Ejemplo n.º 1
0
def test_ecef():
    print('Testing ECEF conversion code...')
    lat = 32.1
    lon = 118.5
    dep = 10.0

    x, y, z = latlon2ecef(lat, lon, dep)

    TESTX = -2576515.419
    TESTY = 4745351.087
    TESTZ = 3364516.124

    np.testing.assert_almost_equal(x, TESTX, decimal=2)
    np.testing.assert_almost_equal(y, TESTY, decimal=2)
    np.testing.assert_almost_equal(z, TESTZ, decimal=2)

    lat2, lon2, dep2 = ecef2latlon(x, y, z)
    np.testing.assert_almost_equal(lat2, lat, decimal=2)
    np.testing.assert_almost_equal(lon2, lon, decimal=2)
    np.testing.assert_almost_equal(dep2, dep, decimal=2)
    print('Passed tests of ECEF conversion code.')
Ejemplo n.º 2
0
def test_ecef():
    print('Testing ECEF conversion code...')
    lat = 32.1
    lon = 118.5
    dep = 10.0

    x, y, z = latlon2ecef(lat, lon, dep)

    TESTX = -2576515.419
    TESTY = 4745351.087
    TESTZ = 3364516.124

    np.testing.assert_almost_equal(x, TESTX, decimal=2)
    np.testing.assert_almost_equal(y, TESTY, decimal=2)
    np.testing.assert_almost_equal(z, TESTZ, decimal=2)

    lat2, lon2, dep2 = ecef2latlon(x, y, z)
    np.testing.assert_almost_equal(lat2, lat, decimal=2)
    np.testing.assert_almost_equal(lon2, lon, decimal=2)
    np.testing.assert_almost_equal(dep2, dep, decimal=2)
    print('Passed tests of ECEF conversion code.')
Ejemplo n.º 3
0
def _get_quad_slip_ds_ss(q, rake, cp, p):
    """
    Compute the DIP SLIP and STRIKE SLIP components of the unit slip vector in
    ECEF coords for a quad and rake angle.
    :param q:
        A quadrilateral.
    :param rake:
        Direction of motion of the hanging wall relative to the
        foot wall, as measured by the angle (deg) from the strike vector.
    :param cp:
        A 3x(n sub fault) array giving center points of each sub fault
        in ECEF coords.
    :param p:
        A 3x(n sub fault) array giving the unit vectors of the propagation
        vector on each sub fault in ECEF coords.
    :returns:
        List of dip slip and strike slip components (each is a matrix)
        of the unit slip vector in ECEF space.
    """
    # Get quad vertices, strike, dip
    P0, P1, P2 = q[0:3]
    strike = P0.azimuth(P1)
    dip = fault.get_quad_dip(q)

    # Slip unit vectors in 'local' (i.e., z-up, x-east) coordinates
    d1_local = fault.get_local_unit_slip_vector_DS(strike, dip, rake)
    s1_local = fault.get_local_unit_slip_vector_SS(strike, dip, rake)

    # Convert to a column array
    d1_col = np.array([[d1_local.x],
                       [d1_local.y],
                       [d1_local.z]])
    s1_col = np.array([[s1_local.x],
                       [s1_local.y],
                       [s1_local.z]])

    # Define 'local' coordinate system
    qlats = [a.latitude for a in q]
    qlons = [a.longitude for a in q]
    proj = get_orthographic_projection(
        np.min(qlons), np.max(qlons), np.min(qlats), np.max(qlats))

    # Convert p and cp to geographic coords
    p0lat, p0lon, p0z = ecef2latlon(cp[0, ], cp[1, ], cp[2, ])
    p1lat, p1lon, p1z = ecef2latlon(cp[0, ] + p[0, ],
                                    cp[1, ] + p[1, ],
                                    cp[2, ] + p[2, ])

    # Convert p to 'local' coords
    p0x, p0y = proj(p0lon, p0lat)
    p1x, p1y = proj(p1lon, p1lat)
    px = p1x - p0x
    py = p1y - p0y
    pz = p1z - p0z

    # Apply sign changes in 'local' coords
    s1mat = np.array([[np.abs(s1_col[0]) * np.sign(px)],
                      [np.abs(s1_col[1]) * np.sign(py)],
                      [np.abs(s1_col[2]) * np.sign(pz)]])
#                      [np.abs(s1_col[2])*np.ones_like(pz)]])

    dipsign = -np.sign(np.sin(np.radians(rake)))
    d1mat = np.array([[d1_col[0] * np.ones_like(px) * dipsign],
                      [d1_col[1] * np.ones_like(py) * dipsign],
                      [d1_col[2] * np.ones_like(pz) * dipsign]])

    # Need to track 'origin'
    s0 = np.array([[0], [0], [0]])

    # Convert from 'local' to geographic coords
    s1_ll = proj(s1mat[0, ], s1mat[1, ], reverse=True)
    d1_ll = proj(d1mat[0, ], d1mat[1, ], reverse=True)
    s0_ll = proj(s0[0], s0[1], reverse=True)

    # And then back to ECEF:
    s1_ecef = latlon2ecef(s1_ll[1], s1_ll[0], s1mat[2, ])
    d1_ecef = latlon2ecef(d1_ll[1], d1_ll[0], d1mat[2, ])
    s0_ecef = latlon2ecef(s0_ll[1], s0_ll[0], s0[2])
    s00 = s0_ecef[0].reshape(-1)
    s01 = s0_ecef[1].reshape(-1)
    s02 = s0_ecef[2].reshape(-1)
    d_mat = np.array([d1_ecef[0].reshape(-1) - s00,
                      d1_ecef[1].reshape(-1) - s01,
                      d1_ecef[2].reshape(-1) - s02])
    s_mat = np.array([s1_ecef[0].reshape(-1) - s00,
                      s1_ecef[1].reshape(-1) - s01,
                      s1_ecef[2].reshape(-1) - s02])
    return d_mat, s_mat
Ejemplo n.º 4
0
    def __computeThetaAndS(self, i):
        """
        :param i:
            Compute d for the i-th quad/segment.
        """
        # self.phyp is in ECEF
        tmp = ecef.ecef2latlon(self.phyp[i].x, self.phyp[i].y, self.phyp[i].z)
        epi_ecef = Vector.fromPoint(geo.point.Point(tmp[1], tmp[0], 0.0))
        epi_col = np.array([[epi_ecef.x], [epi_ecef.y], [epi_ecef.z]])

        # First compute along strike vector
        P0, P1, P2, P3 = self._rup.getQuadrilaterals()[i]
        p0 = Vector.fromPoint(P0)  # convert to ECEF
        p1 = Vector.fromPoint(P1)
        e01 = p1 - p0
        e01norm = e01.norm()
        hp0 = p0 - epi_ecef
        hp1 = p1 - epi_ecef
        strike_min = Vector.dot(hp0, e01norm) / 1000.0  # convert to km
        strike_max = Vector.dot(hp1, e01norm) / 1000.0  # convert to km
        strike_col = np.array([[e01norm.x], [e01norm.y],
                               [e01norm.z]])  # ECEF coords

        # Sites
        slat = self._lat
        slon = self._lon

        # Convert sites to ECEF:
        site_ecef_x = np.ones_like(slat)
        site_ecef_y = np.ones_like(slat)
        site_ecef_z = np.ones_like(slat)

        # Make a 3x(#number of sites) matrix of site locations
        # (rows are x, y, z) in ECEF
        site_ecef_x, site_ecef_y, site_ecef_z = ecef.latlon2ecef(
            slat, slon, np.zeros(slon.shape))
        site_mat = np.array([
            np.reshape(site_ecef_x, (-1, )),
            np.reshape(site_ecef_y, (-1, )),
            np.reshape(site_ecef_z, (-1, ))
        ])

