
        'time': HistoricTime.utcfromtimestamp(time.time())
    })
    interface_width = MAX_DEPTH / np.sin(np.radians(DIP))
    widths = np.ones(xp0.shape) * interface_width
    dips = np.ones(xp0.shape) * DIP
    strike = [strike]
    rupture = QuadRupture.fromTrace(xp0,
                                    yp0,
                                    xp1,
                                    yp1,
                                    zp,
                                    widths,
                                    dips,
                                    origin,
                                    strike=strike)
    plot_rupture_wire3d(rupture)
    if interactive:
        fname = os.path.join(os.path.expanduser('~'), 'rupture_wire_plot.png')
        plt.savefig(fname)
        print('Wire 3D plot saved to %s.  Delete this file if you wish.' %
              fname)
Ejemplo n.º 12
0
def test_map_rupture(interactive=False):
    xp0 = np.array([-90.898000])
    xp1 = np.array([-91.308000])
    yp0 = np.array([12.584000])
    yp1 = np.array([12.832000])
    zp = [0.0]
    strike = azimuth(yp0[0], xp0[0], yp1[0], xp1[0])
    origin = Origin({'lat': 0.0,
                     'lon': 0.0,
                     'depth': 0.0,
                     'mag': 5.5,
                     'eventsourcecode': 'abcd'})
    interface_width = MAX_DEPTH / np.sin(np.radians(DIP))
    widths = np.ones(xp0.shape) * interface_width
    dips = np.ones(xp0.shape) * DIP
    strike = [strike]
    rupture = QuadRupture.fromTrace(
        xp0, yp0, xp1, yp1, zp, widths, dips, origin, strike=strike)
    map_rupture(rupture)
    if interactive:
        fname = os.path.join(os.path.expanduser('~'), 'rupture_map.png')
        plt.savefig(fname)
        print('Rupture map plot saved to %s.  Delete this file if you wish.'
              % fname)
Ejemplo n.º 13
0
def test_rupture_depth(interactive=False):
    DIP = 17.0
    WIDTH = 20.0
    GRIDRES = 0.1

    names = ['single', 'double', 'triple',
             'concave', 'concave_simple', 'ANrvSA']
    means = [3.1554422780092461, 2.9224454569459781,
             3.0381968625073563, 2.0522694624400271,
             2.4805390352818755, 2.8740121776209673]
    stds = [2.1895293825074575, 2.0506459673526174,
            2.0244588429154402, 2.0112565876976416,
            2.1599789955270019, 1.6156220309120068]
    xp0list = [np.array([118.3]),
               np.array([10.1, 10.1]),
               np.array([10.1, 10.1, 10.3]),
               np.array([10.9, 10.5, 10.9]),
               np.array([10.9, 10.6]),
               np.array([-76.483, -76.626, -76.757, -76.99, -77.024, -76.925,
                         -76.65, -76.321, -75.997, -75.958])]
    xp1list = [np.array([118.3]),
               np.array([10.1, 10.3]),
               np.array([10.1, 10.3, 10.1]),
               np.array([10.5, 10.9, 11.3]),
               np.array([10.6, 10.9]),
               np.array([-76.626, -76.757, -76.99, -77.024, -76.925, -76.65,
                         -76.321, -75.997, -75.958, -76.006])]
    yp0list = [np.array([34.2]),
               np.array([34.2, 34.5]),
               np.array([34.2, 34.5, 34.8]),
               np.array([34.2, 34.5, 34.8]),
               np.array([35.1, 35.2]),
               np.array([-52.068, -51.377, -50.729, -49.845, -49.192, -48.507,
                         -47.875, -47.478, -47.08, -46.422])]
    yp1list = [np.array([34.5]),
               np.array([34.5, 34.8]),
               np.array([34.5, 34.8, 35.1]),
               np.array([34.5, 34.8, 34.6]),
               np.array([35.2, 35.4]),
               np.array([-51.377, -50.729, -49.845, -49.192, -48.507, -47.875,
                         -47.478, -47.08, -46.422, -45.659])]

    for i in range(0, len(xp0list)):
        xp0 = xp0list[i]
        xp1 = xp1list[i]
        yp0 = yp0list[i]
        yp1 = yp1list[i]
        name = names[i]
        mean_value = means[i]
        std_value = stds[i]

        zp = np.zeros(xp0.shape)
        strike = azimuth(xp0[0], yp0[0], xp1[-1], yp1[-1])
        widths = np.ones(xp0.shape) * WIDTH
        dips = np.ones(xp0.shape) * DIP
        strike = [strike]

    origin = Origin({'id': 'test',
                     'lon': 0, 'lat': 0,
                     'depth': 5.0, 'mag': 7.0, 'netid': 'us',
                     'network': '', 'locstring': '',
                     'time': HistoricTime.utcfromtimestamp(time.time())})

    rupture = QuadRupture.fromTrace(
        xp0, yp0, xp1, yp1, zp, widths, dips, origin, strike=strike)

    # make a grid of points over both quads, ask for depths
    ymin = np.nanmin(rupture.lats)
    ymax = np.nanmax(rupture.lats)
    xmin = np.nanmin(rupture.lons)
    xmax = np.nanmax(rupture.lons)

    xmin = np.floor(xmin * (1 / GRIDRES)) / (1 / GRIDRES)
    xmax = np.ceil(xmax * (1 / GRIDRES)) / (1 / GRIDRES)
    ymin = np.floor(ymin * (1 / GRIDRES)) / (1 / GRIDRES)
    ymax = np.ceil(ymax * (1 / GRIDRES)) / (1 / GRIDRES)
    geodict = GeoDict.createDictFromBox(
        xmin, xmax, ymin, ymax, GRIDRES, GRIDRES)
    nx = geodict.nx
    ny = geodict.ny
    depths = np.zeros((ny, nx))
    for row in range(0, ny):
        for col in range(0, nx):
            lat, lon = geodict.getLatLon(row, col)
            depth = rupture.getDepthAtPoint(lat, lon)
            depths[row, col] = depth

    np.testing.assert_almost_equal(np.nanmean(depths), mean_value)
    np.testing.assert_almost_equal(np.nanstd(depths), std_value)

    if interactive:
        fig, axes = plt.subplots(nrows=2, ncols=1)
        ax1, ax2 = axes
        xdata = np.append(xp0, xp1[-1])
        ydata = np.append(yp0, yp1[-1])
        plt.sca(ax1)
        plt.plot(xdata, ydata, 'b')
        plt.sca(ax2)
        im = plt.imshow(depths, cmap='viridis_r')  # noqa
        ch = plt.colorbar()  # noqa
        fname = os.path.join(os.path.expanduser('~'),
                             'quad_%s_test.png' % name)
        print('Saving image for %s quad test... %s' % (name, fname))
        plt.savefig(fname)
        plt.close()
Ejemplo n.º 14
0
def test_fromTrace():
    xp0 = [0.0]
    xp1 = [0.0]
    yp0 = [0.0]
    yp1 = [0.05]
    zp = [0.0]
    widths = [10.0]
    dips = [45.0]

    # Rupture requires an origin even when not used:
    origin = Origin({
        'id': 'test',
        'lon': -121.81529, 'lat': 37.73707,
        'depth': 5.0, 'mag': 7.0, 'netid': 'us',
        'network': '', 'locstring': '',
        'time': HistoricTime.utcfromtimestamp(time.time())
    })

    # Error: unequal array lengths
    with pytest.raises(ShakeLibException) as e:
        rupture = QuadRupture.fromTrace(
            xp0, yp0, xp1, yp1, zp[:-1], widths,
            dips, origin,
            reference='From J Smith, (personal communication)')
    print(str(e))

    # Error: invalid strike
    with pytest.raises(ShakeLibException) as e:
        rupture = QuadRupture.fromTrace(
            xp0, yp0, xp1, yp1, zp, widths,
            dips, origin, strike=[236.0, 250.0],
            reference='From J Smith, (personal communication)')
    print(str(e))

    # TODO: These write tests exercise code, but we don't check the results
    rupture = QuadRupture.fromTrace(
        xp0, yp0, xp1, yp1, zp, widths,
        dips, origin,
        reference='From J Smith, (personal communication)')
    fstr = io.StringIO()
    rupture.writeTextFile(fstr)

    tfile = tempfile.NamedTemporaryFile()
    tname = tfile.name
    tfile.close()
    rupture.writeTextFile(tname)
    os.remove(tname)

    tfile = tempfile.NamedTemporaryFile()
    tname = tfile.name
    tfile.close()
    rupture.writeGeoJson(tname)
    os.remove(tname)

    xp0 = [-121.81529, -121.82298]
    xp1 = [-121.82298, -121.83068]
    yp0 = [37.73707, 37.74233]
    yp1 = [37.74233, 37.74758]
    zp = [10, 15]
    widths = [15.0, 20.0]
    dips = [30.0, 45.0]
    rupture = QuadRupture.fromTrace(
        xp0, yp0, xp1, yp1, zp, widths,
        dips, origin,
        reference='From J Smith, (personal communication)')

    assert rupture.getReference() == 'From J Smith, (personal communication)'
    rorigin = rupture.getOrigin()
    assert rorigin.id == origin.id
    assert rorigin.mag == origin.mag
    assert rorigin.depth == origin.depth

    rx = rupture.getRuptureContext([])
    np.testing.assert_allclose([rx.strike, rx.dip, rx.ztor, rx.width],
                               [-49.183708644954905, 37.638322472702534,
                                9.999999999371358, 17.47024205615428])

    rhyp = rupture.computeRhyp(np.array([-121.5]), np.array([37.0]),
                               np.array([0]))
    repi = rupture.computeRepi(np.array([-121.5]), np.array([37.0]),
                               np.array([0]))
    np.testing.assert_allclose([rhyp[0], repi[0]], [86.709236, 86.564956])
def parse_bssc2014_ucerf(rupts, args):
    """
    This function is to parse the UCERF3 json file format. The ruptures in
    UCERF3 are very complex and so we don't exepct to get other rupture lists
    in this format.

    Args:
        rupts (dict): Python translation of rupture json file using json.load
            method.
        args (ArgumentParser): argparse object.

    Returns:
        dict: Dictionary of rupture information.

    """
    rlist = []
    nrup = len(rupts['events'])

    if args.index is not None:
        iter = args.index
        iter = map(int, iter)
    else:
        iter = range(nrup)

    for i in iter:
        event_name = rupts['events'][i]['name']
        short_name = event_name.split('EllB')[0].split('Shaw09')[0].split(
            '2011')[0].split('HB08')[0].rstrip()
        magnitude = rupts['events'][i]['magnitude']
        rake = rupts['events'][i]['rake']

        sections = np.array(rupts['events'][i]['sections'])
        nsections = len(sections)

        secind = 0
        new_seg_ind = []
        rev = np.array([[]])
        xp0 = np.array([[]])
        xp1 = np.array([[]])
        yp0 = np.array([[]])
        yp1 = np.array([[]])
        zp = np.array([[]])
        dip_sec = np.array([[]])
        strike_sec = np.array([[]])
        width_sec = np.array([[]])
        for j in range(0, nsections):
            trace_sec = np.array(sections[j]['resampledTrace'])
            top_sec_lon = trace_sec[:, 0]
            top_sec_lat = trace_sec[:, 1]
            top_sec_z = trace_sec[:, 2]
            n_sec_trace = len(trace_sec) - 1
            dip_sec = np.append(dip_sec,
                                np.repeat(sections[j]['dip'], n_sec_trace))
            dipDir_sec = np.repeat(sections[j]['dipDir'], n_sec_trace)
            strike_sec = np.append(strike_sec, dipDir_sec - 90)
            width_sec = np.append(width_sec,
                                  np.repeat(sections[j]['width'], n_sec_trace))
            rev_sec = sections[j]['reversed']
            rev = np.append(rev, np.repeat(rev_sec, n_sec_trace))
            xp0_sec = top_sec_lon[range(0, n_sec_trace)]
            xp1_sec = top_sec_lon[range(1, n_sec_trace + 1)]
            yp0_sec = top_sec_lat[range(0, n_sec_trace)]
            yp1_sec = top_sec_lat[range(1, n_sec_trace + 1)]
            zp_sec = top_sec_z[range(0, n_sec_trace)]
            if rev_sec is False:
                xp0 = np.append(xp0, xp0_sec)
                xp1 = np.append(xp1, xp1_sec)
                yp0 = np.append(yp0, yp0_sec)
                yp1 = np.append(yp1, yp1_sec)
                zp = np.append(zp, zp_sec)
            else:
                xp0 = np.append(xp0, xp1_sec[::-1])
                xp1 = np.append(xp1, xp0_sec[::-1])
                yp0 = np.append(yp0, yp1_sec[::-1])
                yp1 = np.append(yp1, yp0_sec[::-1])
                zp = np.append(zp, zp_sec[::-1])
            new_seg_ind.extend([secind] * n_sec_trace)
            secind = secind + 1

        # Origin
        origin = Origin({'mag': 0, 'id': '', 'lat': 0, 'lon': 0, 'depth': 0})
        rupt = QuadRupture.fromTrace(xp0,
                                     yp0,
                                     xp1,
                                     yp1,
                                     zp,
                                     width_sec,
                                     dip_sec,
                                     origin,
                                     strike=strike_sec,
                                     group_index=new_seg_ind,
                                     reference=args.reference)

        quads = rupt.getQuadrilaterals()
        edges = get_rupture_edges(quads, rev)
        hlat, hlon, hdepth = get_hypo(edges, args)

        id_str, eventsourcecode, real_desc = get_event_id(
            event_name, magnitude, args.directivity, args.dirind, quads)

        event = {
            'lat': hlat,
            'lon': hlon,
            'depth': hdepth,
            'mag': magnitude,
            'rake': rake,
            'id': id_str,
            'locstring': event_name,
            'type': 'ALL',
            'timezone': 'UTC',
            'time': ShakeDateTime.utcfromtimestamp(int(time.time())),
            'created': ShakeDateTime.utcfromtimestamp(int(time.time()))
        }

