Ejemplo n.º 1
0
def waterfall_plot(expected_value,
                   shap_values,
                   features=None,
                   feature_names=None,
                   max_display=10,
                   show=True):
    """ Plots an explantion of a single prediction as a waterfall.
    
    Parameters
    ----------
    expected_value : float
        This is the reference value that the feature contributions start from. For SHAP values it should
        be the value of explainer.expected_value.

    shap_values : numpy.array
        Matrix of SHAP values (# features) or (# samples x # features). If this is a 1D array then a single
        force plot will be drawn, if it is a 2D array then a stacked force plot will be drawn.

    features : numpy.array
        Matrix of feature values (# features) or (# samples x # features). This provides the values of all the
        features, and should be the same shape as the shap_values argument.

    feature_names : list
        List of feature names (# features).

    max_display : str
        The maximum number of features to plot.

    show : bool
        Whether matplotlib.pyplot.show() is called before returning. Setting this to False allows the plot
        to be customized further after it has been created.
    """

    # unwrap pandas series
    if safe_isinstance(features, "pandas.core.series.Series"):
        if feature_names is None:
            feature_names = list(features.index)
        features = features.values

    if feature_names is None:
        feature_names = np.array(
            [labels['FEATURE'] % str(i) for i in range(len(shap_values))])

    num_features = min(max_display, len(shap_values))
    row_height = 0.5
    rng = range(num_features - 1, -1, -1)
    order = np.argsort(-np.abs(shap_values))
    pos_lefts = []
    pos_inds = []
    pos_widths = []
    neg_lefts = []
    neg_inds = []
    neg_widths = []
    loc = expected_value + shap_values.sum()
    yticklabels = ["" for i in range(num_features + 1)]

    pl.gcf().set_size_inches(8, num_features * row_height + 1.5)

    if num_features == len(shap_values):
        num_individual = num_features
    else:
        num_individual = num_features - 1
    for i in range(num_individual):
        sval = shap_values[order[i]]
        loc -= sval
        if sval >= 0:
            pos_inds.append(rng[i])
            pos_widths.append(sval)
            pos_lefts.append(loc)
        else:
            neg_inds.append(rng[i])
            neg_widths.append(sval)
            neg_lefts.append(loc)
        if num_individual != num_features or i + 4 < num_individual:
            pl.plot([loc, loc], [rng[i] - 1 - 0.4, rng[i] + 0.4],
                    color="#bbbbbb",
                    linestyle="--",
                    linewidth=0.5,
                    zorder=-1)
        if features is None:
            yticklabels[rng[i]] = feature_names[order[i]]
        else:
            yticklabels[rng[i]] = feature_names[order[i]] + " = " + pretty_num(
                "%0.03f" % features[order[i]])

    # add a last grouped feature to represent the impact of all the features we didn't show
    if num_features < len(shap_values):
        yticklabels[0] = "%d other features" % (len(shap_values) -
                                                num_features + 1)
        remaining_impact = expected_value - loc
        if remaining_impact < 0:
            pos_inds.append(0)
            pos_widths.append(remaining_impact)
            pos_lefts.append(loc)
            c = colors.red_rgb
        else:
            neg_inds.append(0)
            neg_widths.append(-remaining_impact)
            neg_lefts.append(loc + remaining_impact)
            c = colors.blue_rgb

    # draw invisible bars just for sizing the axes
    pl.barh(pos_inds,
            np.array(pos_widths) * 1.001,
            left=pos_lefts,
            color=colors.red_rgb,
            alpha=0)
    pl.barh(neg_inds,
            np.array(neg_widths) * 1.001,
            left=neg_lefts,
            color=colors.blue_rgb,
            alpha=0)

    head_length = 0.08
    bar_width = 0.8
    xlen = pl.xlim()[1] - pl.xlim()[0]
    fig = pl.gcf()
    ax = pl.gca()
    xticks = ax.get_xticks()
    bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
    width, height = bbox.width, bbox.height
    bbox_to_xscale = xlen / width
    hl_scaled = bbox_to_xscale * head_length
    renderer = fig.canvas.get_renderer()