        # Epicenter-to-site matrix
        e2s_mat = site_mat - epi_col  # in ECEF
        mag = np.sqrt(np.sum(e2s_mat * e2s_mat, axis=0))

        # Avoid division by zero
        mag[mag == 0] = 1e-12
        e2s_norm = e2s_mat / mag

        # Dot epicenter-to-site with along-strike vector
        s_raw = np.sum(e2s_mat * strike_col, axis=0) / 1000.0  # conver to km

        # Put back into a 2d array
        s_raw = np.reshape(s_raw, self._lat.shape)
        self.s = np.abs(s_raw.clip(min=strike_min,
                                   max=strike_max)).clip(min=np.exp(1))

        # Compute theta
        sdots = np.sum(e2s_norm * strike_col, axis=0)
        theta_raw = np.arccos(sdots)

        # But theta is defined to be the reference angle
        # (i.e., the equivalent angle between 0 and 90 deg)
        sintheta = np.abs(np.sin(theta_raw))
        costheta = np.abs(np.cos(theta_raw))
        theta = np.arctan2(sintheta, costheta)
        self.theta = np.reshape(theta, self._lat.shape)
Ejemplo n.º 5
0
def test_so6():
    event_name = 'so6'
    magnitude = 7.2
    dip = np.array([70])
    rake = 135
    width = np.array([15])
    L = 80
    rupx = np.array([0, 0])
    rupy = np.array([0, L])
    zp = np.array([0])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon,tlat = proj(rupx, rupy, reverse = True)

    # Dummy origin
    origin = Origin({'lat':0,
                     'lon':0,
                     'depth':0,
                     'mag':0,
                     'id':'so6',
                     'rake':rake})

    # Rupture
    rup = rupture.QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]), 
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference = 'rv4')

    # Sites
    x = np.linspace(-80, 80, 21)
    y = np.linspace(-50, 130, 21)
    site_x,site_y = np.meshgrid(x, y)
    slon,slat = proj(site_x, site_y, reverse = True)
    sdepth = np.zeros_like(slon)

    # Fix origin
    tmp = rup.getQuadrilaterals()[0]
    pp0 = Vector.fromPoint(point.Point(tmp[0].longitude, tmp[0].latitude, tmp[0].depth))
    pp1 = Vector.fromPoint(point.Point(tmp[1].longitude, tmp[1].latitude, tmp[1].depth))
    pp2 = Vector.fromPoint(point.Point(tmp[2].longitude, tmp[2].latitude, tmp[2].depth))
    pp3 = Vector.fromPoint(point.Point(tmp[3].longitude, tmp[3].latitude, tmp[3].depth))
    dxp = 10/L
    dyp = (width-5)/width
    mp0 = pp0 + (pp1 - pp0)*dxp
    mp1 = pp3 + (pp2 - pp3)*dxp
    rp = mp0 + (mp1 - mp0)*dyp
    epilat,epilon,epidepth = ecef2latlon(rp.x, rp.y, rp.z)
    epix,epiy = proj(epilon, epilat, reverse = False)

    origin = Origin({'lat':epilat,
                     'lon':epilon,
                     'depth':epidepth,
                     'mag':magnitude,
                     'id':'so6',
                     'rake':rake})

    ruplat = [a.latitude for a in rup.getQuadrilaterals()[0]]
    ruplon = [a.longitude for a in rup.getQuadrilaterals()[0]]
    ruplat = np.append(ruplat, ruplat[0])
    ruplon = np.append(ruplon, ruplon[0])
    rupx,rupy = proj(ruplon, ruplat, reverse = False)