        # Update rupture with new origin info
        origin = Origin(event)
        rupt = QuadRupture.fromTrace(xp0,
                                     yp0,
                                     xp1,
                                     yp1,
                                     zp,
                                     width_sec,
                                     dip_sec,
                                     origin,
                                     strike=strike_sec,
                                     group_index=new_seg_ind,
                                     reference=args.reference)

        rdict = {
            'rupture': rupt,
            'event': event,
            'edges': edges,
            'id_str': id_str,
            'short_name': short_name,
            'real_desc': real_desc,
            'eventsourcecode': eventsourcecode
        }

        rlist.append(rdict)

    return rlist
Ejemplo n.º 16
0
def test_so6():
    magnitude = 7.2
    dip = np.array([70])
    rake = 135
    width = np.array([15])
    L = 80
    rupx = np.array([0, 0])
    rupy = np.array([0, L])
    zp = np.array([0])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)

    # Dummy origin
    origin = Origin({'lat': 0,
                     'lon': 0,
                     'depth': 0,
                     'mag': 0,
                     'eventsourcecode': 'so6',
                     'rake': rake})

    # Rupture
    rup = QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]),
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference='rv4')

    # Sites
    x = np.linspace(-80, 80, 21)
    y = np.linspace(-50, 130, 21)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    sdepth = np.zeros_like(slon)

    # Fix origin
    tmp = rup.getQuadrilaterals()[0]
    pp0 = Vector.fromPoint(point.Point(
        tmp[0].longitude, tmp[0].latitude, tmp[0].depth))
    pp1 = Vector.fromPoint(point.Point(
        tmp[1].longitude, tmp[1].latitude, tmp[1].depth))
    pp2 = Vector.fromPoint(point.Point(
        tmp[2].longitude, tmp[2].latitude, tmp[2].depth))
    pp3 = Vector.fromPoint(point.Point(
        tmp[3].longitude, tmp[3].latitude, tmp[3].depth))
    dxp = 10 / L
    dyp = (width - 5) / width
    mp0 = pp0 + (pp1 - pp0) * dxp
    mp1 = pp3 + (pp2 - pp3) * dxp
    rp = mp0 + (mp1 - mp0) * dyp
    epilat, epilon, epidepth = ecef2latlon(rp.x, rp.y, rp.z)
    epix, epiy = proj(epilon, epilat, reverse=False)

    origin = Origin({'lat': epilat,
                     'lon': epilon,
                     'depth': epidepth,
                     'mag': magnitude,
                     'eventsourcecode': 'so6',
                     'rake': rake})

    ruplat = [a.latitude for a in rup.getQuadrilaterals()[0]]
    ruplon = [a.longitude for a in rup.getQuadrilaterals()[0]]
    ruplat = np.append(ruplat, ruplat[0])
    ruplon = np.append(ruplon, ruplon[0])
    rupx, rupy = proj(ruplon, ruplat, reverse=False)

    test1 = Bayless2013(origin, rup, slat, slon, sdepth, T=5)
    fd = test1.getFd()
    fd_test = np.array(
        [[0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          -8.92879772e-03,  -1.74526918e-02,  -2.22981746e-02,
          -2.34350450e-02,  -2.13620062e-02,  -1.72712346e-02,
          -1.29509613e-02,  -1.02545064e-02,  -1.03010185e-02,
          -1.28847597e-02,  -1.66274727e-02,  -1.96984070e-02,
          -2.05377743e-02,  -1.81831337e-02,  -1.21881814e-02,
          -2.64862879e-03,   0.00000000e+00,   0.00000000e+00],
         [0.00000000e+00,   0.00000000e+00,  -8.73221519e-03,
          -2.21421374e-02,  -3.18438939e-02,  -3.71488270e-02,
          -3.76239913e-02,  -3.35015951e-02,  -2.61748968e-02,
          -1.83864728e-02,  -1.34793002e-02,  -1.36687799e-02,
          -1.85727143e-02,  -2.55527671e-02,  -3.14227568e-02,
          -3.38933995e-02,  -3.19289607e-02,  -2.53396980e-02,
          -1.45943649e-02,  -3.71405488e-04,   0.00000000e+00],
            [0.00000000e+00,  -2.54621422e-03,  -2.11428566e-02,
             -3.68609103e-02,  -4.87464747e-02,  -5.56539037e-02,
             -5.64419387e-02,  -5.05331157e-02,  -3.52919381e-02,
             -2.18782050e-02,  -1.40858125e-02,  -1.47354546e-02,
             -2.35727189e-02,  -3.74838465e-02,  -4.75915414e-02,
             -5.13000399e-02,  -4.87882409e-02,  -4.05716321e-02,
             -2.77368254e-02,  -1.13542729e-02,   0.00000000e+00],
            [0.00000000e+00,  -1.21642958e-02,  -3.33747360e-02,
             -5.21661817e-02,  -6.74724509e-02,  -7.77628842e-02,
             -8.00243748e-02,  -6.42496853e-02,  -4.38124530e-02,
             -1.97027426e-02,  -1.45897731e-02,  -1.07427056e-02,
             -3.08235222e-02,  -4.82656988e-02,  -6.67692677e-02,
             -7.35152908e-02,  -6.85574283e-02,  -5.71811573e-02,
             -4.12138780e-02,  -2.20396726e-02,  -6.24121310e-04],
            [0.00000000e+00,  -2.00643401e-02,  -4.39827328e-02,
             -6.62722434e-02,  -8.60268414e-02,  -1.01730306e-01,
             -9.86277741e-02,  -9.82914922e-02,  -5.22335876e-02,
             -1.54622435e-02,  -1.57487554e-02,  -3.06190808e-03,
             -4.81481586e-02,  -8.92480491e-02,  -8.63776477e-02,
             -9.98130440e-02,  -8.95491230e-02,  -7.33553695e-02,
             -5.34401725e-02,  -3.11601812e-02,  -7.33715103e-03],
            [0.00000000e+00,  -2.50053614e-02,  -5.11695772e-02,
             -7.65997026e-02,  -1.00809054e-01,  -1.22877573e-01,
             -1.18738178e-01,  -1.55236782e-01,  -7.45388001e-02,
             1.92779182e-03,  -1.94380016e-02,   1.94922939e-02,
             -7.66669920e-02,  -1.53909722e-01,  -1.10846875e-01,
             -1.19746768e-01,  -1.07680300e-01,  -8.59905101e-02,
             -6.22042294e-02,  -3.71802472e-02,  -1.13867485e-02],
            [0.00000000e+00,  -2.63645827e-02,  -5.37984901e-02,
             -8.11337022e-02,  -1.08298371e-01,  -1.35146441e-01,
             -1.34825430e-01,  -1.85836050e-01,  -1.10730875e-01,
             -3.18861095e-02,   4.14395701e-02,  -1.52711946e-02,
             -1.31840763e-01,  -1.96794707e-01,  -1.33453212e-01,
             -1.34989129e-01,  -1.17922385e-01,  -9.21637323e-02,
             -6.58369237e-02,  -3.91646838e-02,  -1.22685698e-02],
            [0.00000000e+00,  -2.64622244e-02,  -5.40483999e-02,
             -8.16190336e-02,  -1.09162854e-01,  -1.36656677e-01,
             -1.37081504e-01,  -1.89522811e-01,  -1.17723634e-01,
             -4.88765748e-02,  -5.04529015e-03,  -5.76414497e-02,
             -1.45712183e-01,  -2.03062804e-01,  -1.36859828e-01,
             -1.37107390e-01,  -1.19124650e-01,  -9.28263279e-02,
             -6.61800709e-02,  -3.93088682e-02,  -1.22842049e-02],
            [0.00000000e+00,  -2.58466495e-02,  -5.24858827e-02,
             -7.86086164e-02,  -1.03856343e-01,  -1.27529509e-01,
             -1.23794779e-01,  -1.68810613e-01,  -8.22602627e-02,
             1.74236964e-02,   9.38708725e-02,   4.23208284e-02,
             -8.46343723e-02,  -1.70476759e-01,  -1.17547884e-01,
             -1.24569752e-01,  -1.11518670e-01,  -8.84736806e-02,
             -6.38037151e-02,  -3.81874381e-02,  -1.19867610e-02],
            [0.00000000e+00,  -2.42186547e-02,  -4.84175525e-02,
             -7.09428614e-02,  -9.07754575e-02,  -1.06117824e-01,
             -9.50228292e-02,  -1.29781980e-01,  -3.08573454e-02,
             7.39058739e-02,   1.30478117e-01,   8.28181149e-02,
             -2.70389535e-02,  -1.20837502e-01,  -8.02081725e-02,
             -9.70274506e-02,  -9.35853383e-02,  -7.77422806e-02,
             -5.77817530e-02,  -3.53067886e-02,  -1.12414659e-02],
            [0.00000000e+00,  -2.16818717e-02,  -4.22363856e-02,
             -5.96909893e-02,  -7.24805224e-02,  -7.81867829e-02,
             -6.11838569e-02,  -9.05679744e-02,   9.95934969e-03,
             1.07503875e-01,   1.52073917e-01,   1.05894634e-01,
             8.68652263e-03,  -7.98571818e-02,  -4.16548658e-02,
             -6.40511838e-02,  -6.99337160e-02,  -6.26305633e-02,
             -4.89098800e-02,  -3.09284566e-02,  -1.00919381e-02],
            [0.00000000e+00,  -1.84940182e-02,  -3.47054606e-02,
             -4.65278129e-02,  -5.22037664e-02,  -4.93977115e-02,
             -2.95395230e-02,  -5.82421092e-02,   3.91025654e-02,
             1.29337956e-01,   1.67436703e-01,   1.21969296e-01,
             3.20823547e-02,  -5.00287386e-02,  -9.22993907e-03,
             -3.27186625e-02,  -4.52706958e-02,  -4.57409325e-02,
             -3.84701291e-02,  -2.55751405e-02,  -8.64950254e-03],
            [0.00000000e+00,  -1.49431380e-02,  -2.65887341e-02,
             -3.29162158e-02,  -3.22994323e-02,  -2.29081781e-02,
             -2.60259636e-03,  -3.29856530e-02,   6.02631314e-02,
             1.45003704e-01,   1.79361264e-01,   1.34292814e-01,
             4.88007115e-02,  -2.82328554e-02,   1.64212421e-02,
             -5.72391847e-03,  -2.23438861e-02,  -2.90246794e-02,
             -2.76054402e-02,  -1.97779758e-02,  -7.03945406e-03],
            [0.00000000e+00,  -1.12771143e-02,  -1.84737590e-02,
             -1.98228664e-02,  -1.40092305e-02,   1.84580818e-04,
             1.95817303e-02,  -1.32608487e-02,   7.62783168e-02,
             1.57076433e-01,   1.89083905e-01,   1.44259188e-01,
             6.15722813e-02,  -1.17505212e-02,   3.65938109e-02,
             1.66937711e-02,  -2.18970818e-03,  -1.35507683e-02,
             -1.70890527e-02,  -1.39519424e-02,  -5.37036892e-03],
            [0.00000000e+00,  -7.67615215e-03,  -1.07348257e-02,
             -7.75276739e-03,   2.22351695e-03,   1.98662250e-02,
             3.77611177e-02,   2.42018661e-03,   8.89036172e-02,
             1.66855206e-01,   1.97260700e-01,   1.52590263e-01,
             7.17981256e-02,   1.18005972e-03,   5.26852303e-02,
             3.51638855e-02,   1.51012176e-02,   2.69654076e-04,
             -7.33815554e-03,  -8.36639665e-03,  -3.72176313e-03],
            [0.00000000e+00,  -4.50552324e-03,  -4.32262850e-03,
             1.73559158e-03,   1.42670366e-02,   3.35040699e-02,
             4.97279358e-02,   1.85410528e-02,   9.39950666e-02,
             1.46646579e-01,   9.13474746e-02,   1.37004651e-01,
             7.74648339e-02,   1.59777072e-02,   6.25334939e-02,
             4.74577418e-02,   2.72155518e-02,   1.06174952e-02,
             3.94103899e-04,  -3.68465400e-03,  -2.19830733e-03],
            [0.00000000e+00,  -1.74629916e-03,   5.44471813e-04,
             8.22933499e-03,   2.15699287e-02,   4.04232250e-02,
             5.69678048e-02,   5.52408259e-02,   9.04381272e-02,
             1.08204635e-01,   9.14439984e-02,   1.06884511e-01,
             8.17241884e-02,   5.55282924e-02,   6.78528399e-02,
             5.47188925e-02,   3.35251483e-02,   1.69615982e-02,
             5.72048628e-03,  -8.81437278e-05,  -7.36518436e-04],
            [0.00000000e+00,   4.07838765e-05,   3.63933766e-03,
             1.20080876e-02,   2.51274691e-02,   4.25687176e-02,
             6.25685606e-02,   7.33480475e-02,   8.37515545e-02,
             9.52500287e-02,   9.15135660e-02,   9.66442834e-02,
             8.66659913e-02,   8.10325633e-02,   7.18836713e-02,
             5.45548434e-02,   3.55884875e-02,   2.00142359e-02,
             8.71200201e-03,   2.04407846e-03,  -6.53680674e-06],
            [0.00000000e+00,   2.40054729e-04,   4.44975227e-03,
             1.27572519e-02,   2.49362989e-02,   4.03831326e-02,
             5.80039988e-02,   7.61280192e-02,   8.37404162e-02,
             8.89634569e-02,   9.15651607e-02,   9.13586235e-02,
             8.83589144e-02,   8.27804032e-02,   6.75666471e-02,
             5.00483249e-02,   3.36733366e-02,   1.96758691e-02,
             9.00603204e-03,   2.18370401e-03,   0.00000000e+00],
            [0.00000000e+00,   0.00000000e+00,   2.78776980e-03,
             1.05086036e-02,   2.13238822e-02,   3.45577738e-02,
             4.91570145e-02,   6.36787133e-02,   7.63710088e-02,
             8.54072310e-02,   8.92960200e-02,   8.75702197e-02,
             8.07095447e-02,   6.97999389e-02,   5.63787286e-02,
             4.20734776e-02,   2.83073312e-02,   1.61614525e-02,
             6.56194125e-03,   1.00721924e-04,   0.00000000e+00],
            [0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
             5.49667845e-03,   1.47563319e-02,   2.57955743e-02,
             3.76689418e-02,   4.91861917e-02,   5.90108907e-02,
             6.58478416e-02,   6.87018515e-02,   6.73174642e-02,
             6.20270643e-02,   5.35456385e-02,   4.29400416e-02,
             3.14129728e-02,   2.00795162e-02,   9.84001885e-03,
             1.53992995e-03,   0.00000000e+00,   0.00000000e+00]]
    )
    np.testing.assert_allclose(fd, fd_test, rtol=1e-4)
Ejemplo n.º 17
0
def test_rv4():
    magnitude = 7.0
    rake = 90.0
    width = np.array([28])
    rupx = np.array([0, 0])
    rupy = np.array([0, 32])
    zp = np.array([0])
    dip = np.array([30])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)