    # draw the positive arrows
    for i in range(len(pos_inds)):
        dist = pos_widths[i]
        arrow_obj = pl.arrow(pos_lefts[i],
                             pos_inds[i],
                             max(dist - hl_scaled, 0.000001),
                             0,
                             head_length=min(dist, hl_scaled),
                             color=colors.red_rgb,
                             width=bar_width,
                             head_width=bar_width)

        txt_obj = pl.text(pos_lefts[i] + 0.5 * dist,
                          pos_inds[i],
                          pretty_num('%+0.02f' % pos_widths[i]),
                          horizontalalignment='center',
                          verticalalignment='center',
                          color="white",
                          fontsize=12)
        text_bbox = txt_obj.get_window_extent(renderer=renderer)
        arrow_bbox = arrow_obj.get_window_extent(renderer=renderer)
        if text_bbox.width > arrow_bbox.width:
            txt_obj.remove()

    # draw the negative arrows
    for i in range(len(neg_inds)):
        dist = neg_widths[i]

        arrow_obj = pl.arrow(neg_lefts[i],
                             neg_inds[i],
                             -max(-dist - hl_scaled, 0.000001),
                             0,
                             head_length=min(-dist, hl_scaled),
                             color=colors.blue_rgb,
                             width=bar_width,
                             head_width=bar_width)

        txt_obj = pl.text(neg_lefts[i] + 0.5 * dist,
                          neg_inds[i],
                          pretty_num('%+0.02f' % neg_widths[i]),
                          horizontalalignment='center',
                          verticalalignment='center',
                          color="white",
                          fontsize=12)
        text_bbox = txt_obj.get_window_extent(renderer=renderer)
        arrow_bbox = arrow_obj.get_window_extent(renderer=renderer)
        if text_bbox.width > arrow_bbox.width:
            txt_obj.remove()

    pl.yticks(range(num_features), yticklabels, fontsize=13)

    # put horizontal lines for each feature row
    for i in range(num_features):
        pl.axhline(i, color="#cccccc", lw=0.5, dashes=(1, 5), zorder=-1)

    # mark the prior expected value and the model prediction
    pl.axvline(expected_value,
               0,
               1 / num_features,
               color="#bbbbbb",
               linestyle="--",
               linewidth=0.5,
               zorder=-1)
    fx = expected_value + shap_values.sum()
    pl.axvline(fx,
               0,
               1,
               color="#bbbbbb",
               linestyle="--",
               linewidth=0.5,
               zorder=-1)

    # clean up the main axis
    pl.gca().xaxis.set_ticks_position('bottom')
    pl.gca().yaxis.set_ticks_position('none')
    pl.gca().spines['right'].set_visible(False)
    pl.gca().spines['top'].set_visible(False)
    pl.gca().spines['left'].set_visible(False)
    pl.xlabel("Model output", fontsize=12)

    # remove the ticks that are closest to f(x) and E[f(X)]
    xmin, xmax = ax.get_xlim()
    xticks = ax.get_xticks()
    xticks = list(xticks)
    min_ind = 0
    min_diff = 1e10
    for i in range(len(xticks)):
        v = abs(xticks[i] - expected_value)
        if v < min_diff:
            min_diff = v
            min_ind = i
    xticks.pop(min_ind)
    min_ind = 0
    min_diff = 1e10
    for i in range(len(xticks)):
        v = abs(xticks[i] - fx)
        if v < min_diff:
            min_diff = v
            min_ind = i
    xticks.pop(min_ind)
    ax.set_xticks(xticks)
    ax.tick_params(labelsize=13)
    ax.set_xlim(xmin, xmax)

    # draw the f(x) and E[f(X)] ticks
    ax2 = ax.twiny()
    ax2.set_xlim(xmin, xmax)
    ax2.set_xticks([fx, expected_value])
    ax2.set_xticklabels([pretty_num("%0.03f" % fx), "$E[f(X)]$"], fontsize=12)
    ax2.spines['right'].set_visible(False)
    ax2.spines['top'].set_visible(False)
    ax2.spines['left'].set_visible(False)

    ax3 = ax2.twiny()
    ax3.set_xlim(xmin, xmax)
    ax3.set_xticks([expected_value + shap_values.sum()])
    ax3.set_xticklabels(["$f(x)$"], fontsize=12)
    ax3.spines['right'].set_visible(False)
    ax3.spines['top'].set_visible(False)
    ax3.spines['left'].set_visible(False)

    if show:
        pl.show()
Ejemplo n.º 2
0
    def score(self, attributions, X, y=None, label=None, silent=False):

        if label is None:
            label = "Score %d" % len(self.score_values)