    test1 = Bayless2013(origin, rup, slat, slon, sdepth, T = 5)
    fd = test1.getFd()
    fd_test = np.array(
      [[  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         -8.92879772e-03,  -1.74526918e-02,  -2.22981746e-02,
         -2.34350450e-02,  -2.13620062e-02,  -1.72712346e-02,
         -1.29509613e-02,  -1.02545064e-02,  -1.03010185e-02,
         -1.28847597e-02,  -1.66274727e-02,  -1.96984070e-02,
         -2.05377743e-02,  -1.81831337e-02,  -1.21881814e-02,
         -2.64862879e-03,   0.00000000e+00,   0.00000000e+00],
       [  0.00000000e+00,   0.00000000e+00,  -8.73221519e-03,
         -2.21421374e-02,  -3.18438939e-02,  -3.71488270e-02,
         -3.76239913e-02,  -3.35015951e-02,  -2.61748968e-02,
         -1.83864728e-02,  -1.34793002e-02,  -1.36687799e-02,
         -1.85727143e-02,  -2.55527671e-02,  -3.14227568e-02,
         -3.38933995e-02,  -3.19289607e-02,  -2.53396980e-02,
         -1.45943649e-02,  -3.71405488e-04,   0.00000000e+00],
       [  0.00000000e+00,  -2.54621422e-03,  -2.11428566e-02,
         -3.68609103e-02,  -4.87464747e-02,  -5.56539037e-02,
         -5.64419387e-02,  -5.05331157e-02,  -3.52919381e-02,
         -2.18782050e-02,  -1.40858125e-02,  -1.47354546e-02,
         -2.35727189e-02,  -3.74838465e-02,  -4.75915414e-02,
         -5.13000399e-02,  -4.87882409e-02,  -4.05716321e-02,
         -2.77368254e-02,  -1.13542729e-02,   0.00000000e+00],
       [  0.00000000e+00,  -1.21642958e-02,  -3.33747360e-02,
         -5.21661817e-02,  -6.74724509e-02,  -7.77628842e-02,
         -8.00243748e-02,  -6.42496853e-02,  -4.38124530e-02,
         -1.97027426e-02,  -1.45897731e-02,  -1.07427056e-02,
         -3.08235222e-02,  -4.82656988e-02,  -6.67692677e-02,
         -7.35152908e-02,  -6.85574283e-02,  -5.71811573e-02,
         -4.12138780e-02,  -2.20396726e-02,  -6.24121310e-04],
       [  0.00000000e+00,  -2.00643401e-02,  -4.39827328e-02,
         -6.62722434e-02,  -8.60268414e-02,  -1.01730306e-01,
         -9.86277741e-02,  -9.82914922e-02,  -5.22335876e-02,
         -1.54622435e-02,  -1.57487554e-02,  -3.06190808e-03,
         -4.81481586e-02,  -8.92480491e-02,  -8.63776477e-02,
         -9.98130440e-02,  -8.95491230e-02,  -7.33553695e-02,
         -5.34401725e-02,  -3.11601812e-02,  -7.33715103e-03],
       [  0.00000000e+00,  -2.50053614e-02,  -5.11695772e-02,
         -7.65997026e-02,  -1.00809054e-01,  -1.22877573e-01,
         -1.18738178e-01,  -1.55236782e-01,  -7.45388001e-02,
          1.92779182e-03,  -1.94380016e-02,   1.94922939e-02,
         -7.66669920e-02,  -1.53909722e-01,  -1.10846875e-01,
         -1.19746768e-01,  -1.07680300e-01,  -8.59905101e-02,
         -6.22042294e-02,  -3.71802472e-02,  -1.13867485e-02],
       [  0.00000000e+00,  -2.63645827e-02,  -5.37984901e-02,
         -8.11337022e-02,  -1.08298371e-01,  -1.35146441e-01,
         -1.34825430e-01,  -1.85836050e-01,  -1.10730875e-01,
         -3.18861095e-02,   4.14395701e-02,  -1.52711946e-02,
         -1.31840763e-01,  -1.96794707e-01,  -1.33453212e-01,
         -1.34989129e-01,  -1.17922385e-01,  -9.21637323e-02,
         -6.58369237e-02,  -3.91646838e-02,  -1.22685698e-02],
       [  0.00000000e+00,  -2.64622244e-02,  -5.40483999e-02,
         -8.16190336e-02,  -1.09162854e-01,  -1.36656677e-01,
         -1.37081504e-01,  -1.89522811e-01,  -1.17723634e-01,
         -4.88765748e-02,  -5.04529015e-03,  -5.76414497e-02,
         -1.45712183e-01,  -2.03062804e-01,  -1.36859828e-01,
         -1.37107390e-01,  -1.19124650e-01,  -9.28263279e-02,
         -6.61800709e-02,  -3.93088682e-02,  -1.22842049e-02],
       [  0.00000000e+00,  -2.58466495e-02,  -5.24858827e-02,
         -7.86086164e-02,  -1.03856343e-01,  -1.27529509e-01,
         -1.23794779e-01,  -1.68810613e-01,  -8.22602627e-02,
          1.74236964e-02,   9.38708725e-02,   4.23208284e-02,
         -8.46343723e-02,  -1.70476759e-01,  -1.17547884e-01,
         -1.24569752e-01,  -1.11518670e-01,  -8.84736806e-02,
         -6.38037151e-02,  -3.81874381e-02,  -1.19867610e-02],
       [  0.00000000e+00,  -2.42186547e-02,  -4.84175525e-02,
         -7.09428614e-02,  -9.07754575e-02,  -1.06117824e-01,
         -9.50228292e-02,  -1.29781980e-01,  -3.08573454e-02,
          7.39058739e-02,   1.30478117e-01,   8.28181149e-02,
         -2.70389535e-02,  -1.20837502e-01,  -8.02081725e-02,
         -9.70274506e-02,  -9.35853383e-02,  -7.77422806e-02,
         -5.77817530e-02,  -3.53067886e-02,  -1.12414659e-02],
       [  0.00000000e+00,  -2.16818717e-02,  -4.22363856e-02,
         -5.96909893e-02,  -7.24805224e-02,  -7.81867829e-02,
         -6.11838569e-02,  -9.05679744e-02,   9.95934969e-03,
          1.07503875e-01,   1.52073917e-01,   1.05894634e-01,
          8.68652263e-03,  -7.98571818e-02,  -4.16548658e-02,
         -6.40511838e-02,  -6.99337160e-02,  -6.26305633e-02,
         -4.89098800e-02,  -3.09284566e-02,  -1.00919381e-02],
       [  0.00000000e+00,  -1.84940182e-02,  -3.47054606e-02,
         -4.65278129e-02,  -5.22037664e-02,  -4.93977115e-02,
         -2.95395230e-02,  -5.82421092e-02,   3.91025654e-02,
          1.29337956e-01,   1.67436703e-01,   1.21969296e-01,
          3.20823547e-02,  -5.00287386e-02,  -9.22993907e-03,
         -3.27186625e-02,  -4.52706958e-02,  -4.57409325e-02,
         -3.84701291e-02,  -2.55751405e-02,  -8.64950254e-03],
       [  0.00000000e+00,  -1.49431380e-02,  -2.65887341e-02,
         -3.29162158e-02,  -3.22994323e-02,  -2.29081781e-02,
         -2.60259636e-03,  -3.29856530e-02,   6.02631314e-02,
          1.45003704e-01,   1.79361264e-01,   1.34292814e-01,
          4.88007115e-02,  -2.82328554e-02,   1.64212421e-02,
         -5.72391847e-03,  -2.23438861e-02,  -2.90246794e-02,
         -2.76054402e-02,  -1.97779758e-02,  -7.03945406e-03],
       [  0.00000000e+00,  -1.12771143e-02,  -1.84737590e-02,
         -1.98228664e-02,  -1.40092305e-02,   1.84580818e-04,
          1.95817303e-02,  -1.32608487e-02,   7.62783168e-02,
          1.57076433e-01,   1.89083905e-01,   1.44259188e-01,
          6.15722813e-02,  -1.17505212e-02,   3.65938109e-02,
          1.66937711e-02,  -2.18970818e-03,  -1.35507683e-02,
         -1.70890527e-02,  -1.39519424e-02,  -5.37036892e-03],
       [  0.00000000e+00,  -7.67615215e-03,  -1.07348257e-02,
         -7.75276739e-03,   2.22351695e-03,   1.98662250e-02,
          3.77611177e-02,   2.42018661e-03,   8.89036172e-02,
          1.66855206e-01,   1.97260700e-01,   1.52590263e-01,
          7.17981256e-02,   1.18005972e-03,   5.26852303e-02,
          3.51638855e-02,   1.51012176e-02,   2.69654076e-04,
         -7.33815554e-03,  -8.36639665e-03,  -3.72176313e-03],
       [  0.00000000e+00,  -4.50552324e-03,  -4.32262850e-03,
          1.73559158e-03,   1.42670366e-02,   3.35040699e-02,
          4.97279358e-02,   1.85410528e-02,   9.39950666e-02,
          1.46646579e-01,   9.13474746e-02,   1.37004651e-01,
          7.74648339e-02,   1.59777072e-02,   6.25334939e-02,
          4.74577418e-02,   2.72155518e-02,   1.06174952e-02,
          3.94103899e-04,  -3.68465400e-03,  -2.19830733e-03],
       [  0.00000000e+00,  -1.74629916e-03,   5.44471813e-04,
          8.22933499e-03,   2.15699287e-02,   4.04232250e-02,
          5.69678048e-02,   5.52408259e-02,   9.04381272e-02,
          1.08204635e-01,   9.14439984e-02,   1.06884511e-01,
          8.17241884e-02,   5.55282924e-02,   6.78528399e-02,
          5.47188925e-02,   3.35251483e-02,   1.69615982e-02,
          5.72048628e-03,  -8.81437278e-05,  -7.36518436e-04],
       [  0.00000000e+00,   4.07838765e-05,   3.63933766e-03,
          1.20080876e-02,   2.51274691e-02,   4.25687176e-02,
          6.25685606e-02,   7.33480475e-02,   8.37515545e-02,
          9.52500287e-02,   9.15135660e-02,   9.66442834e-02,
          8.66659913e-02,   8.10325633e-02,   7.18836713e-02,
          5.45548434e-02,   3.55884875e-02,   2.00142359e-02,
          8.71200201e-03,   2.04407846e-03,  -6.53680674e-06],
       [  0.00000000e+00,   2.40054729e-04,   4.44975227e-03,
          1.27572519e-02,   2.49362989e-02,   4.03831326e-02,
          5.80039988e-02,   7.61280192e-02,   8.37404162e-02,
          8.89634569e-02,   9.15651607e-02,   9.13586235e-02,
          8.83589144e-02,   8.27804032e-02,   6.75666471e-02,
          5.00483249e-02,   3.36733366e-02,   1.96758691e-02,
          9.00603204e-03,   2.18370401e-03,   0.00000000e+00],
       [  0.00000000e+00,   0.00000000e+00,   2.78776980e-03,
          1.05086036e-02,   2.13238822e-02,   3.45577738e-02,
          4.91570145e-02,   6.36787133e-02,   7.63710088e-02,
          8.54072310e-02,   8.92960200e-02,   8.75702197e-02,
          8.07095447e-02,   6.97999389e-02,   5.63787286e-02,
          4.20734776e-02,   2.83073312e-02,   1.61614525e-02,
          6.56194125e-03,   1.00721924e-04,   0.00000000e+00],
       [  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          5.49667845e-03,   1.47563319e-02,   2.57955743e-02,
          3.76689418e-02,   4.91861917e-02,   5.90108907e-02,
          6.58478416e-02,   6.87018515e-02,   6.73174642e-02,
          6.20270643e-02,   5.35456385e-02,   4.29400416e-02,
          3.14129728e-02,   2.00795162e-02,   9.84001885e-03,
          1.53992995e-03,   0.00000000e+00,   0.00000000e+00]]
    )
    np.testing.assert_allclose(fd, fd_test, rtol=1e-4)
Ejemplo n.º 6
0
def test_rv4():
    magnitude = 7.0
    rake = 90.0
    width = np.array([28])
    rupx = np.array([0, 0])
    rupy = np.array([0, 32])
    zp = np.array([0])
    dip = np.array([30])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)