    # Dummy Origin
    origin = Origin({'lat': 0,
                     'lon': 0,
                     'depth': 0,
                     'mag': 0,
                     'eventsourcecode': 'rv4',
                     'rake': rake})

    # Rupture
    rup = QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]),
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference='')
    L = rup.getLength()

    # Figure out epicenter
    tmp = rup.getQuadrilaterals()[0]
    pp0 = Vector.fromPoint(point.Point(
        tmp[0].longitude, tmp[0].latitude, tmp[0].depth))
    pp1 = Vector.fromPoint(point.Point(
        tmp[1].longitude, tmp[1].latitude, tmp[1].depth))
    pp2 = Vector.fromPoint(point.Point(
        tmp[2].longitude, tmp[2].latitude, tmp[2].depth))
    pp3 = Vector.fromPoint(point.Point(
        tmp[3].longitude, tmp[3].latitude, tmp[3].depth))
    dxp = 6 / L
    dyp = (width - 8) / width
    mp0 = pp0 + (pp1 - pp0) * dxp
    mp1 = pp3 + (pp2 - pp3) * dxp
    rp = mp0 + (mp1 - mp0) * dyp
    epilat, epilon, epidepth = ecef2latlon(rp.x, rp.y, rp.z)

    # Fix Origin:
    origin = Origin({'lat': epilat,
                     'lon': epilon,
                     'depth': epidepth,
                     'mag': magnitude,
                     'eventsourcecode': 'rv4',
                     'rake': rake})

    x = np.linspace(-50, 50, 11)
    y = np.linspace(-50, 50, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=2.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array(
        [[0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          1.72143257e-03,   1.34977260e-03,   4.33616224e-15,
          1.24446253e-03,   1.16142357e-03,   2.25464716e-03,
          7.05281751e-04,   0.00000000e+00],
         [0.00000000e+00,   0.00000000e+00,   7.62610242e-03,
          1.25133844e-02,   5.61896104e-03,   7.63126014e-15,
          4.52266194e-03,   4.67970900e-03,   1.02820316e-02,
          5.13160096e-03,  -6.13926251e-03],
            [0.00000000e+00,   4.00495234e-03,   2.37608386e-02,
             2.37139333e-02,   9.55224050e-03,   5.66364910e-15,
             7.70344813e-03,   7.36466362e-03,   1.48239704e-02,
             8.40388145e-03,  -1.58592485e-02],
            [8.08385547e-19,   9.38150101e-03,   3.38610620e-02,
             3.85351492e-02,   1.91044918e-02,   3.98697802e-15,
             1.54321666e-02,   1.21913760e-02,   2.04435166e-02,
             1.04931859e-02,  -1.85935894e-02],
            [2.12025421e-18,   1.37316085e-02,   4.40193799e-02,
             6.16562477e-02,   4.77612496e-02,   2.60257085e-15,
             3.86322888e-02,   1.97965887e-02,   2.64882038e-02,
             1.23335908e-02,  -2.07389932e-02],
            [2.64338576e-18,   1.45898292e-02,   4.89104213e-02,
             7.70703166e-02,   9.55225258e-02,   1.01875104e-01,
             7.73459329e-02,   2.50275508e-02,   2.93537540e-02,
             1.30949577e-02,  -2.15685454e-02],
            [2.64330042e-18,   1.45898262e-02,   4.89104186e-02,
             7.70703146e-02,   9.55225248e-02,   1.01910945e-01,
             7.74050835e-02,   2.52307946e-02,   2.92970736e-02,
             1.30880504e-02,  -2.15685424e-02],
            [2.64318867e-18,   1.45898259e-02,   4.89104184e-02,
             7.70703144e-02,   9.55225247e-02,   1.01933432e-01,
             7.74421258e-02,   2.53572923e-02,   2.92615130e-02,
             1.30837284e-02,  -2.15685422e-02],
            [2.64305117e-18,   1.45898284e-02,   4.89104206e-02,
             7.70703161e-02,   9.55225256e-02,   1.01942593e-01,
             7.74571359e-02,   2.54081640e-02,   2.92472117e-02,
             1.30819985e-02,  -2.15685446e-02],
            [2.30141673e-18,   1.40210825e-02,   4.56205547e-02,
             6.63109661e-02,   5.79266964e-02,   2.33044622e-15,
             4.69672564e-02,   2.18401553e-02,   2.72864925e-02,
             1.25728575e-02,  -2.10227772e-02],
            [1.10672535e-18,   1.04777076e-02,   3.59041065e-02,
             4.24614318e-02,   2.24217216e-02,   3.66914762e-15,
             1.81728517e-02,   1.39301504e-02,   2.14956836e-02,
             1.08711460e-02,  -1.90802849e-02]]
    )
    np.testing.assert_allclose(fd, fd_test, rtol=2e-4)
def parse_json_nshmp(rupts, args):
    """
    This will hopefully be the most general json format for rutpures.
    Assumes top of ruputure is horizontal and continuous, and that
    there is only one segment per rupture (but multiple quads).
    Users first and last point to get average strike, which is used
    for all quads.

    Args:
        rupts (dict): Python translation of rupture json file using json.load
            method.
        args (ArgumentParser): argparse object.

    Returns:
        dict: Dictionary of rupture information.

    """
    rlist = []
    nrup = len(rupts['events'])

    if args.index is not None:
        iter = args.index
        iter = map(int, iter)
    else:
        iter = range(nrup)

    for i in iter:

        event_name = rupts['events'][i]['desc']
        short_name = event_name.split('.xls')[0]
        id = rupts['events'][i]['id']
        magnitude = rupts['events'][i]['mag']
        if 'rake' in rupts['events'][i].keys():
            rake = rupts['events'][i]['rake']
        else:
            rake = np.nan

        # Does the file include a rupture model?
        if len(rupts['events'][i]['lats']) > 1:

            dip = rupts['events'][i]['dip']

            width = rupts['events'][i]['width']
            ztor = rupts['events'][i]['ztor']

            lons = rupts['events'][i]['lons']
            lats = rupts['events'][i]['lats']
            xp0 = np.array(lons[:-1])
            xp1 = np.array(lons[1:])
            yp0 = np.array(lats[:-1])
            yp1 = np.array(lats[1:])
            zp = np.ones_like(xp0) * ztor
            dips = np.ones_like(xp0) * dip
            widths = np.ones_like(xp0) * width

            P1 = geo.point.Point(lons[0], lats[0])
            P2 = geo.point.Point(lons[-1], lats[-1])
            strike = np.array([P1.azimuth(P2)])

            # Dummy origin
            origin = Origin({
                'mag': 0,
                'id': '',
                'lat': 0,
                'lon': 0,
                'depth': 0
            })
            rupt = QuadRupture.fromTrace(xp0,
                                         yp0,
                                         xp1,
                                         yp1,
                                         zp,
                                         widths,
                                         dips,
                                         origin,
                                         strike=strike,
                                         reference=args.reference)

            quads = rupt.getQuadrilaterals()
            edges = get_rupture_edges(quads)  # for hypo placement
            hlat, hlon, hdepth = get_hypo(edges, args)
        else:
            rupt = None
            edges = None
            hlat = float(rupts['events'][i]['lats'][0])
            hlon = float(rupts['events'][i]['lons'][0])

        id_str, eventsourcecode, real_desc = get_event_id(event_name,
                                                          magnitude,
                                                          args.directivity,
                                                          args.dirind,
                                                          quads,
                                                          id=id)

        event = {
            'lat': hlat,
            'lon': hlon,
            'depth': hdepth,
            'mag': magnitude,
            'rake': rake,
            'id': id_str,
            'locstring': event_name,
            'type': 'ALL',
            'timezone': 'UTC',
            'time': ShakeDateTime.utcfromtimestamp(int(time.time())),
            'created': ShakeDateTime.utcfromtimestamp(int(time.time()))
        }

        # Update rupture with new origin info
        if rupt is not None:
            origin = Origin(event)
            rupt = QuadRupture.fromTrace(xp0,
                                         yp0,
                                         xp1,
                                         yp1,
                                         zp,
                                         widths,
                                         dips,
                                         origin,
                                         strike=strike,
                                         reference=args.reference)

        rdict = {
            'rupture': rupt,
            'event': event,
            'edges': edges,
            'id_str': id_str,
            'short_name': short_name,
            'real_desc': real_desc,
            'eventsourcecode': eventsourcecode
        }
        rlist.append(rdict)

    return rlist
Ejemplo n.º 19
0
def test_ss3_move_hypo1():
    magnitude = 7.2
    dip = np.array([90])
    rake = 180.0
    width = np.array([15])
    rupx = np.array([0, 0])
    rupy = np.array([0, 80])
    zp = np.array([0.0])
    epix = np.array([1.0])
    epiy = np.array([-1.0])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    # Origin
    origin = Origin({'lat': epilat[0],
                     'lon': epilon[0],
                     'depth': -1,
                     'mag': magnitude,
                     'eventsourcecode': 'ss3',
                     'rake': rake})

    rup = QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]),
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference='ss3')

    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)
    phyp = copy.deepcopy(test1.phyp[0])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)

    px, py = proj(plon, plat, reverse=False)

    np.testing.assert_allclose(plat, 38.004233219183604, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4)
    np.testing.assert_allclose(pdep, 7.4999999989205968, rtol=1e-4)

    # --------------------------------------------------------------------------
    # Also for multiple segments
    # --------------------------------------------------------------------------
    dip = np.array([90., 90., 90.])
    rake = 180.0
    width = np.array([15., 15., 10.])
    rupx = np.array([0., 0., 10., 20.])
    rupy = np.array([0., 20., 60., 80.])
    zp = np.array([0., 0., 0.])
    epix = np.array([0.])
    epiy = np.array([0.])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    rup = QuadRupture.fromTrace(
        np.array(tlon[0:3]), np.array(tlat[0:3]),
        np.array(tlon[1:4]), np.array(tlat[1:4]),
        zp, width, dip, origin, reference='')

    event = {'lat': epilat[0],
             'lon': epilon[0],
             'depth': 1.0,
             'mag': magnitude,
             'eventsourcecode': '',
             'locstring': 'test',
             'type': 'SS',
             'timezone': 'UTC'}
    event['time'] = HistoricTime.utcfromtimestamp(int(time.time()))
    event['created'] = HistoricTime.utcfromtimestamp(int(time.time()))
    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)
    origin = Origin(event)
    origin.rake = rake
    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)

    # 1st pseudo-hyp
    phyp = copy.deepcopy(test1.phyp[0])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)
    px, py = proj(plon, plat, reverse=False)
    np.testing.assert_allclose(plat, 38.004233219183604, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4)
    np.testing.assert_allclose(pdep, 7.4999999989205968, rtol=1e-4)

    # 2nd pseudo-hyp
    phyp = copy.deepcopy(test1.phyp[1])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)
    px, py = proj(plon, plat, reverse=False)
    np.testing.assert_allclose(plat, 38.184097835787796, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4)
    np.testing.assert_allclose(pdep, 7.4999999989103525, rtol=1e-4)

    # 3rd pseudo-hyp
    phyp = copy.deepcopy(test1.phyp[2])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)
    px, py = proj(plon, plat, reverse=False)
    np.testing.assert_allclose(plat, 38.543778594535752, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.87137783362499, rtol=1e-4)
    np.testing.assert_allclose(pdep, 4.9999999995063993, rtol=1e-4)
Ejemplo n.º 20
0
def test_rv4():
    magnitude = 7.0
    rake = 90.0
    width = np.array([28])
    rupx = np.array([0, 0])
    rupy = np.array([0, 32])
    zp = np.array([0])
    dip = np.array([30])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)

    # Dummy Origin
    origin = Origin({
        'lat': 0,
        'lon': 0,
        'depth': 0,
        'mag': 0,
        'eventsourcecode': 'rv4',
        'rake': rake
    })

    # Rupture
    rup = QuadRupture.fromTrace(np.array([tlon[0]]),
                                np.array([tlat[0]]),
                                np.array([tlon[1]]),
                                np.array([tlat[1]]),
                                zp,
                                width,
                                dip,
                                origin,
                                reference='')
    L = rup.getLength()