        # convert dataframes
        if safe_isinstance(X, "pandas.core.series.Series"):
            X = X.values
        elif safe_isinstance(self.masker, "pandas.core.frame.DataFrame"):
            X = X.values

        # convert all single-sample vectors to matrices
        if not hasattr(attributions[0], "__len__"):
            attributions = np.array([attributions])
        if not hasattr(X[0], "__len__"):
            X = np.array([X])

        # loop over all the samples
        pbar = None
        start_time = time.time()
        svals = []
        for i in range(len(X)):
            mask = np.ones(len(X[i]), dtype=np.bool) * (self.perturbation
                                                        == "remove")
            ordered_inds = self.sort_order_map(attributions[i])

            # compute the fully masked score
            values = np.zeros(len(X[i]) + 1)
            masked = self.masker(X[i], mask)
            values[0] = self.score_function(None if y is None else y[i],
                                            self.f(masked).mean(0))

            # loop over all the features
            curr_val = None
            for j in range(len(X[i])):
                oind = ordered_inds[j]

                # keep masking our inputs until there are none more to mask
                if not ((self.sort_order == "positive" and attributions[i][oind] <= 0) or \
                        (self.sort_order == "negative" and attributions[i][oind] >= 0)):
                    mask[oind] = self.perturbation == "keep"
                    masked = self.masker(X[i], mask)
                    curr_val = self.score_function(None if y is None else y[i],
                                                   self.f(masked).mean(0))
                values[j + 1] = curr_val
            svals.append(values)

            if pbar is None and time.time() - start_time > 5:
                pbar = tqdm(total=len(X), disable=silent, leave=False)
                pbar.update(i + 1)
            if pbar is not None:
                pbar.update(1)
        if pbar is not None:
            pbar.close()

        self.score_values.append(np.array(svals))

        if self.sort_order == "negative":
            curve_sign = -1
        else:
            curve_sign = 1

        self.score_aucs.append(
            np.array([
                sklearn.metrics.auc(np.linspace(0, 1, len(svals[i])),
                                    curve_sign * (svals[i] - svals[i][0]))
                for i in range(len(svals))
            ]))

        self.labels.append(label)

        xs = np.linspace(0, 1, 100)
        curves = np.zeros((len(self.score_values[-1]), len(xs)))
        for j in range(len(self.score_values[-1])):
            xp = np.linspace(0, 1, len(self.score_values[-1][j]))
            yp = self.score_values[-1][j]
            curves[j, :] = np.interp(xs, xp, yp)
        ys = curves.mean(0)

        return xs, ys
Ejemplo n.º 3
0
def is_tree_model(model):
    if type(model) is dict and "trees" in model or \
            safe_isinstance(model,
                            ["sklearn.ensemble.RandomForestRegressor", "sklearn.ensemble.forest.RandomForestRegressor"]) \
            or safe_isinstance(model, ["sklearn.ensemble.IsolationForest", "sklearn.ensemble.iforest.IsolationForest"]) \
            or safe_isinstance(model, "skopt.learning.forest.RandomForestRegressor") \
            or safe_isinstance(model,
                               ["sklearn.ensemble.ExtraTreesRegressor", "sklearn.ensemble.forest.ExtraTreesRegressor"]) \
            or safe_isinstance(model, "skopt.learning.forest.ExtraTreesRegressor") \
            or safe_isinstance(model, ["sklearn.tree.DecisionTreeRegressor", "sklearn.tree.tree.DecisionTreeRegressor"]) \
            or safe_isinstance(model,
                               ["sklearn.tree.DecisionTreeClassifier", "sklearn.tree.tree.DecisionTreeClassifier"]) \
            or safe_isinstance(model, ["sklearn.ensemble.RandomForestClassifier",
                                       "sklearn.ensemble.forest.RandomForestClassifier"]) \
            or safe_isinstance(model, ["sklearn.ensemble.ExtraTreesClassifier",
                                       "sklearn.ensemble.forest.ExtraTreesClassifier"]) \
            or safe_isinstance(model, ["sklearn.ensemble.GradientBoostingRegressor",
                                       "sklearn.ensemble.gradient_boosting.GradientBoostingRegressor"]) \
            or safe_isinstance(model, ["sklearn.ensemble.GradientBoostingClassifier",
                                       "sklearn.ensemble.gradient_boosting.GradientBoostingClassifier"]) \
            or safe_isinstance(model, "xgboost.core.Booster") \
            or safe_isinstance(model, "xgboost.sklearn.XGBClassifier") \
            or safe_isinstance(model, "xgboost.sklearn.XGBRegressor") \
            or safe_isinstance(model, "xgboost.sklearn.XGBRanker") \
            or safe_isinstance(model, "lightgbm.basic.Booster") \
            or safe_isinstance(model, "lightgbm.sklearn.LGBMRegressor") \
            or safe_isinstance(model, "lightgbm.sklearn.LGBMRanker") \
            or safe_isinstance(model, "lightgbm.sklearn.LGBMClassifier") \
            or safe_isinstance(model, "catboost.core.CatBoostRegressor") \
            or safe_isinstance(model, "catboost.core.CatBoostClassifier") \
            or safe_isinstance(model, "catboost.core.CatBoost") \
            or safe_isinstance(model, "imblearn.ensemble._forest.BalancedRandomForestClassifier"):
        return True
    else:
        return False
Ejemplo n.º 4
0
def waterfall_plot(expected_value,
                   shap_values,
                   features=None,
                   feature_names=None,
                   max_display=10,
                   show=True):
    """ Plots an explantion of a single prediction as a waterfall plot.