    # Dummy Origin
    origin = Origin({'lat':0,
                     'lon':0,
                     'depth':0,
                     'mag':0,
                     'id':'rv4',
                     'rake':rake})

    # Rupture
    rup = rupture.QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]),
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference='')
    L = rup.getLength()

    # Figure out epicenter
    tmp = rup.getQuadrilaterals()[0]
    pp0 = Vector.fromPoint(point.Point(
        tmp[0].longitude, tmp[0].latitude, tmp[0].depth))
    pp1 = Vector.fromPoint(point.Point(
        tmp[1].longitude, tmp[1].latitude, tmp[1].depth))
    pp2 = Vector.fromPoint(point.Point(
        tmp[2].longitude, tmp[2].latitude, tmp[2].depth))
    pp3 = Vector.fromPoint(point.Point(
        tmp[3].longitude, tmp[3].latitude, tmp[3].depth))
    dxp = 6/L
    dyp = (width-8)/width
    mp0 = pp0 + (pp1 - pp0)*dxp
    mp1 = pp3 + (pp2 - pp3)*dxp
    rp = mp0 + (mp1 - mp0)*dyp
    epilat,epilon,epidepth = ecef2latlon(rp.x, rp.y, rp.z)

    # Fix Origin:
    origin = Origin({'lat':epilat,
                     'lon':epilon,
                     'depth':epidepth,
                     'mag':magnitude,
                     'id':'rv4',
                     'rake':rake})

    x = np.linspace(-50, 50, 11)
    y = np.linspace(-50, 50, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=2.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array(
      [[  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          1.72143257e-03,   1.34977260e-03,   4.33616224e-15,
          1.24446253e-03,   1.16142357e-03,   2.25464716e-03,
          7.05281751e-04,   0.00000000e+00],
       [  0.00000000e+00,   0.00000000e+00,   7.62610242e-03,
          1.25133844e-02,   5.61896104e-03,   7.63126014e-15,
          4.52266194e-03,   4.67970900e-03,   1.02820316e-02,
          5.13160096e-03,  -6.13926251e-03],
       [  0.00000000e+00,   4.00495234e-03,   2.37608386e-02,
          2.37139333e-02,   9.55224050e-03,   5.66364910e-15,
          7.70344813e-03,   7.36466362e-03,   1.48239704e-02,
          8.40388145e-03,  -1.58592485e-02],
       [  8.08385547e-19,   9.38150101e-03,   3.38610620e-02,
          3.85351492e-02,   1.91044918e-02,   3.98697802e-15,
          1.54321666e-02,   1.21913760e-02,   2.04435166e-02,
          1.04931859e-02,  -1.85935894e-02],
       [  2.12025421e-18,   1.37316085e-02,   4.40193799e-02,
          6.16562477e-02,   4.77612496e-02,   2.60257085e-15,
          3.86322888e-02,   1.97965887e-02,   2.64882038e-02,
          1.23335908e-02,  -2.07389932e-02],
       [  2.64338576e-18,   1.45898292e-02,   4.89104213e-02,
          7.70703166e-02,   9.55225258e-02,   1.01875104e-01,
          7.73459329e-02,   2.50275508e-02,   2.93537540e-02,
          1.30949577e-02,  -2.15685454e-02],
       [  2.64330042e-18,   1.45898262e-02,   4.89104186e-02,
          7.70703146e-02,   9.55225248e-02,   1.01910945e-01,
          7.74050835e-02,   2.52307946e-02,   2.92970736e-02,
          1.30880504e-02,  -2.15685424e-02],
       [  2.64318867e-18,   1.45898259e-02,   4.89104184e-02,
          7.70703144e-02,   9.55225247e-02,   1.01933432e-01,
          7.74421258e-02,   2.53572923e-02,   2.92615130e-02,
          1.30837284e-02,  -2.15685422e-02],
       [  2.64305117e-18,   1.45898284e-02,   4.89104206e-02,
          7.70703161e-02,   9.55225256e-02,   1.01942593e-01,
          7.74571359e-02,   2.54081640e-02,   2.92472117e-02,
          1.30819985e-02,  -2.15685446e-02],
       [  2.30141673e-18,   1.40210825e-02,   4.56205547e-02,
          6.63109661e-02,   5.79266964e-02,   2.33044622e-15,
          4.69672564e-02,   2.18401553e-02,   2.72864925e-02,
          1.25728575e-02,  -2.10227772e-02],
       [  1.10672535e-18,   1.04777076e-02,   3.59041065e-02,
          4.24614318e-02,   2.24217216e-02,   3.66914762e-15,
          1.81728517e-02,   1.39301504e-02,   2.14956836e-02,
          1.08711460e-02,  -1.90802849e-02]]
    )
    np.testing.assert_allclose(fd, fd_test, rtol=2e-4)
Ejemplo n.º 7
0
def test_ss3_move_hypo1():
    magnitude = 7.2
    dip = np.array([90])
    rake = 180.0
    width = np.array([15])
    rupx = np.array([0, 0])
    rupy = np.array([0, 80])
    zp = np.array([0.0])
    epix = np.array([1.0])
    epiy = np.array([-1.0])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    # Origin
    origin = Origin({'lat':epilat[0],
                     'lon':epilon[0],
                     'depth':-1,
                     'mag':magnitude,
                     'id':'ss3',
                     'rake':rake})

    rup = rupture.QuadRupture.fromTrace(
        np.array([tlon[0]]), np.array([tlat[0]]),
        np.array([tlon[1]]), np.array([tlat[1]]),
        zp, width, dip, origin, reference='ss3')

    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)

    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)
    phyp = copy.deepcopy(test1.phyp[0])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)

    px, py = proj(plon, plat, reverse=False)

    np.testing.assert_allclose(plat, 38.004233219183604, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4)
    np.testing.assert_allclose(pdep, 7.4999999989205968, rtol=1e-4)

    #---------------------------------------------------------------------------
    # Also for multiple segments
    #---------------------------------------------------------------------------
    dip = np.array([90., 90., 90.])
    rake = 180.0
    width = np.array([15., 15., 10.])
    rupx = np.array([0., 0., 10., 20.])
    rupy = np.array([0., 20., 60., 80.])
    zp = np.array([0., 0., 0.])
    epix = np.array([0.])
    epiy = np.array([0.])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(rupx, rupy, reverse=True)
    epilon, epilat = proj(epix, epiy, reverse=True)

    rup = rupture.QuadRupture.fromTrace(
        np.array(tlon[0:3]), np.array(tlat[0:3]),
        np.array(tlon[1:4]), np.array(tlat[1:4]),
        zp, width, dip, origin, reference='')

    event = {'lat': epilat[0],
             'lon': epilon[0],
             'depth': 1.0,
             'mag': magnitude,
             'id': '',
             'locstring': 'test',
             'type': 'SS',
             'timezone': 'UTC'}
    event['time'] = ShakeDateTime.utcfromtimestamp(int(time.time()))
    event['created'] = ShakeDateTime.utcfromtimestamp(int(time.time()))
    x = np.linspace(0, 20, 6)
    y = np.linspace(0, 90, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)
    origin = Origin(event)
    origin.rake = rake
    test1 = Bayless2013(origin, rup, slat, slon, deps, T=1.0)