    # Figure out epicenter
    tmp = rup.getQuadrilaterals()[0]
    pp0 = Vector.fromPoint(
        point.Point(tmp[0].longitude, tmp[0].latitude, tmp[0].depth))
    pp1 = Vector.fromPoint(
        point.Point(tmp[1].longitude, tmp[1].latitude, tmp[1].depth))
    pp2 = Vector.fromPoint(
        point.Point(tmp[2].longitude, tmp[2].latitude, tmp[2].depth))
    pp3 = Vector.fromPoint(
        point.Point(tmp[3].longitude, tmp[3].latitude, tmp[3].depth))
    dxp = 6 / L
    dyp = (width - 8) / width
    mp0 = pp0 + (pp1 - pp0) * dxp
    mp1 = pp3 + (pp2 - pp3) * dxp
    rp = mp0 + (mp1 - mp0) * dyp
    epilat, epilon, epidepth = ecef2latlon(rp.x, rp.y, rp.z)

    # Fix Origin:
    origin = Origin({
        'lat': epilat,
        'lon': epilon,
        'depth': epidepth,
        'mag': magnitude,
        'eventsourcecode': 'rv4',
        'rake': rake
    })

    x = np.linspace(-50, 50, 11)
    y = np.linspace(-50, 50, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=2.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array(
        [[
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.72143257e-03,
            1.34977260e-03, 4.33616224e-15, 1.24446253e-03, 1.16142357e-03,
            2.25464716e-03, 7.05281751e-04, 0.00000000e+00
        ],
         [
             0.00000000e+00, 0.00000000e+00, 7.62610242e-03, 1.25133844e-02,
             5.61896104e-03, 7.63126014e-15, 4.52266194e-03, 4.67970900e-03,
             1.02820316e-02, 5.13160096e-03, -6.13926251e-03
         ],
         [
             0.00000000e+00, 4.00495234e-03, 2.37608386e-02, 2.37139333e-02,
             9.55224050e-03, 5.66364910e-15, 7.70344813e-03, 7.36466362e-03,
             1.48239704e-02, 8.40388145e-03, -1.58592485e-02
         ],
         [
             8.08385547e-19, 9.38150101e-03, 3.38610620e-02, 3.85351492e-02,
             1.91044918e-02, 3.98697802e-15, 1.54321666e-02, 1.21913760e-02,
             2.04435166e-02, 1.04931859e-02, -1.85935894e-02
         ],
         [
             2.12025421e-18, 1.37316085e-02, 4.40193799e-02, 6.16562477e-02,
             4.77612496e-02, 2.60257085e-15, 3.86322888e-02, 1.97965887e-02,
             2.64882038e-02, 1.23335908e-02, -2.07389932e-02
         ],
         [
             2.64338576e-18, 1.45898292e-02, 4.89104213e-02, 7.70703166e-02,
             9.55225258e-02, 1.01875104e-01, 7.73459329e-02, 2.50275508e-02,
             2.93537540e-02, 1.30949577e-02, -2.15685454e-02
         ],
         [
             2.64330042e-18, 1.45898262e-02, 4.89104186e-02, 7.70703146e-02,
             9.55225248e-02, 1.01910945e-01, 7.74050835e-02, 2.52307946e-02,
             2.92970736e-02, 1.30880504e-02, -2.15685424e-02
         ],
         [
             2.64318867e-18, 1.45898259e-02, 4.89104184e-02, 7.70703144e-02,
             9.55225247e-02, 1.01933432e-01, 7.74421258e-02, 2.53572923e-02,
             2.92615130e-02, 1.30837284e-02, -2.15685422e-02
         ],
         [
             2.64305117e-18, 1.45898284e-02, 4.89104206e-02, 7.70703161e-02,
             9.55225256e-02, 1.01942593e-01, 7.74571359e-02, 2.54081640e-02,
             2.92472117e-02, 1.30819985e-02, -2.15685446e-02
         ],
         [
             2.30141673e-18, 1.40210825e-02, 4.56205547e-02, 6.63109661e-02,
             5.79266964e-02, 2.33044622e-15, 4.69672564e-02, 2.18401553e-02,
             2.72864925e-02, 1.25728575e-02, -2.10227772e-02
         ],
         [
             1.10672535e-18, 1.04777076e-02, 3.59041065e-02, 4.24614318e-02,
             2.24217216e-02, 3.66914762e-15, 1.81728517e-02, 1.39301504e-02,
             2.14956836e-02, 1.08711460e-02, -1.90802849e-02
         ]])
    np.testing.assert_allclose(fd, fd_test, rtol=2e-4)
Ejemplo n.º 21
0
def test_ss3_m6():
    magnitude = 6.0
    dip = np.array([90])
    rake = 180.0
    width = np.array([15])
    rupx = np.array([0, 0])
    rupy = np.array([0, 80])
    zp = np.array([0])
    epix = np.array([0])
    epiy = np.array([0.2 * rupy[1]])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    # Origin:
    origin = Origin({
        'lat': epilat[0],
        'lon': epilon[0],
        'depth': 10,
        'mag': magnitude,
        'eventsourcecode': 'ss3',
        'rake': rake
    })

    rup = QuadRupture.fromTrace(np.array([tlon[0]]),
                                np.array([tlat[0]]),
                                np.array([tlon[1]]),
                                np.array([tlat[1]]),
                                zp,
                                width,
                                dip,
                                origin,
                                reference='ss3')

    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array([[
        0.05853668, 0.05032323, 0.0306438, 0.00839635, -0.01102162, -0.02621319
    ],
                        [
                            0.01720501, -0.00687296, -0.03804823, -0.05547473,
                            -0.0644932, -0.06947135
                        ],
                        [
                            -0.03000065, -0.07006634, -0.07708165, -0.07865941,
                            -0.0792369, -0.07950887
                        ],
                        [
                            0.0398062, 0.02571145, -0.0018651, -0.0255418,
                            -0.04176278, -0.05235095
                        ],
                        [
                            0.0696989, 0.06389524, 0.04890304, 0.02983134,
                            0.01098535, -0.00545921
                        ],
                        [
                            0.088278, 0.08511069, 0.07628596, 0.06350294,
                            0.04875897, 0.03373495
                        ],
                        [
                            0.10179334, 0.09978475, 0.09401676, 0.0851842,
                            0.07422509, 0.06210369
                        ],
                        [
                            0.11242209, 0.11102701, 0.10696056, 0.10055471,
                            0.09229027, 0.08271454
                        ],
                        [
                            0.12118279, 0.12015315, 0.11712653, 0.11228058,
                            0.10588323, 0.09825795
                        ],
                        [
                            0.12785957, 0.12706892, 0.12473264, 0.12095384,
                            0.11589197, 0.10974684
                        ],
                        [
                            0.12785908, 0.12724852, 0.12543819, 0.12249026,
                            0.11850249, 0.11360047
                        ]])
    np.testing.assert_allclose(fd, fd_test, rtol=1e-4)
Ejemplo n.º 22
0
def test_ss3():
    magnitude = 7.2
    dip = np.array([90])
    rake = 180.0
    width = np.array([15])
    rupx = np.array([0, 0])
    rupy = np.array([0, 80])
    zp = np.array([0])
    epix = np.array([0])
    epiy = np.array([0.2 * rupy[1]])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    # Origin:
    origin = Origin({
        'lat': epilat[0],
        'lon': epilon[0],
        'depth': 10,
        'mag': magnitude,
        'eventsourcecode': 'ss3',
        'rake': rake
    })

    rup = QuadRupture.fromTrace(np.array([tlon[0]]),
                                np.array([tlat[0]]),
                                np.array([tlon[1]]),
                                np.array([tlat[1]]),
                                zp,
                                width,
                                dip,
                                origin,
                                reference='ss3')

    x = np.linspace(-60, 60, 21)
    y = np.linspace(-60, 138, 34)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array([
        [
            0.00000000e+00, 0.00000000e+00, 2.14620746e-03, 6.47899336e-03,
            1.23119791e-02, 1.91676140e-02, 2.64009788e-02, 3.32427846e-02,
            3.88863288e-02, 4.26104002e-02, 4.39120296e-02, 4.26104002e-02,
            3.88863288e-02, 3.32427846e-02, 2.64009788e-02, 1.91676140e-02,
            1.23119791e-02, 6.47899336e-03, 2.14620746e-03, 0.00000000e+00,
            0.00000000e+00
        ],
        [
            0.00000000e+00, 8.57780996e-04, 3.99405791e-03, 9.31948105e-03,
            1.65406113e-02, 2.51316805e-02, 3.43205435e-02, 4.31274592e-02,
            5.04747209e-02, 5.53634169e-02, 5.70796092e-02, 5.53634169e-02,
            5.04747209e-02, 4.31274592e-02, 3.43205435e-02, 2.51316805e-02,
            1.65406113e-02, 9.31948105e-03, 3.99405791e-03, 8.57780996e-04,
            0.00000000e+00
        ],
        [
            -7.32594549e-04, 1.80425497e-04, 3.76908220e-03, 1.00175179e-02,
            1.86854835e-02, 2.92291145e-02, 4.07487277e-02, 5.20057177e-02,
            6.15509770e-02, 6.79776087e-02, 7.02477931e-02, 6.79776087e-02,
            6.15509770e-02, 5.20057177e-02, 4.07487277e-02, 2.92291145e-02,
            1.86854835e-02, 1.00175179e-02, 3.76908220e-03, 1.80425497e-04,
            -7.32594549e-04
        ],
        [
            -3.29238561e-03, -2.60643191e-03, 1.16635260e-03, 8.15185259e-03,
            1.82290773e-02, 3.08983182e-02, 4.51608038e-02, 5.94769126e-02,
            7.18919113e-02, 8.03888307e-02, 8.34165399e-02, 8.03888307e-02,
            7.18919113e-02, 5.94769126e-02, 4.51608038e-02, 3.08983182e-02,
            1.82290773e-02, 8.15185259e-03, 1.16635260e-03, -2.60643191e-03,
            -3.29238561e-03
        ],
        [
            -7.68543266e-03, -7.63179286e-03, -4.08866637e-03, 3.27605236e-03,
            1.45558215e-02, 2.94068040e-02, 4.68176355e-02, 6.49397159e-02,
            7.72066272e-02, 8.50445368e-02, 8.77974692e-02, 8.50445368e-02,
            7.72066272e-02, 6.49397159e-02, 4.68176355e-02, 2.94068040e-02,
            1.45558215e-02, 3.27605236e-03, -4.08866637e-03, -7.63179286e-03,
            -7.68543266e-03
        ],
        [
            -1.38078234e-02, -1.49011067e-02, -1.21731364e-02, -5.02168047e-03,
            6.98177526e-03, 2.38268531e-02, 4.30419205e-02, 6.00041964e-02,
            7.44541603e-02, 8.42939552e-02, 8.77989590e-02, 8.42939552e-02,
            7.44541603e-02, 6.00041964e-02, 4.30419205e-02, 2.38268531e-02,
            6.98177526e-03, -5.02168047e-03, -1.21731364e-02, -1.49011067e-02,
            -1.38078234e-02
        ],
        [
            -2.13780396e-02, -2.42165379e-02, -2.30613142e-02, -1.70011475e-02,
            -5.15036128e-03, 1.25885635e-02, 3.24536739e-02, 5.25619351e-02,
            7.05100243e-02, 8.31900906e-02, 8.78003567e-02, 8.31900906e-02,
            7.05100243e-02, 5.25619351e-02, 3.24536739e-02, 1.25885635e-02,
            -5.15036128e-03, -1.70011475e-02, -2.30613142e-02, -2.42165379e-02,
            -2.13780396e-02
        ],
        [
            -2.98882710e-02, -3.50862342e-02, -3.63793490e-02, -3.25716319e-02,
            -2.22546618e-02, -3.59274163e-03, 1.83064517e-02, 4.20112440e-02,
            6.46115966e-02, 8.14746164e-02, 8.78016623e-02, 8.14746164e-02,
            6.46115966e-02, 4.20112440e-02, 1.83064517e-02, -3.59274163e-03,
            -2.22546618e-02, -3.25716319e-02, -3.63793490e-02, -3.50862342e-02,
            -2.98882710e-02
        ],
        [
            -3.85810679e-02, -4.66488633e-02, -5.12430987e-02, -5.10089462e-02,
            -4.20856023e-02, -2.36905234e-02, -6.33876287e-04, 2.66765430e-02,
            5.53289928e-02, 7.86066125e-02, 8.78028757e-02, 7.86066125e-02,
            5.53289928e-02, 2.66765430e-02, -6.33876287e-04, -2.36905234e-02,
            -4.20856023e-02, -5.10089462e-02, -5.12430987e-02, -4.66488633e-02,
            -3.85810679e-02
        ],
        [
            -4.64803335e-02, -5.76615888e-02, -6.61458422e-02, -7.06512643e-02,
            -6.38427394e-02, -4.77258398e-02, -2.55483969e-02, 4.05840724e-03,
            3.98470070e-02, 7.33053399e-02, 8.78039969e-02, 7.33053399e-02,
            3.98470070e-02, 4.05840724e-03, -2.55483969e-02, -4.77258398e-02,
            -6.38427394e-02, -7.06512643e-02, -6.61458422e-02, -5.76615888e-02,
            -4.64803335e-02
        ],
        [
            -5.25038299e-02, -6.66129442e-02, -7.90147081e-02, -8.87629178e-02,
            -8.59653118e-02, -7.42828398e-02, -5.64316505e-02, -2.87083225e-02,
            1.25945312e-02, 6.19971667e-02, 8.78050260e-02, 6.19971667e-02,
            1.25945312e-02, -2.87083225e-02, -5.64316505e-02, -7.42828398e-02,
            -8.59653118e-02, -8.87629178e-02, -7.90147081e-02, -6.66129442e-02,
            -5.25038299e-02
        ],
        [
            -5.69779111e-02, -7.36791817e-02, -8.97495345e-02, -1.04799583e-01,
            -1.07737239e-01, -1.02875880e-01, -9.46568471e-02, -7.95630162e-02,
            -4.96285112e-02, 6.59954795e-03, 5.25569882e-02, 6.59954795e-03,
            -4.96285112e-02, -7.95630162e-02, -9.46568471e-02, -1.02875880e-01,
            -1.07737239e-01, -1.04799583e-01, -8.97495345e-02, -7.36791817e-02,
            -5.69779111e-02
        ],
        [
            -5.90357675e-02, -7.69727119e-02, -9.48442826e-02, -1.12607620e-01,
            -1.18744885e-01, -1.18201834e-01, -1.17217017e-01, -1.15152899e-01,
            -1.09694433e-01, -8.82341332e-02, -1.61624035e-02, -8.82341332e-02,
            -1.09694433e-01, -1.15152899e-01, -1.17217017e-01, -1.18201834e-01,
            -1.18744885e-01, -1.12607620e-01, -9.48442826e-02, -7.69727119e-02,
            -5.90357675e-02
        ],
        [
            -5.92189452e-02, -7.72680305e-02, -9.53051857e-02, -1.13322519e-01,
            -1.19770917e-01, -1.19670660e-01, -1.19486798e-01, -1.19092639e-01,
            -1.17989113e-01, -1.12555820e-01, -4.50009776e-02, -1.12555820e-01,
            -1.17989113e-01, -1.19092639e-01, -1.19486798e-01, -1.19670660e-01,
            -1.19770917e-01, -1.13322519e-01, -9.53051857e-02, -7.72680305e-02,
            -5.92189452e-02
        ],
        [
            -5.79249958e-02, -7.51927112e-02, -9.20842554e-02, -1.08361430e-01,
            -1.12722790e-01, -1.09732675e-01, -1.04531672e-01, -9.44729544e-02,
            -7.23277773e-02, -2.05699911e-02, 3.58249631e-02, -2.05699911e-02,
            -7.23277773e-02, -9.44729544e-02, -1.04531672e-01, -1.09732675e-01,
            -1.12722790e-01, -1.08361430e-01, -9.20842554e-02, -7.51927112e-02,
            -5.79249958e-02
        ],
        [
            -5.42527703e-02, -6.93641123e-02, -8.31684773e-02, -9.49114165e-02,
            -9.41989454e-02, -8.48645354e-02, -7.00894708e-02, -4.58286259e-02,
            -6.37563061e-03, 4.68887998e-02, 7.77968419e-02, 4.68887998e-02,
            -6.37563061e-03, -4.58286259e-02, -7.00894708e-02, -8.48645354e-02,
            -9.41989454e-02, -9.49114165e-02, -8.31684773e-02, -6.93641123e-02,
            -5.42527703e-02
        ],
        [
            -4.82490057e-02, -5.99997941e-02, -6.91786120e-02, -7.44891242e-02,
            -6.73705808e-02, -5.13001284e-02, -2.84188057e-02, 3.60143816e-03,
            4.47470123e-02, 8.58663851e-02, 1.04548354e-01, 8.58663851e-02,
            4.47470123e-02, 3.60143816e-03, -2.84188057e-02, -5.13001284e-02,
            -6.73705808e-02, -7.44891242e-02, -6.91786120e-02, -5.99997941e-02,
            -4.82490057e-02
        ],
        [
            -4.03203010e-02, -4.79063206e-02, -5.16352259e-02, -4.98707253e-02,
            -3.67295509e-02, -1.57342058e-02, 1.13668830e-02, 4.46551184e-02,
            8.10450840e-02, 1.11780747e-01, 1.24226598e-01, 1.11780747e-01,
            8.10450840e-02, 4.46551184e-02, 1.13668830e-02, -1.57342058e-02,
            -3.67295509e-02, -4.98707253e-02, -5.16352259e-02, -4.79063206e-02,
            -4.03203010e-02
        ],
        [
            -3.10250239e-02, -3.40796094e-02, -3.22089254e-02, -2.37094100e-02,
            -5.85463114e-03, 1.77402761e-02, 4.57786845e-02, 7.69637052e-02,
            1.07537652e-01, 1.30906328e-01, 1.39800436e-01, 1.30906328e-01,
            1.07537652e-01, 7.69637052e-02, 4.57786845e-02, 1.77402761e-02,
            -5.85463114e-03, -2.37094100e-02, -3.22089254e-02, -3.40796094e-02,
            -3.10250239e-02
        ],
        [
            -2.09301700e-02, -1.94475962e-02, -1.22970199e-02, 2.07296407e-03,
            2.31516868e-02, 4.74574033e-02, 7.44743481e-02, 1.02380049e-01,
            1.27776301e-01, 1.46003379e-01, 1.52690015e-01, 1.46003379e-01,
            1.27776301e-01, 1.02380049e-01, 7.44743481e-02, 4.74574033e-02,
            2.31516868e-02, 2.07296407e-03, -1.22970199e-02, -1.94475962e-02,
            -2.09301700e-02
        ],
        [
            -1.05257992e-02, -4.74329696e-03, 7.12107274e-03, 2.63431361e-02,
            4.93709790e-02, 7.31527220e-02, 9.82233938e-02, 1.22728059e-01,
            1.43894925e-01, 1.58465026e-01, 1.63685984e-01, 1.58465026e-01,
            1.43894925e-01, 1.22728059e-01, 9.82233938e-02, 7.31527220e-02,
            4.93709790e-02, 2.63431361e-02, 7.12107274e-03, -4.74329696e-03,
            -1.05257992e-02
        ],
        [
            -1.89098657e-04, 9.52392382e-03, 2.54577716e-02, 4.85730869e-02,
            7.26048516e-02, 9.51726659e-02, 1.17988523e-01, 1.39380421e-01,
            1.57176612e-01, 1.69076915e-01, 1.73274075e-01, 1.69076915e-01,
            1.57176612e-01, 1.39380421e-01, 1.17988523e-01, 9.51726659e-02,
            7.26048516e-02, 4.85730869e-02, 2.54577716e-02, 9.52392382e-03,
            -1.89098657e-04
        ],
        [
            9.81732797e-03, 2.30419581e-02, 4.24234701e-02, 6.86213308e-02,
            9.30164618e-02, 1.14050063e-01, 1.34620894e-01, 1.53304069e-01,
            1.68420867e-01, 1.78321253e-01, 1.81774183e-01, 1.78321253e-01,
            1.68420867e-01, 1.53304069e-01, 1.34620894e-01, 1.14050063e-01,
            9.30164618e-02, 6.86213308e-02, 4.24234701e-02, 2.30419581e-02,
            9.81732797e-03
        ],
        [
            1.93290725e-02, 3.56493099e-02, 5.79271157e-02, 8.65611122e-02,
            1.10914315e-01, 1.30317702e-01, 1.48798006e-01, 1.65173224e-01,
            1.78147031e-01, 1.86513895e-01, 1.89408199e-01, 1.86513895e-01,
            1.78147031e-01, 1.65173224e-01, 1.48798006e-01, 1.30317702e-01,
            1.10914315e-01, 8.65611122e-02, 5.79271157e-02, 3.56493099e-02,
            1.93290725e-02
        ],
        [
            2.68168937e-02, 4.52356810e-02, 6.92261217e-02, 9.89630241e-02,
            1.23093435e-01, 1.40640067e-01, 1.56998943e-01, 1.71215219e-01,
            1.82297185e-01, 1.89360704e-01, 1.91789146e-01, 1.89360704e-01,
            1.82297185e-01, 1.71215219e-01, 1.56998943e-01, 1.40640067e-01,
            1.23093435e-01, 9.89630241e-02, 6.92261217e-02, 4.52356810e-02,
            2.68168937e-02
        ],
        [
            3.19403269e-02, 5.15051953e-02, 7.61032066e-02, 1.05705197e-01,
            1.31722206e-01, 1.47466588e-01, 1.61892450e-01, 1.74235616e-01,
            1.83735386e-01, 1.89735533e-01, 1.91788616e-01, 1.89735533e-01,
            1.83735386e-01, 1.74235616e-01, 1.61892450e-01, 1.47466588e-01,
            1.31722206e-01, 1.05705197e-01, 7.61032066e-02, 5.15051953e-02,
            3.19403269e-02
        ],
        [
            3.48604070e-02, 5.49292382e-02, 7.94274234e-02, 1.08149011e-01,
            1.38923419e-01, 1.53070440e-01, 1.65849067e-01, 1.76646162e-01,
            1.84871647e-01, 1.90029617e-01, 1.91787948e-01, 1.90029617e-01,
            1.84871647e-01, 1.76646162e-01, 1.65849067e-01, 1.53070440e-01,
            1.38923419e-01, 1.08149011e-01, 7.94274234e-02, 5.49292382e-02,
            3.48604070e-02
        ],
        [
            3.53402022e-02, 5.53653759e-02, 7.91965502e-02, 1.06486934e-01,
            1.36563003e-01, 1.57713955e-01, 1.69087164e-01, 1.78598269e-01,
            1.85784340e-01, 1.90264452e-01, 1.91787141e-01, 1.90264452e-01,
            1.85784340e-01, 1.78598269e-01, 1.69087164e-01, 1.57713955e-01,
            1.36563003e-01, 1.06486934e-01, 7.91965502e-02, 5.53653759e-02,
            3.53402022e-02
        ],
        [
            3.32889822e-02, 5.28319225e-02, 7.55769079e-02, 1.01077605e-01,
            1.28592068e-01, 1.57023616e-01, 1.71766715e-01, 1.80199729e-01,
            1.86528091e-01, 1.90454829e-01, 1.91786196e-01, 1.90454829e-01,
            1.86528091e-01, 1.80199729e-01, 1.71766715e-01, 1.57023616e-01,
            1.28592068e-01, 1.01077605e-01, 7.55769079e-02, 5.28319225e-02,
            3.32889822e-02
        ],
        [
            2.87295370e-02, 4.74613283e-02, 6.88388861e-02, 9.23568989e-02,
            1.17254645e-01, 1.42483223e-01, 1.66695764e-01, 1.81528776e-01,
            1.87141877e-01, 1.90611190e-01, 1.91785112e-01, 1.90611190e-01,
            1.87141877e-01, 1.81528776e-01, 1.66695764e-01, 1.42483223e-01,
            1.17254645e-01, 9.23568989e-02, 6.88388861e-02, 4.74613283e-02,
            2.87295370e-02
        ],
        [
            2.17650266e-02, 3.94568191e-02, 5.93023344e-02, 8.07720575e-02,
            1.03124482e-01, 1.25394282e-01, 1.46405870e-01, 1.64828303e-01,
            1.79288925e-01, 1.88553222e-01, 1.91747252e-01, 1.88553222e-01,
            1.79288925e-01, 1.64828303e-01, 1.46405870e-01, 1.25394282e-01,
            1.03124482e-01, 8.07720575e-02, 5.93023344e-02, 3.94568191e-02,
            2.17650266e-02
        ],
        [
            1.25495284e-02, 2.90572166e-02, 4.72972116e-02, 6.67423656e-02,
            8.66951873e-02, 1.06290296e-01, 1.24520131e-01, 1.40293247e-01,
            1.52531693e-01, 1.60303860e-01, 1.62970689e-01, 1.60303860e-01,
            1.52531693e-01, 1.40293247e-01, 1.24520131e-01, 1.06290296e-01,
            8.66951873e-02, 6.67423656e-02, 4.72972116e-02, 2.90572166e-02,
            1.25495284e-02
        ],
        [
            1.26441934e-03, 1.65114811e-02, 3.31390978e-02, 5.06407706e-02,
            6.83765492e-02, 8.55839448e-02, 1.01408074e-01, 1.14955639e-01,
            1.25373662e-01, 1.31946425e-01, 1.34193829e-01, 1.31946425e-01,
            1.25373662e-01, 1.14955639e-01, 1.01408074e-01, 8.55839448e-02,
            6.83765492e-02, 5.06407706e-02, 3.31390978e-02, 1.65114811e-02,
            1.26441934e-03
        ],
        [
            0.00000000e+00, 2.06213867e-03, 1.71162845e-02, 3.27888240e-02,
            4.85026462e-02, 6.35932476e-02, 7.73387997e-02, 8.90069217e-02,
            9.79166934e-02, 1.03509489e-01, 1.05416736e-01, 1.03509489e-01,
            9.79166934e-02, 8.90069217e-02, 7.73387997e-02, 6.35932476e-02,
            4.85026462e-02, 3.27888240e-02, 1.71162845e-02, 2.06213867e-03,
            0.00000000e+00
        ]
    ])
    np.testing.assert_allclose(fd, fd_test, rtol=1e-4)
Ejemplo n.º 23
0
def test_ss3():
    magnitude = 7.2
    dip = np.array([90])
    rake = 180.0
    width = np.array([15])
    rupx = np.array([0, 0])
    rupy = np.array([0, 80])
    zp = np.array([0])
    epix = np.array([0])
    epiy = np.array([0.2 * rupy[1]])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    # Origin:
    origin = Origin({'lat': epilat[0],
                     'lon': epilon[0],
                     'depth': 10,
                     'mag': magnitude,
                     'eventsourcecode': 'ss3',
                     'rake': rake})

    rup = QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]),
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference='ss3')