    # 1st pseudo-hyp
    phyp = copy.deepcopy(test1.phyp[0])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)
    px, py = proj(plon, plat, reverse=False)
    np.testing.assert_allclose(plat, 38.004233219183604, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4)
    np.testing.assert_allclose(pdep, 7.4999999989205968, rtol=1e-4)

    # 2nd pseudo-hyp
    phyp = copy.deepcopy(test1.phyp[1])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)
    px, py = proj(plon, plat, reverse=False)
    np.testing.assert_allclose(plat, 38.184097835787796, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.98636122402166, rtol=1e-4)
    np.testing.assert_allclose(pdep, 7.4999999989103525, rtol=1e-4)

    # 3rd pseudo-hyp
    phyp = copy.deepcopy(test1.phyp[2])
    plat, plon, pdep = ecef2latlon(phyp.x, phyp.y, phyp.z)
    px, py = proj(plon, plat, reverse=False)
    np.testing.assert_allclose(plat, 38.543778594535752, rtol=1e-4)
    np.testing.assert_allclose(plon, -120.87137783362499, rtol=1e-4)
    np.testing.assert_allclose(pdep, 4.9999999995063993, rtol=1e-4)
Ejemplo n.º 8
0
def test_rv4():
    magnitude = 7.0
    rake = 90.0
    width = np.array([28])
    fltx = np.array([0, 0])
    flty = np.array([0, 32])
    zp = np.array([0])
    dip = np.array([30])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(fltx, flty, reverse=True)

    flt = fault.Fault.fromTrace(np.array([tlon[0]]), np.array([tlat[0]]),
                                np.array([tlon[1]]), np.array([tlat[1]]),
                                zp, width, dip, reference='')
    L = flt.getFaultLength()

    # Try to figure out epicenter
    tmp = flt.getQuadrilaterals()[0]
    pp0 = Vector.fromPoint(point.Point(tmp[0].longitude, tmp[0].latitude,
                                       tmp[0].depth))
    pp1 = Vector.fromPoint(point.Point(tmp[1].longitude, tmp[1].latitude,
                                       tmp[1].depth))
    pp2 = Vector.fromPoint(point.Point(tmp[2].longitude, tmp[2].latitude,
                                       tmp[2].depth))
    pp3 = Vector.fromPoint(point.Point(tmp[3].longitude, tmp[3].latitude,
                                       tmp[3].depth))
    dxp = 6/L
    dyp = (width-8)/width
    mp0 = pp0 + (pp1 - pp0)*dxp
    mp1 = pp3 + (pp2 - pp3)*dxp
    rp = mp0 + (mp1 - mp0)*dyp
    epilat,epilon,epidepth = ecef2latlon(rp.x, rp.y, rp.z)

    event = {'lat': epilat,
             'lon': epilon,
             'depth': epidepth,
             'mag': magnitude,
             'id': 'test',
             'locstring': 'rv4',
             'type': 'DS',
             'timezone': 'UTC'}
    event['time'] = ShakeDateTime.utcfromtimestamp(int(time.time()))
    event['created'] = ShakeDateTime.utcfromtimestamp(int(time.time()))

    x = np.linspace(-50, 50, 11)
    y = np.linspace(-50, 50, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)
    source = Source(event, flt)
    source.setEventParam('rake', rake)