    x = np.linspace(-60, 60, 21)
    y = np.linspace(-60, 138, 34)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array(
        [[0.00000000e+00, 0.00000000e+00, 2.14620746e-03,
          6.47899336e-03, 1.23119791e-02, 1.91676140e-02,
          2.64009788e-02, 3.32427846e-02, 3.88863288e-02,
          4.26104002e-02, 4.39120296e-02, 4.26104002e-02,
          3.88863288e-02, 3.32427846e-02, 2.64009788e-02,
          1.91676140e-02, 1.23119791e-02, 6.47899336e-03,
          2.14620746e-03, 0.00000000e+00, 0.00000000e+00],
         [0.00000000e+00, 8.57780996e-04, 3.99405791e-03,
          9.31948105e-03, 1.65406113e-02, 2.51316805e-02,
          3.43205435e-02, 4.31274592e-02, 5.04747209e-02,
          5.53634169e-02, 5.70796092e-02, 5.53634169e-02,
          5.04747209e-02, 4.31274592e-02, 3.43205435e-02,
          2.51316805e-02, 1.65406113e-02, 9.31948105e-03,
          3.99405791e-03, 8.57780996e-04, 0.00000000e+00],
            [-7.32594549e-04, 1.80425497e-04, 3.76908220e-03,
             1.00175179e-02, 1.86854835e-02, 2.92291145e-02,
             4.07487277e-02, 5.20057177e-02, 6.15509770e-02,
             6.79776087e-02, 7.02477931e-02, 6.79776087e-02,
             6.15509770e-02, 5.20057177e-02, 4.07487277e-02,
             2.92291145e-02, 1.86854835e-02, 1.00175179e-02,
             3.76908220e-03, 1.80425497e-04, -7.32594549e-04],
            [-3.29238561e-03, -2.60643191e-03, 1.16635260e-03,
             8.15185259e-03, 1.82290773e-02, 3.08983182e-02,
             4.51608038e-02, 5.94769126e-02, 7.18919113e-02,
             8.03888307e-02, 8.34165399e-02, 8.03888307e-02,
             7.18919113e-02, 5.94769126e-02, 4.51608038e-02,
             3.08983182e-02, 1.82290773e-02, 8.15185259e-03,
             1.16635260e-03, -2.60643191e-03, -3.29238561e-03],
            [-7.68543266e-03, -7.63179286e-03, -4.08866637e-03,
             3.27605236e-03, 1.45558215e-02, 2.94068040e-02,
             4.68176355e-02, 6.49397159e-02, 7.72066272e-02,
             8.50445368e-02, 8.77974692e-02, 8.50445368e-02,
             7.72066272e-02, 6.49397159e-02, 4.68176355e-02,
             2.94068040e-02, 1.45558215e-02, 3.27605236e-03,
             -4.08866637e-03, -7.63179286e-03, -7.68543266e-03],
            [-1.38078234e-02, -1.49011067e-02, -1.21731364e-02,
             -5.02168047e-03, 6.98177526e-03, 2.38268531e-02,
             4.30419205e-02, 6.00041964e-02, 7.44541603e-02,
             8.42939552e-02, 8.77989590e-02, 8.42939552e-02,
             7.44541603e-02, 6.00041964e-02, 4.30419205e-02,
             2.38268531e-02, 6.98177526e-03, -5.02168047e-03,
             -1.21731364e-02, -1.49011067e-02, -1.38078234e-02],
            [-2.13780396e-02, -2.42165379e-02, -2.30613142e-02,
             -1.70011475e-02, -5.15036128e-03, 1.25885635e-02,
             3.24536739e-02, 5.25619351e-02, 7.05100243e-02,
             8.31900906e-02, 8.78003567e-02, 8.31900906e-02,
             7.05100243e-02, 5.25619351e-02, 3.24536739e-02,
             1.25885635e-02, -5.15036128e-03, -1.70011475e-02,
             -2.30613142e-02, -2.42165379e-02, -2.13780396e-02],
            [-2.98882710e-02, -3.50862342e-02, -3.63793490e-02,
             -3.25716319e-02, -2.22546618e-02, -3.59274163e-03,
             1.83064517e-02, 4.20112440e-02, 6.46115966e-02,
             8.14746164e-02, 8.78016623e-02, 8.14746164e-02,
             6.46115966e-02, 4.20112440e-02, 1.83064517e-02,
             -3.59274163e-03, -2.22546618e-02, -3.25716319e-02,
             -3.63793490e-02, -3.50862342e-02, -2.98882710e-02],
            [-3.85810679e-02, -4.66488633e-02, -5.12430987e-02,
             -5.10089462e-02, -4.20856023e-02, -2.36905234e-02,
             -6.33876287e-04, 2.66765430e-02, 5.53289928e-02,
             7.86066125e-02, 8.78028757e-02, 7.86066125e-02,
             5.53289928e-02, 2.66765430e-02, -6.33876287e-04,
             -2.36905234e-02, -4.20856023e-02, -5.10089462e-02,
             -5.12430987e-02, -4.66488633e-02, -3.85810679e-02],
            [-4.64803335e-02, -5.76615888e-02, -6.61458422e-02,
             -7.06512643e-02, -6.38427394e-02, -4.77258398e-02,
             -2.55483969e-02, 4.05840724e-03, 3.98470070e-02,
             7.33053399e-02, 8.78039969e-02, 7.33053399e-02,
             3.98470070e-02, 4.05840724e-03, -2.55483969e-02,
             -4.77258398e-02, -6.38427394e-02, -7.06512643e-02,
             -6.61458422e-02, -5.76615888e-02, -4.64803335e-02],
            [-5.25038299e-02, -6.66129442e-02, -7.90147081e-02,
             -8.87629178e-02, -8.59653118e-02, -7.42828398e-02,
             -5.64316505e-02, -2.87083225e-02, 1.25945312e-02,
             6.19971667e-02, 8.78050260e-02, 6.19971667e-02,
             1.25945312e-02, -2.87083225e-02, -5.64316505e-02,
             -7.42828398e-02, -8.59653118e-02, -8.87629178e-02,
             -7.90147081e-02, -6.66129442e-02, -5.25038299e-02],
            [-5.69779111e-02, -7.36791817e-02, -8.97495345e-02,
             -1.04799583e-01, -1.07737239e-01, -1.02875880e-01,
             -9.46568471e-02, -7.95630162e-02, -4.96285112e-02,
             6.59954795e-03, 5.25569882e-02, 6.59954795e-03,
             -4.96285112e-02, -7.95630162e-02, -9.46568471e-02,
             -1.02875880e-01, -1.07737239e-01, -1.04799583e-01,
             -8.97495345e-02, -7.36791817e-02, -5.69779111e-02],
            [-5.90357675e-02, -7.69727119e-02, -9.48442826e-02,
             -1.12607620e-01, -1.18744885e-01, -1.18201834e-01,
             -1.17217017e-01, -1.15152899e-01, -1.09694433e-01,
             -8.82341332e-02, -1.61624035e-02, -8.82341332e-02,
             -1.09694433e-01, -1.15152899e-01, -1.17217017e-01,
             -1.18201834e-01, -1.18744885e-01, -1.12607620e-01,
             -9.48442826e-02, -7.69727119e-02, -5.90357675e-02],
            [-5.92189452e-02, -7.72680305e-02, -9.53051857e-02,
             -1.13322519e-01, -1.19770917e-01, -1.19670660e-01,
             -1.19486798e-01, -1.19092639e-01, -1.17989113e-01,
             -1.12555820e-01, -4.50009776e-02, -1.12555820e-01,
             -1.17989113e-01, -1.19092639e-01, -1.19486798e-01,
             -1.19670660e-01, -1.19770917e-01, -1.13322519e-01,
             -9.53051857e-02, -7.72680305e-02, -5.92189452e-02],
            [-5.79249958e-02, -7.51927112e-02, -9.20842554e-02,
             -1.08361430e-01, -1.12722790e-01, -1.09732675e-01,
             -1.04531672e-01, -9.44729544e-02, -7.23277773e-02,
             -2.05699911e-02, 3.58249631e-02, -2.05699911e-02,
             -7.23277773e-02, -9.44729544e-02, -1.04531672e-01,
             -1.09732675e-01, -1.12722790e-01, -1.08361430e-01,
             -9.20842554e-02, -7.51927112e-02, -5.79249958e-02],
            [-5.42527703e-02, -6.93641123e-02, -8.31684773e-02,
             -9.49114165e-02, -9.41989454e-02, -8.48645354e-02,
             -7.00894708e-02, -4.58286259e-02, -6.37563061e-03,
             4.68887998e-02, 7.77968419e-02, 4.68887998e-02,
             -6.37563061e-03, -4.58286259e-02, -7.00894708e-02,
             -8.48645354e-02, -9.41989454e-02, -9.49114165e-02,
             -8.31684773e-02, -6.93641123e-02, -5.42527703e-02],
            [-4.82490057e-02, -5.99997941e-02, -6.91786120e-02,
             -7.44891242e-02, -6.73705808e-02, -5.13001284e-02,
             -2.84188057e-02, 3.60143816e-03, 4.47470123e-02,
             8.58663851e-02, 1.04548354e-01, 8.58663851e-02,
             4.47470123e-02, 3.60143816e-03, -2.84188057e-02,
             -5.13001284e-02, -6.73705808e-02, -7.44891242e-02,
             -6.91786120e-02, -5.99997941e-02, -4.82490057e-02],
            [-4.03203010e-02, -4.79063206e-02, -5.16352259e-02,
             -4.98707253e-02, -3.67295509e-02, -1.57342058e-02,
             1.13668830e-02, 4.46551184e-02, 8.10450840e-02,
             1.11780747e-01, 1.24226598e-01, 1.11780747e-01,
             8.10450840e-02, 4.46551184e-02, 1.13668830e-02,
             -1.57342058e-02, -3.67295509e-02, -4.98707253e-02,
             -5.16352259e-02, -4.79063206e-02, -4.03203010e-02],
            [-3.10250239e-02, -3.40796094e-02, -3.22089254e-02,
             -2.37094100e-02, -5.85463114e-03, 1.77402761e-02,
             4.57786845e-02, 7.69637052e-02, 1.07537652e-01,
             1.30906328e-01, 1.39800436e-01, 1.30906328e-01,
             1.07537652e-01, 7.69637052e-02, 4.57786845e-02,
             1.77402761e-02, -5.85463114e-03, -2.37094100e-02,
             -3.22089254e-02, -3.40796094e-02, -3.10250239e-02],
            [-2.09301700e-02, -1.94475962e-02, -1.22970199e-02,
             2.07296407e-03, 2.31516868e-02, 4.74574033e-02,
             7.44743481e-02, 1.02380049e-01, 1.27776301e-01,
             1.46003379e-01, 1.52690015e-01, 1.46003379e-01,
             1.27776301e-01, 1.02380049e-01, 7.44743481e-02,
             4.74574033e-02, 2.31516868e-02, 2.07296407e-03,
             -1.22970199e-02, -1.94475962e-02, -2.09301700e-02],
            [-1.05257992e-02, -4.74329696e-03, 7.12107274e-03,
             2.63431361e-02, 4.93709790e-02, 7.31527220e-02,
             9.82233938e-02, 1.22728059e-01, 1.43894925e-01,
             1.58465026e-01, 1.63685984e-01, 1.58465026e-01,
             1.43894925e-01, 1.22728059e-01, 9.82233938e-02,
             7.31527220e-02, 4.93709790e-02, 2.63431361e-02,
             7.12107274e-03, -4.74329696e-03, -1.05257992e-02],
            [-1.89098657e-04, 9.52392382e-03, 2.54577716e-02,
             4.85730869e-02, 7.26048516e-02, 9.51726659e-02,
             1.17988523e-01, 1.39380421e-01, 1.57176612e-01,
             1.69076915e-01, 1.73274075e-01, 1.69076915e-01,
             1.57176612e-01, 1.39380421e-01, 1.17988523e-01,
             9.51726659e-02, 7.26048516e-02, 4.85730869e-02,
             2.54577716e-02, 9.52392382e-03, -1.89098657e-04],
            [9.81732797e-03, 2.30419581e-02, 4.24234701e-02,
             6.86213308e-02, 9.30164618e-02, 1.14050063e-01,
             1.34620894e-01, 1.53304069e-01, 1.68420867e-01,
             1.78321253e-01, 1.81774183e-01, 1.78321253e-01,
             1.68420867e-01, 1.53304069e-01, 1.34620894e-01,
             1.14050063e-01, 9.30164618e-02, 6.86213308e-02,
             4.24234701e-02, 2.30419581e-02, 9.81732797e-03],
            [1.93290725e-02, 3.56493099e-02, 5.79271157e-02,
             8.65611122e-02, 1.10914315e-01, 1.30317702e-01,
             1.48798006e-01, 1.65173224e-01, 1.78147031e-01,
             1.86513895e-01, 1.89408199e-01, 1.86513895e-01,
             1.78147031e-01, 1.65173224e-01, 1.48798006e-01,
             1.30317702e-01, 1.10914315e-01, 8.65611122e-02,
             5.79271157e-02, 3.56493099e-02, 1.93290725e-02],
            [2.68168937e-02, 4.52356810e-02, 6.92261217e-02,
             9.89630241e-02, 1.23093435e-01, 1.40640067e-01,
             1.56998943e-01, 1.71215219e-01, 1.82297185e-01,
             1.89360704e-01, 1.91789146e-01, 1.89360704e-01,
             1.82297185e-01, 1.71215219e-01, 1.56998943e-01,
             1.40640067e-01, 1.23093435e-01, 9.89630241e-02,
             6.92261217e-02, 4.52356810e-02, 2.68168937e-02],
            [3.19403269e-02, 5.15051953e-02, 7.61032066e-02,
             1.05705197e-01, 1.31722206e-01, 1.47466588e-01,
             1.61892450e-01, 1.74235616e-01, 1.83735386e-01,
             1.89735533e-01, 1.91788616e-01, 1.89735533e-01,
             1.83735386e-01, 1.74235616e-01, 1.61892450e-01,
             1.47466588e-01, 1.31722206e-01, 1.05705197e-01,
             7.61032066e-02, 5.15051953e-02, 3.19403269e-02],
            [3.48604070e-02, 5.49292382e-02, 7.94274234e-02,
             1.08149011e-01, 1.38923419e-01, 1.53070440e-01,
             1.65849067e-01, 1.76646162e-01, 1.84871647e-01,
             1.90029617e-01, 1.91787948e-01, 1.90029617e-01,
             1.84871647e-01, 1.76646162e-01, 1.65849067e-01,
             1.53070440e-01, 1.38923419e-01, 1.08149011e-01,
             7.94274234e-02, 5.49292382e-02, 3.48604070e-02],
            [3.53402022e-02, 5.53653759e-02, 7.91965502e-02,
             1.06486934e-01, 1.36563003e-01, 1.57713955e-01,
             1.69087164e-01, 1.78598269e-01, 1.85784340e-01,
             1.90264452e-01, 1.91787141e-01, 1.90264452e-01,
             1.85784340e-01, 1.78598269e-01, 1.69087164e-01,
             1.57713955e-01, 1.36563003e-01, 1.06486934e-01,
             7.91965502e-02, 5.53653759e-02, 3.53402022e-02],
            [3.32889822e-02, 5.28319225e-02, 7.55769079e-02,
             1.01077605e-01, 1.28592068e-01, 1.57023616e-01,
             1.71766715e-01, 1.80199729e-01, 1.86528091e-01,
             1.90454829e-01, 1.91786196e-01, 1.90454829e-01,
             1.86528091e-01, 1.80199729e-01, 1.71766715e-01,
             1.57023616e-01, 1.28592068e-01, 1.01077605e-01,
             7.55769079e-02, 5.28319225e-02, 3.32889822e-02],
            [2.87295370e-02, 4.74613283e-02, 6.88388861e-02,
             9.23568989e-02, 1.17254645e-01, 1.42483223e-01,
             1.66695764e-01, 1.81528776e-01, 1.87141877e-01,
             1.90611190e-01, 1.91785112e-01, 1.90611190e-01,
             1.87141877e-01, 1.81528776e-01, 1.66695764e-01,
             1.42483223e-01, 1.17254645e-01, 9.23568989e-02,
             6.88388861e-02, 4.74613283e-02, 2.87295370e-02],
            [2.17650266e-02, 3.94568191e-02, 5.93023344e-02,
             8.07720575e-02, 1.03124482e-01, 1.25394282e-01,
             1.46405870e-01, 1.64828303e-01, 1.79288925e-01,
             1.88553222e-01, 1.91747252e-01, 1.88553222e-01,
             1.79288925e-01, 1.64828303e-01, 1.46405870e-01,
             1.25394282e-01, 1.03124482e-01, 8.07720575e-02,
             5.93023344e-02, 3.94568191e-02, 2.17650266e-02],
            [1.25495284e-02, 2.90572166e-02, 4.72972116e-02,
             6.67423656e-02, 8.66951873e-02, 1.06290296e-01,
             1.24520131e-01, 1.40293247e-01, 1.52531693e-01,
             1.60303860e-01, 1.62970689e-01, 1.60303860e-01,
             1.52531693e-01, 1.40293247e-01, 1.24520131e-01,
             1.06290296e-01, 8.66951873e-02, 6.67423656e-02,
             4.72972116e-02, 2.90572166e-02, 1.25495284e-02],
            [1.26441934e-03, 1.65114811e-02, 3.31390978e-02,
             5.06407706e-02, 6.83765492e-02, 8.55839448e-02,
             1.01408074e-01, 1.14955639e-01, 1.25373662e-01,
             1.31946425e-01, 1.34193829e-01, 1.31946425e-01,
             1.25373662e-01, 1.14955639e-01, 1.01408074e-01,
             8.55839448e-02, 6.83765492e-02, 5.06407706e-02,
             3.31390978e-02, 1.65114811e-02, 1.26441934e-03],
            [0.00000000e+00, 2.06213867e-03, 1.71162845e-02,
             3.27888240e-02, 4.85026462e-02, 6.35932476e-02,
             7.73387997e-02, 8.90069217e-02, 9.79166934e-02,
             1.03509489e-01, 1.05416736e-01, 1.03509489e-01,
             9.79166934e-02, 8.90069217e-02, 7.73387997e-02,
             6.35932476e-02, 4.85026462e-02, 3.27888240e-02,
             1.71162845e-02, 2.06213867e-03, 0.00000000e+00]]
    )
    np.testing.assert_allclose(fd, fd_test, rtol=1e-4)
Ejemplo n.º 24
0
def test_ss3_move_hypo1():
    magnitude = 7.2
    dip = np.array([90])
    rake = 180.0
    width = np.array([15])
    rupx = np.array([0, 0])
    rupy = np.array([0, 80])
    zp = np.array([0.0])
    epix = np.array([1.0])
    epiy = np.array([-1.0])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    # Origin
    origin = Origin({
        'lat': epilat[0],
        'lon': epilon[0],
        'depth': -1,
        'mag': magnitude,
        'eventsourcecode': 'ss3',
        'rake': rake
    })

    rup = QuadRupture.fromTrace(np.array([tlon[0]]),
                                np.array([tlat[0]]),
                                np.array([tlon[1]]),
                                np.array([tlat[1]]),
                                zp,
                                width,
                                dip,
                                origin,
                                reference='ss3')

    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)
    phyp = copy.deepcopy(test1.phyp[0])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)

    px, py = proj(plon, plat, reverse=False)

    np.testing.assert_allclose(plat, 38.004233219183604, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4)
    np.testing.assert_allclose(pdep, 7.4999999989205968, rtol=1e-4)

    # --------------------------------------------------------------------------
    # Also for multiple segments
    # --------------------------------------------------------------------------
    dip = np.array([90., 90., 90.])
    rake = 180.0
    width = np.array([15., 15., 10.])
    rupx = np.array([0., 0., 10., 20.])
    rupy = np.array([0., 20., 60., 80.])
    zp = np.array([0., 0., 0.])
    epix = np.array([0.])
    epiy = np.array([0.])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    rup = QuadRupture.fromTrace(np.array(tlon[0:3]),
                                np.array(tlat[0:3]),
                                np.array(tlon[1:4]),
                                np.array(tlat[1:4]),
                                zp,
                                width,
                                dip,
                                origin,
                                reference='')

    event = {
        'lat': epilat[0],
        'lon': epilon[0],
        'depth': 1.0,
        'mag': magnitude,
        'eventsourcecode': '',
        'locstring': 'test',
        'type': 'SS',
        'timezone': 'UTC'
    }
    event['time'] = HistoricTime.utcfromtimestamp(int(time.time()))
    event['created'] = HistoricTime.utcfromtimestamp(int(time.time()))
    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)
    origin = Origin(event)
    origin.rake = rake
    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)

    # 1st pseudo-hyp
    phyp = copy.deepcopy(test1.phyp[0])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)
    px, py = proj(plon, plat, reverse=False)
    np.testing.assert_allclose(plat, 38.004233219183604, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4)
    np.testing.assert_allclose(pdep, 7.4999999989205968, rtol=1e-4)

    # 2nd pseudo-hyp
    phyp = copy.deepcopy(test1.phyp[1])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)
    px, py = proj(plon, plat, reverse=False)
    np.testing.assert_allclose(plat, 38.184097835787796, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4)
    np.testing.assert_allclose(pdep, 7.4999999989103525, rtol=1e-4)

    # 3rd pseudo-hyp
    phyp = copy.deepcopy(test1.phyp[2])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)
    px, py = proj(plon, plat, reverse=False)
    np.testing.assert_allclose(plat, 38.543778594535752, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.87137783362499, rtol=1e-4)
    np.testing.assert_allclose(pdep, 4.9999999995063993, rtol=1e-4)
Ejemplo n.º 25
0
def test_ss3_m6():
    magnitude = 6.0
    dip = np.array([90])
    rake = 180.0
    width = np.array([15])
    rupx = np.array([0, 0])
    rupy = np.array([0, 80])
    zp = np.array([0])
    epix = np.array([0])
    epiy = np.array([0.2 * rupy[1]])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    # Origin:
    origin = Origin({'lat': epilat[0],
                     'lon': epilon[0],
                     'depth': 10,
                     'mag': magnitude,
                     'eventsourcecode': 'ss3',
                     'rake': rake})

    rup = QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]),
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference='ss3')

    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array(
        [[0.05853668,  0.05032323,  0.0306438,  0.00839635, -0.01102162,
          -0.02621319],
         [0.01720501, -0.00687296, -0.03804823, -0.05547473, -0.0644932,
            -0.06947135],
            [-0.03000065, -0.07006634, -0.07708165, -0.07865941, -0.0792369,
             -0.07950887],
            [0.0398062,  0.02571145, -0.0018651, -0.0255418, -0.04176278,
             -0.05235095],
            [0.0696989,  0.06389524,  0.04890304,  0.02983134,  0.01098535,
             -0.00545921],
            [0.088278,  0.08511069,  0.07628596,  0.06350294,  0.04875897,
             0.03373495],
            [0.10179334,  0.09978475,  0.09401676,  0.0851842,  0.07422509,
             0.06210369],
            [0.11242209,  0.11102701,  0.10696056,  0.10055471,  0.09229027,
             0.08271454],
            [0.12118279,  0.12015315,  0.11712653,  0.11228058,  0.10588323,
             0.09825795],
            [0.12785957,  0.12706892,  0.12473264,  0.12095384,  0.11589197,
             0.10974684],
            [0.12785908,  0.12724852,  0.12543819,  0.12249026,  0.11850249,
             0.11360047]])
    np.testing.assert_allclose(
        fd, fd_test, rtol=1e-4)
Ejemplo n.º 26
0
def test_so6():
    magnitude = 7.2
    dip = np.array([70])
    rake = 135
    width = np.array([15])
    L = 80
    rupx = np.array([0, 0])
    rupy = np.array([0, L])
    zp = np.array([0])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)

    # Dummy origin
    origin = Origin({
        'lat': 0,
        'lon': 0,
        'depth': 0,
        'mag': 0,
        'eventsourcecode': 'so6',
        'rake': rake
    })

    # Rupture
    rup = QuadRupture.fromTrace(np.array([tlon[0]]),
                                np.array([tlat[0]]),
                                np.array([tlon[1]]),
                                np.array([tlat[1]]),
                                zp,
                                width,
                                dip,
                                origin,
                                reference='rv4')

    # Sites
    x = np.linspace(-80, 80, 21)
    y = np.linspace(-50, 130, 21)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    sdepth = np.zeros_like(slon)

    # Fix origin
    tmp = rup.getQuadrilaterals()[0]
    pp0 = Vector.fromPoint(
        point.Point(tmp[0].longitude, tmp[0].latitude, tmp[0].depth))
    pp1 = Vector.fromPoint(
        point.Point(tmp[1].longitude, tmp[1].latitude, tmp[1].depth))
    pp2 = Vector.fromPoint(
        point.Point(tmp[2].longitude, tmp[2].latitude, tmp[2].depth))
    pp3 = Vector.fromPoint(
        point.Point(tmp[3].longitude, tmp[3].latitude, tmp[3].depth))
    dxp = 10 / L
    dyp = (width - 5) / width
    mp0 = pp0 + (pp1 - pp0) * dxp
    mp1 = pp3 + (pp2 - pp3) * dxp
    rp = mp0 + (mp1 - mp0) * dyp
    epilat, epilon, epidepth = ecef2latlon(rp.x, rp.y, rp.z)
    epix, epiy = proj(epilon, epilat, reverse=False)

    origin = Origin({
        'lat': epilat,
        'lon': epilon,
        'depth': epidepth,
        'mag': magnitude,
        'eventsourcecode': 'so6',
        'rake': rake
    })

    ruplat = [a.latitude for a in rup.getQuadrilaterals()[0]]
    ruplon = [a.longitude for a in rup.getQuadrilaterals()[0]]
    ruplat = np.append(ruplat, ruplat[0])
    ruplon = np.append(ruplon, ruplon[0])
    rupx, rupy = proj(ruplon, ruplat, reverse=False)