    test1 = Bayless2013(source, slat, slon, deps, T=2.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array(
      [[  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
          1.72147747e-03,   1.34981119e-03,   8.95673480e-29,
          1.24449087e-03,   1.16145147e-03,   2.25470229e-03,
          7.05301515e-04,   0.00000000e+00],
       [  0.00000000e+00,   0.00000000e+00,   7.62625126e-03,
          1.25136528e-02,   5.61909403e-03,   3.18694606e-28,
          4.52275052e-03,   4.67980272e-03,   1.02822365e-02,
          5.13171639e-03,  -6.13935060e-03],
       [  0.00000000e+00,   4.00499692e-03,   2.37611880e-02,
          2.37143264e-02,   9.55241972e-03,   5.65693221e-28,
          7.70357238e-03,   7.36477919e-03,   1.48241947e-02,
          8.40402367e-03,  -1.58594139e-02],
       [  8.08392720e-19,   9.38156493e-03,   3.38613859e-02,
          3.85355818e-02,   1.91047521e-02,   1.27066310e-27,
          1.54323543e-02,   1.21915074e-02,   2.04437211e-02,
          1.04933053e-02,  -1.85937074e-02],
       [  2.12026318e-18,   1.37316424e-02,   4.40195705e-02,
          6.16565712e-02,   4.77616016e-02,   5.07336347e-27,
          3.86325509e-02,   1.97966900e-02,   2.64883302e-02,
          1.23336661e-02,  -2.07390404e-02],
       [  2.64338576e-18,   1.45898071e-02,   4.89104103e-02,
          7.70703129e-02,   9.55225254e-02,   1.01875104e-01,
          7.73459333e-02,   2.50275520e-02,   2.93537605e-02,
          1.30949772e-02,  -2.15685118e-02],
       [  2.64330042e-18,   1.45898071e-02,   4.89104103e-02,
          7.70703129e-02,   9.55225254e-02,   1.01910945e-01,
          7.74050830e-02,   2.52307951e-02,   2.92970785e-02,
          1.30880672e-02,  -2.15685118e-02],
       [  2.64318867e-18,   1.45898071e-02,   4.89104103e-02,
          7.70703129e-02,   9.55225254e-02,   1.01933432e-01,
          7.74421253e-02,   2.53572928e-02,   2.92615177e-02,
          1.30837449e-02,  -2.15685118e-02],
       [  2.64305117e-18,   1.45898071e-02,   4.89104103e-02,
          7.70703129e-02,   9.55225254e-02,   1.01942593e-01,
          7.74571361e-02,   2.54081650e-02,   2.92472178e-02,
          1.30820173e-02,  -2.15685118e-02],
       [  2.30140686e-18,   1.40209885e-02,   4.56202616e-02,
          6.63103459e-02,   5.79255225e-02,   7.72925496e-27,
          4.69663059e-02,   2.18399567e-02,   2.72863359e-02,
          1.25728195e-02,  -2.10226512e-02],
       [  1.10671369e-18,   1.04775558e-02,   3.59035524e-02,
          4.24605614e-02,   2.24210618e-02,   1.53459722e-27,
          1.81723013e-02,   1.39298662e-02,   2.14953705e-02,
          1.08710398e-02,  -1.90800441e-02]]
    )
    np.testing.assert_allclose(fd, fd_test, rtol=1e-5)
Ejemplo n.º 9
0
def test_so6():
    event_name = 'so6'
    magnitude = 7.2
    dip = np.array([70])
    rake = 135
    width = np.array([15])
    L = 80
    fltx = np.array([0, 0])
    flty = np.array([0, L])
    zp = np.array([0])
    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(fltx, flty, reverse=True)
    flt = fault.Fault.fromTrace(np.array([tlon[0]]),
                                np.array([tlat[0]]),
                                np.array([tlon[1]]),
                                np.array([tlat[1]]),
                                zp,
                                width,
                                dip,
                                reference='rv4')
    x = np.linspace(-80, 80, 21)
    y = np.linspace(-50, 130, 21)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    sdepth = np.zeros_like(slon)
    tmp = flt.getQuadrilaterals()[0]
    pp0 = Vector.fromPoint(
        point.Point(tmp[0].longitude, tmp[0].latitude, tmp[0].depth))
    pp1 = Vector.fromPoint(
        point.Point(tmp[1].longitude, tmp[1].latitude, tmp[1].depth))
    pp2 = Vector.fromPoint(
        point.Point(tmp[2].longitude, tmp[2].latitude, tmp[2].depth))
    pp3 = Vector.fromPoint(
        point.Point(tmp[3].longitude, tmp[3].latitude, tmp[3].depth))
    dxp = 10 / L
    dyp = (width - 5) / width
    mp0 = pp0 + (pp1 - pp0) * dxp
    mp1 = pp3 + (pp2 - pp3) * dxp
    rp = mp0 + (mp1 - mp0) * dyp
    epilat, epilon, epidepth = ecef2latlon(rp.x, rp.y, rp.z)
    epix, epiy = proj(epilon, epilat, reverse=False)
    event = {
        'lat': epilat,
        'lon': epilon,
        'depth': epidepth,
        'mag': magnitude,
        'id': 'so6',
        'locstring': 'so6',
        'type': 'RV',
        'timezone': 'UTC'
    }
    event['time'] = ShakeDateTime.utcfromtimestamp(int(time.time()))
    event['created'] = ShakeDateTime.utcfromtimestamp(int(time.time()))
    fltlat = [a.latitude for a in flt.getQuadrilaterals()[0]]
    fltlon = [a.longitude for a in flt.getQuadrilaterals()[0]]
    fltlat = np.append(fltlat, fltlat[0])
    fltlon = np.append(fltlon, fltlon[0])
    fltx, flty = proj(fltlon, fltlat, reverse=False)
    source = Source(event, flt)
    source.setEventParam('rake', rake)
    test1 = Bayless2013(source, slat, slon, sdepth, T=5)
    fd = test1.getFd()
    fd_test = np.array([
        [
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00, -8.92879772e-03,
            -1.74526918e-02, -2.22981746e-02, -2.34350450e-02, -2.13620062e-02,
            -1.72712346e-02, -1.29509613e-02, -1.02545064e-02, -1.03010185e-02,
            -1.28847597e-02, -1.66274727e-02, -1.96984070e-02, -2.05377743e-02,
            -1.81831337e-02, -1.21881814e-02, -2.64862879e-03, 0.00000000e+00,
            0.00000000e+00
        ],
        [
            0.00000000e+00, 0.00000000e+00, -8.73221519e-03, -2.21421374e-02,
            -3.18438939e-02, -3.71488270e-02, -3.76239913e-02, -3.35015951e-02,
            -2.61748968e-02, -1.83864728e-02, -1.34793002e-02, -1.36687799e-02,
            -1.85727143e-02, -2.55527671e-02, -3.14227568e-02, -3.38933995e-02,
            -3.19289607e-02, -2.53396980e-02, -1.45943649e-02, -3.71405488e-04,
            0.00000000e+00
        ],
        [
            0.00000000e+00, -2.54621422e-03, -2.11428566e-02, -3.68609103e-02,
            -4.87464747e-02, -5.56539037e-02, -5.64419387e-02, -5.05331157e-02,
            -3.52919381e-02, -2.18782050e-02, -1.40858125e-02, -1.47354546e-02,
            -2.35727189e-02, -3.74838465e-02, -4.75915414e-02, -5.13000399e-02,
            -4.87882409e-02, -4.05716321e-02, -2.77368254e-02, -1.13542729e-02,
            0.00000000e+00
        ],
        [
            0.00000000e+00, -1.21642958e-02, -3.33747360e-02, -5.21661817e-02,
            -6.74724509e-02, -7.77628842e-02, -8.00243748e-02, -6.42496853e-02,
            -4.38124530e-02, -1.97027426e-02, -1.45897731e-02, -1.07427056e-02,
            -3.08235222e-02, -4.82656988e-02, -6.67692677e-02, -7.35152908e-02,
            -6.85574283e-02, -5.71811573e-02, -4.12138780e-02, -2.20396726e-02,
            -6.24121310e-04
        ],
        [
            0.00000000e+00, -2.00643401e-02, -4.39827328e-02, -6.62722434e-02,
            -8.60268414e-02, -1.01730306e-01, -9.86277741e-02, -9.82914922e-02,
            -5.22335876e-02, -1.54622435e-02, -1.57487554e-02, -3.06190808e-03,
            -4.81481586e-02, -8.92480491e-02, -8.63776477e-02, -9.98130440e-02,
            -8.95491230e-02, -7.33553695e-02, -5.34401725e-02, -3.11601812e-02,
            -7.33715103e-03
        ],