    test1 = Bayless2013(origin, rup, slat, slon, sdepth, T=5)
    fd = test1.getFd()
    fd_test = np.array([
        [
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -8.92879772e-03,
            -1.74526918e-02, -2.22981746e-02, -2.34350450e-02, -2.13620062e-02,
            -1.72712346e-02, -1.29509613e-02, -1.02545064e-02, -1.03010185e-02,
            -1.28847597e-02, -1.66274727e-02, -1.96984070e-02, -2.05377743e-02,
            -1.81831337e-02, -1.21881814e-02, -2.64862879e-03, 0.00000000e+00,
            0.00000000e+00
        ],
        [
            0.00000000e+00, 0.00000000e+00, -8.73221519e-03, -2.21421374e-02,
            -3.18438939e-02, -3.71488270e-02, -3.76239913e-02, -3.35015951e-02,
            -2.61748968e-02, -1.83864728e-02, -1.34793002e-02, -1.36687799e-02,
            -1.85727143e-02, -2.55527671e-02, -3.14227568e-02, -3.38933995e-02,
            -3.19289607e-02, -2.53396980e-02, -1.45943649e-02, -3.71405488e-04,
            0.00000000e+00
        ],
        [
            0.00000000e+00, -2.54621422e-03, -2.11428566e-02, -3.68609103e-02,
            -4.87464747e-02, -5.56539037e-02, -5.64419387e-02, -5.05331157e-02,
            -3.52919381e-02, -2.18782050e-02, -1.40858125e-02, -1.47354546e-02,
            -2.35727189e-02, -3.74838465e-02, -4.75915414e-02, -5.13000399e-02,
            -4.87882409e-02, -4.05716321e-02, -2.77368254e-02, -1.13542729e-02,
            0.00000000e+00
        ],
        [
            0.00000000e+00, -1.21642958e-02, -3.33747360e-02, -5.21661817e-02,
            -6.74724509e-02, -7.77628842e-02, -8.00243748e-02, -6.42496853e-02,
            -4.38124530e-02, -1.97027426e-02, -1.45897731e-02, -1.07427056e-02,
            -3.08235222e-02, -4.82656988e-02, -6.67692677e-02, -7.35152908e-02,
            -6.85574283e-02, -5.71811573e-02, -4.12138780e-02, -2.20396726e-02,
            -6.24121310e-04
        ],
        [
            0.00000000e+00, -2.00643401e-02, -4.39827328e-02, -6.62722434e-02,
            -8.60268414e-02, -1.01730306e-01, -9.86277741e-02, -9.82914922e-02,
            -5.22335876e-02, -1.54622435e-02, -1.57487554e-02, -3.06190808e-03,
            -4.81481586e-02, -8.92480491e-02, -8.63776477e-02, -9.98130440e-02,
            -8.95491230e-02, -7.33553695e-02, -5.34401725e-02, -3.11601812e-02,
            -7.33715103e-03
        ],
        [
            0.00000000e+00, -2.50053614e-02, -5.11695772e-02, -7.65997026e-02,
            -1.00809054e-01, -1.22877573e-01, -1.18738178e-01, -1.55236782e-01,
            -7.45388001e-02, 1.92779182e-03, -1.94380016e-02, 1.94922939e-02,
            -7.66669920e-02, -1.53909722e-01, -1.10846875e-01, -1.19746768e-01,
            -1.07680300e-01, -8.59905101e-02, -6.22042294e-02, -3.71802472e-02,
            -1.13867485e-02
        ],
        [
            0.00000000e+00, -2.63645827e-02, -5.37984901e-02, -8.11337022e-02,
            -1.08298371e-01, -1.35146441e-01, -1.34825430e-01, -1.85836050e-01,
            -1.10730875e-01, -3.18861095e-02, 4.14395701e-02, -1.52711946e-02,
            -1.31840763e-01, -1.96794707e-01, -1.33453212e-01, -1.34989129e-01,
            -1.17922385e-01, -9.21637323e-02, -6.58369237e-02, -3.91646838e-02,
            -1.22685698e-02
        ],
        [
            0.00000000e+00, -2.64622244e-02, -5.40483999e-02, -8.16190336e-02,
            -1.09162854e-01, -1.36656677e-01, -1.37081504e-01, -1.89522811e-01,
            -1.17723634e-01, -4.88765748e-02, -5.04529015e-03, -5.76414497e-02,
            -1.45712183e-01, -2.03062804e-01, -1.36859828e-01, -1.37107390e-01,
            -1.19124650e-01, -9.28263279e-02, -6.61800709e-02, -3.93088682e-02,
            -1.22842049e-02
        ],
        [
            0.00000000e+00, -2.58466495e-02, -5.24858827e-02, -7.86086164e-02,
            -1.03856343e-01, -1.27529509e-01, -1.23794779e-01, -1.68810613e-01,
            -8.22602627e-02, 1.74236964e-02, 9.38708725e-02, 4.23208284e-02,
            -8.46343723e-02, -1.70476759e-01, -1.17547884e-01, -1.24569752e-01,
            -1.11518670e-01, -8.84736806e-02, -6.38037151e-02, -3.81874381e-02,
            -1.19867610e-02
        ],
        [
            0.00000000e+00, -2.42186547e-02, -4.84175525e-02, -7.09428614e-02,
            -9.07754575e-02, -1.06117824e-01, -9.50228292e-02, -1.29781980e-01,
            -3.08573454e-02, 7.39058739e-02, 1.30478117e-01, 8.28181149e-02,
            -2.70389535e-02, -1.20837502e-01, -8.02081725e-02, -9.70274506e-02,
            -9.35853383e-02, -7.77422806e-02, -5.77817530e-02, -3.53067886e-02,
            -1.12414659e-02
        ],
        [
            0.00000000e+00, -2.16818717e-02, -4.22363856e-02, -5.96909893e-02,
            -7.24805224e-02, -7.81867829e-02, -6.11838569e-02, -9.05679744e-02,
            9.95934969e-03, 1.07503875e-01, 1.52073917e-01, 1.05894634e-01,
            8.68652263e-03, -7.98571818e-02, -4.16548658e-02, -6.40511838e-02,
            -6.99337160e-02, -6.26305633e-02, -4.89098800e-02, -3.09284566e-02,
            -1.00919381e-02
        ],
        [
            0.00000000e+00, -1.84940182e-02, -3.47054606e-02, -4.65278129e-02,
            -5.22037664e-02, -4.93977115e-02, -2.95395230e-02, -5.82421092e-02,
            3.91025654e-02, 1.29337956e-01, 1.67436703e-01, 1.21969296e-01,
            3.20823547e-02, -5.00287386e-02, -9.22993907e-03, -3.27186625e-02,
            -4.52706958e-02, -4.57409325e-02, -3.84701291e-02, -2.55751405e-02,
            -8.64950254e-03
        ],
        [
            0.00000000e+00, -1.49431380e-02, -2.65887341e-02, -3.29162158e-02,
            -3.22994323e-02, -2.29081781e-02, -2.60259636e-03, -3.29856530e-02,
            6.02631314e-02, 1.45003704e-01, 1.79361264e-01, 1.34292814e-01,
            4.88007115e-02, -2.82328554e-02, 1.64212421e-02, -5.72391847e-03,
            -2.23438861e-02, -2.90246794e-02, -2.76054402e-02, -1.97779758e-02,
            -7.03945406e-03
        ],
        [
            0.00000000e+00, -1.12771143e-02, -1.84737590e-02, -1.98228664e-02,
            -1.40092305e-02, 1.84580818e-04, 1.95817303e-02, -1.32608487e-02,
            7.62783168e-02, 1.57076433e-01, 1.89083905e-01, 1.44259188e-01,
            6.15722813e-02, -1.17505212e-02, 3.65938109e-02, 1.66937711e-02,
            -2.18970818e-03, -1.35507683e-02, -1.70890527e-02, -1.39519424e-02,
            -5.37036892e-03
        ],
        [
            0.00000000e+00, -7.67615215e-03, -1.07348257e-02, -7.75276739e-03,
            2.22351695e-03, 1.98662250e-02, 3.77611177e-02, 2.42018661e-03,
            8.89036172e-02, 1.66855206e-01, 1.97260700e-01, 1.52590263e-01,
            7.17981256e-02, 1.18005972e-03, 5.26852303e-02, 3.51638855e-02,
            1.51012176e-02, 2.69654076e-04, -7.33815554e-03, -8.36639665e-03,
            -3.72176313e-03
        ],
        [
            0.00000000e+00, -4.50552324e-03, -4.32262850e-03, 1.73559158e-03,
            1.42670366e-02, 3.35040699e-02, 4.97279358e-02, 1.85410528e-02,
            9.39950666e-02, 1.46646579e-01, 9.13474746e-02, 1.37004651e-01,
            7.74648339e-02, 1.59777072e-02, 6.25334939e-02, 4.74577418e-02,
            2.72155518e-02, 1.06174952e-02, 3.94103899e-04, -3.68465400e-03,
            -2.19830733e-03
        ],
        [
            0.00000000e+00, -1.74629916e-03, 5.44471813e-04, 8.22933499e-03,
            2.15699287e-02, 4.04232250e-02, 5.69678048e-02, 5.52408259e-02,
            9.04381272e-02, 1.08204635e-01, 9.14439984e-02, 1.06884511e-01,
            8.17241884e-02, 5.55282924e-02, 6.78528399e-02, 5.47188925e-02,
            3.35251483e-02, 1.69615982e-02, 5.72048628e-03, -8.81437278e-05,
            -7.36518436e-04
        ],
        [
            0.00000000e+00, 4.07838765e-05, 3.63933766e-03, 1.20080876e-02,
            2.51274691e-02, 4.25687176e-02, 6.25685606e-02, 7.33480475e-02,
            8.37515545e-02, 9.52500287e-02, 9.15135660e-02, 9.66442834e-02,
            8.66659913e-02, 8.10325633e-02, 7.18836713e-02, 5.45548434e-02,
            3.55884875e-02, 2.00142359e-02, 8.71200201e-03, 2.04407846e-03,
            -6.53680674e-06
        ],
        [
            0.00000000e+00, 2.40054729e-04, 4.44975227e-03, 1.27572519e-02,
            2.49362989e-02, 4.03831326e-02, 5.80039988e-02, 7.61280192e-02,
            8.37404162e-02, 8.89634569e-02, 9.15651607e-02, 9.13586235e-02,
            8.83589144e-02, 8.27804032e-02, 6.75666471e-02, 5.00483249e-02,
            3.36733366e-02, 1.96758691e-02, 9.00603204e-03, 2.18370401e-03,
            0.00000000e+00
        ],
        [
            0.00000000e+00, 0.00000000e+00, 2.78776980e-03, 1.05086036e-02,
            2.13238822e-02, 3.45577738e-02, 4.91570145e-02, 6.36787133e-02,
            7.63710088e-02, 8.54072310e-02, 8.92960200e-02, 8.75702197e-02,
            8.07095447e-02, 6.97999389e-02, 5.63787286e-02, 4.20734776e-02,
            2.83073312e-02, 1.61614525e-02, 6.56194125e-03, 1.00721924e-04,
            0.00000000e+00
        ],
        [
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 5.49667845e-03,
            1.47563319e-02, 2.57955743e-02, 3.76689418e-02, 4.91861917e-02,
            5.90108907e-02, 6.58478416e-02, 6.87018515e-02, 6.73174642e-02,
            6.20270643e-02, 5.35456385e-02, 4.29400416e-02, 3.14129728e-02,
            2.00795162e-02, 9.84001885e-03, 1.53992995e-03, 0.00000000e+00,
            0.00000000e+00
        ]
    ])
    np.testing.assert_allclose(fd, fd_test, rtol=1e-4)
Ejemplo n.º 27
0
def test_rupture_depth(interactive=False):
    DIP = 17.0
    WIDTH = 20.0
    GRIDRES = 0.1

    names = ['single', 'double', 'triple',
             'concave', 'concave_simple', 'ANrvSA']
    means = [3.1554422780092461, 2.9224454569459781,
             3.0381968625073563, 2.0522694624400271,
             2.4805390352818755, 2.8740121776209673]
    stds = [2.1895293825074575, 2.0506459673526174,
            2.0244588429154402, 2.0112565876976416,
            2.1599789955270019, 1.6156220309120068]
    xp0list = [np.array([118.3]),
               np.array([10.1, 10.1]),
               np.array([10.1, 10.1, 10.3]),
               np.array([10.9, 10.5, 10.9]),
               np.array([10.9, 10.6]),
               np.array([-76.483, -76.626, -76.757, -76.99, -77.024, -76.925,
                         -76.65, -76.321, -75.997, -75.958])]
    xp1list = [np.array([118.3]),
               np.array([10.1, 10.3]),
               np.array([10.1, 10.3, 10.1]),
               np.array([10.5, 10.9, 11.3]),
               np.array([10.6, 10.9]),
               np.array([-76.626, -76.757, -76.99, -77.024, -76.925, -76.65,
                         -76.321, -75.997, -75.958, -76.006])]
    yp0list = [np.array([34.2]),
               np.array([34.2, 34.5]),
               np.array([34.2, 34.5, 34.8]),
               np.array([34.2, 34.5, 34.8]),
               np.array([35.1, 35.2]),
               np.array([-52.068, -51.377, -50.729, -49.845, -49.192, -48.507,
                         -47.875, -47.478, -47.08, -46.422])]
    yp1list = [np.array([34.5]),
               np.array([34.5, 34.8]),
               np.array([34.5, 34.8, 35.1]),
               np.array([34.5, 34.8, 34.6]),
               np.array([35.2, 35.4]),
               np.array([-51.377, -50.729, -49.845, -49.192, -48.507, -47.875,
                         -47.478, -47.08, -46.422, -45.659])]

    for i in range(0, len(xp0list)):
        xp0 = xp0list[i]
        xp1 = xp1list[i]
        yp0 = yp0list[i]
        yp1 = yp1list[i]
        name = names[i]
        mean_value = means[i]
        std_value = stds[i]

        zp = np.zeros(xp0.shape)
        strike = azimuth(xp0[0], yp0[0], xp1[-1], yp1[-1])
        widths = np.ones(xp0.shape) * WIDTH
        dips = np.ones(xp0.shape) * DIP
        strike = [strike]
        origin = Origin({'eventsourcecode': 'test', 'lat': 0, 'lon': 0,
                         'depth': 5.0, 'mag': 7.0})
        rupture = QuadRupture.fromTrace(
            xp0, yp0, xp1, yp1, zp, widths, dips, origin, strike=strike)

        # make a grid of points over both quads, ask for depths
        ymin = np.nanmin(rupture.lats)
        ymax = np.nanmax(rupture.lats)
        xmin = np.nanmin(rupture.lons)
        xmax = np.nanmax(rupture.lons)

        xmin = np.floor(xmin * (1 / GRIDRES)) / (1 / GRIDRES)
        xmax = np.ceil(xmax * (1 / GRIDRES)) / (1 / GRIDRES)
        ymin = np.floor(ymin * (1 / GRIDRES)) / (1 / GRIDRES)
        ymax = np.ceil(ymax * (1 / GRIDRES)) / (1 / GRIDRES)
        geodict = GeoDict.createDictFromBox(
            xmin, xmax, ymin, ymax, GRIDRES, GRIDRES)
        nx = geodict.nx
        ny = geodict.ny
        depths = np.zeros((ny, nx))
        for row in range(0, ny):
            for col in range(0, nx):
                lat, lon = geodict.getLatLon(row, col)
                depth = rupture.getDepthAtPoint(lat, lon)
                depths[row, col] = depth

        np.testing.assert_almost_equal(np.nanmean(depths), mean_value)
        np.testing.assert_almost_equal(np.nanstd(depths), std_value)

        if interactive:
            fig, axes = plt.subplots(nrows=2, ncols=1)
            ax1, ax2 = axes
            xdata = np.append(xp0, xp1[-1])
            ydata = np.append(yp0, yp1[-1])
            plt.sca(ax1)
            plt.plot(xdata, ydata, 'b')
            plt.sca(ax2)
            im = plt.imshow(depths, cmap='viridis_r')  # noqa
            ch = plt.colorbar()  # noqa
            fname = os.path.join(os.path.expanduser('~'),
                                 'quad_%s_test.png' % name)
            print('Saving image for %s quad test... %s' % (name, fname))
            plt.savefig(fname)
            plt.close()