        [
            0.00000000e+00, -2.50053614e-02, -5.11695772e-02, -7.65997026e-02,
            -1.00809054e-01, -1.22877573e-01, -1.18738178e-01, -1.55236782e-01,
            -7.45388001e-02, 1.92779182e-03, -1.94380016e-02, 1.94922939e-02,
            -7.66669920e-02, -1.53909722e-01, -1.10846875e-01, -1.19746768e-01,
            -1.07680300e-01, -8.59905101e-02, -6.22042294e-02, -3.71802472e-02,
            -1.13867485e-02
        ],
        [
            0.00000000e+00, -2.63645827e-02, -5.37984901e-02, -8.11337022e-02,
            -1.08298371e-01, -1.35146441e-01, -1.34825430e-01, -1.85836050e-01,
            -1.10730875e-01, -3.18861095e-02, 4.14395701e-02, -1.52711946e-02,
            -1.31840763e-01, -1.96794707e-01, -1.33453212e-01, -1.34989129e-01,
            -1.17922385e-01, -9.21637323e-02, -6.58369237e-02, -3.91646838e-02,
            -1.22685698e-02
        ],
        [
            0.00000000e+00, -2.64622244e-02, -5.40483999e-02, -8.16190336e-02,
            -1.09162854e-01, -1.36656677e-01, -1.37081504e-01, -1.89522811e-01,
            -1.17723634e-01, -4.88765748e-02, -5.04529015e-03, -5.76414497e-02,
            -1.45712183e-01, -2.03062804e-01, -1.36859828e-01, -1.37107390e-01,
            -1.19124650e-01, -9.28263279e-02, -6.61800709e-02, -3.93088682e-02,
            -1.22842049e-02
        ],
        [
            0.00000000e+00, -2.58466495e-02, -5.24858827e-02, -7.86086164e-02,
            -1.03856343e-01, -1.27529509e-01, -1.23794779e-01, -1.68810613e-01,
            -8.22602627e-02, 1.74236964e-02, 9.38708725e-02, 4.23208284e-02,
            -8.46343723e-02, -1.70476759e-01, -1.17547884e-01, -1.24569752e-01,
            -1.11518670e-01, -8.84736806e-02, -6.38037151e-02, -3.81874381e-02,
            -1.19867610e-02
        ],
        [
            0.00000000e+00, -2.42186547e-02, -4.84175525e-02, -7.09428614e-02,
            -9.07754575e-02, -1.06117824e-01, -9.50228292e-02, -1.29781980e-01,
            -3.08573454e-02, 7.39058739e-02, 1.30478117e-01, 8.28181149e-02,
            -2.70389535e-02, -1.20837502e-01, -8.02081725e-02, -9.70274506e-02,
            -9.35853383e-02, -7.77422806e-02, -5.77817530e-02, -3.53067886e-02,
            -1.12414659e-02
        ],
        [
            0.00000000e+00, -2.16818717e-02, -4.22363856e-02, -5.96909893e-02,
            -7.24805224e-02, -7.81867829e-02, -6.11838569e-02, -9.05679744e-02,
            9.95934969e-03, 1.07503875e-01, 1.52073917e-01, 1.05894634e-01,
            8.68652263e-03, -7.98571818e-02, -4.16548658e-02, -6.40511838e-02,
            -6.99337160e-02, -6.26305633e-02, -4.89098800e-02, -3.09284566e-02,
            -1.00919381e-02
        ],
        [
            0.00000000e+00, -1.84940182e-02, -3.47054606e-02, -4.65278129e-02,
            -5.22037664e-02, -4.93977115e-02, -2.95395230e-02, -5.82421092e-02,
            3.91025654e-02, 1.29337956e-01, 1.67436703e-01, 1.21969296e-01,
            3.20823547e-02, -5.00287386e-02, -9.22993907e-03, -3.27186625e-02,
            -4.52706958e-02, -4.57409325e-02, -3.84701291e-02, -2.55751405e-02,
            -8.64950254e-03
        ],
        [
            0.00000000e+00, -1.49431380e-02, -2.65887341e-02, -3.29162158e-02,
            -3.22994323e-02, -2.29081781e-02, -2.60259636e-03, -3.29856530e-02,
            6.02631314e-02, 1.45003704e-01, 1.79361264e-01, 1.34292814e-01,
            4.88007115e-02, -2.82328554e-02, 1.64212421e-02, -5.72391847e-03,
            -2.23438861e-02, -2.90246794e-02, -2.76054402e-02, -1.97779758e-02,
            -7.03945406e-03
        ],
        [
            0.00000000e+00, -1.12771143e-02, -1.84737590e-02, -1.98228664e-02,
            -1.40092305e-02, 1.84580818e-04, 1.95817303e-02, -1.32608487e-02,
            7.62783168e-02, 1.57076433e-01, 1.89083905e-01, 1.44259188e-01,
            6.15722813e-02, -1.17505212e-02, 3.65938109e-02, 1.66937711e-02,
            -2.18970818e-03, -1.35507683e-02, -1.70890527e-02, -1.39519424e-02,
            -5.37036892e-03
        ],
        [
            0.00000000e+00, -7.67615215e-03, -1.07348257e-02, -7.75276739e-03,
            2.22351695e-03, 1.98662250e-02, 3.77611177e-02, 2.42018661e-03,
            8.89036172e-02, 1.66855206e-01, 1.97260700e-01, 1.52590263e-01,
            7.17981256e-02, 1.18005972e-03, 5.26852303e-02, 3.51638855e-02,
            1.51012176e-02, 2.69654076e-04, -7.33815554e-03, -8.36639665e-03,
            -3.72176313e-03
        ],
        [
            0.00000000e+00, -4.50552324e-03, -4.32262850e-03, 1.73559158e-03,
            1.42670366e-02, 3.35040699e-02, 4.97279358e-02, 1.85410528e-02,
            9.39950666e-02, 1.46646579e-01, 9.13474746e-02, 1.37004651e-01,
            7.74648339e-02, 1.59777072e-02, 6.25334939e-02, 4.74577418e-02,
            2.72155518e-02, 1.06174952e-02, 3.94103899e-04, -3.68465400e-03,
            -2.19830733e-03
        ],
        [
            0.00000000e+00, -1.74629916e-03, 5.44471813e-04, 8.22933499e-03,
            2.15699287e-02, 4.04232250e-02, 5.69678048e-02, 5.52408259e-02,
            9.04381272e-02, 1.08204635e-01, 9.14439984e-02, 1.06884511e-01,
            8.17241884e-02, 5.55282924e-02, 6.78528399e-02, 5.47188925e-02,
            3.35251483e-02, 1.69615982e-02, 5.72048628e-03, -8.81437278e-05,
            -7.36518436e-04
        ],
        [
            0.00000000e+00, 4.07838765e-05, 3.63933766e-03, 1.20080876e-02,
            2.51274691e-02, 4.25687176e-02, 6.25685606e-02, 7.33480475e-02,
            8.37515545e-02, 9.52500287e-02, 9.15135660e-02, 9.66442834e-02,
            8.66659913e-02, 8.10325633e-02, 7.18836713e-02, 5.45548434e-02,
            3.55884875e-02, 2.00142359e-02, 8.71200201e-03, 2.04407846e-03,
            -6.53680674e-06
        ],
        [
            0.00000000e+00, 2.40054729e-04, 4.44975227e-03, 1.27572519e-02,
            2.49362989e-02, 4.03831326e-02, 5.80039988e-02, 7.61280192e-02,
            8.37404162e-02, 8.89634569e-02, 9.15651607e-02, 9.13586235e-02,
            8.83589144e-02, 8.27804032e-02, 6.75666471e-02, 5.00483249e-02,
            3.36733366e-02, 1.96758691e-02, 9.00603204e-03, 2.18370401e-03,
            0.00000000e+00
        ],
        [
            0.00000000e+00, 0.00000000e+00, 2.78776980e-03, 1.05086036e-02,
            2.13238822e-02, 3.45577738e-02, 4.91570145e-02, 6.36787133e-02,
            7.63710088e-02, 8.54072310e-02, 8.92960200e-02, 8.75702197e-02,
            8.07095447e-02, 6.97999389e-02, 5.63787286e-02, 4.20734776e-02,
            2.83073312e-02, 1.61614525e-02, 6.56194125e-03, 1.00721924e-04,
            0.00000000e+00
        ],
        [
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 5.49667845e-03,
            1.47563319e-02, 2.57955743e-02, 3.76689418e-02, 4.91861917e-02,
            5.90108907e-02, 6.58478416e-02, 6.87018515e-02, 6.73174642e-02,
            6.20270643e-02, 5.35456385e-02, 4.29400416e-02, 3.14129728e-02,
            2.00795162e-02, 9.84001885e-03, 1.53992995e-03, 0.00000000e+00,
            0.00000000e+00
        ]
    ])
    np.testing.assert_allclose(fd, fd_test, rtol=1e-4)
Ejemplo n.º 10
0
def test_rv4():
    magnitude = 7.0
    rake = 90.0
    width = np.array([28])
    fltx = np.array([0, 0])
    flty = np.array([0, 32])
    zp = np.array([0])
    dip = np.array([30])

    # Convert to lat/lon
    proj = geo.utils.get_orthographic_projection(-122, -120, 39, 37)
    tlon, tlat = proj(fltx, flty, reverse=True)

    flt = fault.Fault.fromTrace(np.array([tlon[0]]),
                                np.array([tlat[0]]),
                                np.array([tlon[1]]),
                                np.array([tlat[1]]),
                                zp,
                                width,
                                dip,
                                reference='')
    L = flt.getFaultLength()

    # Try to figure out epicenter
    tmp = flt.getQuadrilaterals()[0]
    pp0 = Vector.fromPoint(
        point.Point(tmp[0].longitude, tmp[0].latitude, tmp[0].depth))
    pp1 = Vector.fromPoint(
        point.Point(tmp[1].longitude, tmp[1].latitude, tmp[1].depth))
    pp2 = Vector.fromPoint(
        point.Point(tmp[2].longitude, tmp[2].latitude, tmp[2].depth))
    pp3 = Vector.fromPoint(
        point.Point(tmp[3].longitude, tmp[3].latitude, tmp[3].depth))
    dxp = 6 / L
    dyp = (width - 8) / width
    mp0 = pp0 + (pp1 - pp0) * dxp
    mp1 = pp3 + (pp2 - pp3) * dxp
    rp = mp0 + (mp1 - mp0) * dyp
    epilat, epilon, epidepth = ecef2latlon(rp.x, rp.y, rp.z)

    event = {
        'lat': epilat,
        'lon': epilon,
        'depth': epidepth,
        'mag': magnitude,
        'id': 'test',
        'locstring': 'rv4',
        'type': 'DS',
        'timezone': 'UTC'
    }
    event['time'] = ShakeDateTime.utcfromtimestamp(int(time.time()))
    event['created'] = ShakeDateTime.utcfromtimestamp(int(time.time()))

    x = np.linspace(-50, 50, 11)
    y = np.linspace(-50, 50, 11)
    site_x, site_y = np.meshgrid(x, y)
    slon, slat = proj(site_x, site_y, reverse=True)
    deps = np.zeros_like(slon)
    source = Source(event, flt)
    source.setEventParam('rake', rake)

    test1 = Bayless2013(source, slat, slon, deps, T=2.0)

    # Test fd
    fd = test1.getFd()
    fd_test = np.array(
        [[
            0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.72143257e-03,
            1.34977260e-03, 4.33616224e-15, 1.24446253e-03, 1.16142357e-03,
            2.25464716e-03, 7.05281751e-04, 0.00000000e+00
        ],
         [
             0.00000000e+00, 0.00000000e+00, 7.62610242e-03, 1.25133844e-02,
             5.61896104e-03, 7.63126014e-15, 4.52266194e-03, 4.67970900e-03,
             1.02820316e-02, 5.13160096e-03, -6.13926251e-03
         ],
         [
             0.00000000e+00, 4.00495234e-03, 2.37608386e-02, 2.37139333e-02,
             9.55224050e-03, 5.66364910e-15, 7.70344813e-03, 7.36466362e-03,
             1.48239704e-02, 8.40388145e-03, -1.58592485e-02
         ],
         [
             8.08385547e-19, 9.38150101e-03, 3.38610620e-02, 3.85351492e-02,
             1.91044918e-02, 3.98697802e-15, 1.54321666e-02, 1.21913760e-02,
             2.04435166e-02, 1.04931859e-02, -1.85935894e-02
         ],
         [
             2.12025421e-18, 1.37316085e-02, 4.40193799e-02, 6.16562477e-02,
             4.77612496e-02, 2.60257085e-15, 3.86322888e-02, 1.97965887e-02,
             2.64882038e-02, 1.23335908e-02, -2.07389932e-02
         ],
         [
             2.64338576e-18, 1.45898292e-02, 4.89104213e-02, 7.70703166e-02,
             9.55225258e-02, 1.01875104e-01, 7.73459329e-02, 2.50275508e-02,
             2.93537540e-02, 1.30949577e-02, -2.15685454e-02
         ],
         [
             2.64330042e-18, 1.45898262e-02, 4.89104186e-02, 7.70703146e-02,
             9.55225248e-02, 1.01910945e-01, 7.74050835e-02, 2.52307946e-02,
             2.92970736e-02, 1.30880504e-02, -2.15685424e-02
         ],
         [
             2.64318867e-18, 1.45898259e-02, 4.89104184e-02, 7.70703144e-02,
             9.55225247e-02, 1.01933432e-01, 7.74421258e-02, 2.53572923e-02,
             2.92615130e-02, 1.30837284e-02, -2.15685422e-02
         ],
         [
             2.64305117e-18, 1.45898284e-02, 4.89104206e-02, 7.70703161e-02,
             9.55225256e-02, 1.01942593e-01, 7.74571359e-02, 2.54081640e-02,
             2.92472117e-02, 1.30819985e-02, -2.15685446e-02
         ],
         [
             2.30141673e-18, 1.40210825e-02, 4.56205547e-02, 6.63109661e-02,
             5.79266964e-02, 2.33044622e-15, 4.69672564e-02, 2.18401553e-02,
             2.72864925e-02, 1.25728575e-02, -2.10227772e-02
         ],
         [
             1.10672535e-18, 1.04777076e-02, 3.59041065e-02, 4.24614318e-02,
             2.24217216e-02, 3.66914762e-15, 1.81728517e-02, 1.39301504e-02,
             2.14956836e-02, 1.08711460e-02, -1.90802849e-02
         ]])
    np.testing.assert_allclose(fd, fd_test, rtol=2e-4)
Ejemplo n.º 11
0
    def __computeThetaAndS(self, i):
        """
        :param i:
            Compute d for the i-th quad/segment.
        """
        # self.phyp is in ECEF
        tmp = ecef.ecef2latlon(self.phyp[i].x, self.phyp[i].y, self.phyp[i].z)
        epi_ecef = Vector.fromPoint(geo.point.Point(tmp[1], tmp[0], 0.0))
        epi_col = np.array([[epi_ecef.x], [epi_ecef.y], [epi_ecef.z]])

        # First compute along strike vector
        P0, P1, P2, P3 = self._flt.getQuadrilaterals()[i]
        p0 = Vector.fromPoint(P0)  # convert to ECEF
        p1 = Vector.fromPoint(P1)
        e01 = p1 - p0
        e01norm = e01.norm()
        hp0 = p0 - epi_ecef
        hp1 = p1 - epi_ecef
        strike_min = Vector.dot(hp0, e01norm) / 1000.0  # convert to km
        strike_max = Vector.dot(hp1, e01norm) / 1000.0  # convert to km
        strike_col = np.array([[e01norm.x], [e01norm.y],
                               [e01norm.z]])  # ECEF coords

        # Sites
        slat = self._lat
        slon = self._lon

        # Convert sites to ECEF:
        site_ecef_x = np.ones_like(slat)
        site_ecef_y = np.ones_like(slat)
        site_ecef_z = np.ones_like(slat)

        # Make a 3x(#number of sites) matrix of site locations
        # (rows are x, y, z) in ECEF
        site_ecef_x, site_ecef_y, site_ecef_z = ecef.latlon2ecef(
            slat, slon, np.zeros(slon.shape))
        site_mat = np.array([
            np.reshape(site_ecef_x, (-1, )),
            np.reshape(site_ecef_y, (-1, )),
            np.reshape(site_ecef_z, (-1, ))
        ])

        # Epicenter-to-site matrix
        e2s_mat = site_mat - epi_col  # in ECEF
        mag = np.sqrt(np.sum(e2s_mat * e2s_mat, axis=0))

        # Avoid division by zero
        mag[mag == 0] = 1e-12
        e2s_norm = e2s_mat / mag

        # Dot epicenter-to-site with along-strike vector
        s_raw = np.sum(e2s_mat * strike_col, axis=0) / 1000.0  # conver to km

        # Put back into a 2d array
        s_raw = np.reshape(s_raw, self._lat.shape)
        self.s = np.abs(s_raw.clip(min=strike_min,
                                   max=strike_max)).clip(min=np.exp(1))

        # Compute theta
        sdots = np.sum(e2s_norm * strike_col, axis=0)
        theta_raw = np.arccos(sdots)

        # But theta is defined to be the reference angle
        # (i.e., the equivalent angle between 0 and 90 deg)
        sintheta = np.abs(np.sin(theta_raw))
        costheta = np.abs(np.cos(theta_raw))
        theta = np.arctan2(sintheta, costheta)
        self.theta = np.reshape(theta, self._lat.shape)