    The SHAP value of a feature represents the impact of the evidence provided by that feature on the model's
    output. The waterfall plot is designed to visually display how the SHAP values (evidence) of each feature
    move the model output from our prior expectation under the background data distribution, to the final model
    prediction given the evidence of all the features. Features are sorted by the magnitude of their SHAP values
    with the smallest magnitude features grouped together at the bottom of the plot when the number of features
    in the models exceeds the max_display parameter.
    
    Parameters
    ----------
    expected_value : float
        This is the reference value that the feature contributions start from. For SHAP values it should
        be the value of explainer.expected_value.

    shap_values : numpy.array
        Matrix of SHAP values (# features) or (# samples x # features). If this is a 1D array then a single
        force plot will be drawn, if it is a 2D array then a stacked force plot will be drawn.

    features : numpy.array
        Matrix of feature values (# features) or (# samples x # features). This provides the values of all the
        features, and should be the same shape as the shap_values argument.

    feature_names : list
        List of feature names (# features).

    max_display : str
        The maximum number of features to plot.

    show : bool
        Whether matplotlib.pyplot.show() is called before returning. Setting this to False allows the plot
        to be customized further after it has been created.
    """

    # make sure we only have a single output to explain
    if (type(expected_value) == np.ndarray or type(expected_value) == list):
        raise Exception("waterfall_plot requires a scalar expected_value of the model output as the first " \
                        "parameter, but you have passed an array as the first parameter! " \
                        "Try shap.waterfall_plot(explainer.expected_value, shap_values[0], X[0]) or " \
                        "for multi-output models try " \
                        "shap.waterfall_plot(explainer.expected_value[0], shap_values[0][0], X[0]).")

    # make sure we only have a single explanation to plot
    if len(shap_values.shape) == 2:
        raise Exception(
            "The waterfall_plot can currently only plot a single explanation but a matrix of explanations was passed!"
        )

    # unwrap pandas series
    if safe_isinstance(features, "pandas.core.series.Series"):
        if feature_names is None:
            feature_names = list(features.index)
        features = features.values

    # fallback feature names
    if feature_names is None:
        feature_names = np.array(
            [labels['FEATURE'] % str(i) for i in range(len(shap_values))])

    # init variables we use for tracking the plot locations
    num_features = min(max_display, len(shap_values))
    row_height = 0.5
    rng = range(num_features - 1, -1, -1)
    order = np.argsort(-np.abs(shap_values))
    pos_lefts = []
    pos_inds = []
    pos_widths = []
    neg_lefts = []
    neg_inds = []
    neg_widths = []
    loc = expected_value + shap_values.sum()
    yticklabels = ["" for i in range(num_features + 1)]

    # size the plot based on how many features we are plotting
    pl.gcf().set_size_inches(8, num_features * row_height + 1.5)

    # see how many individual (vs. grouped at the end) features we are plotting
    if num_features == len(shap_values):
        num_individual = num_features
    else:
        num_individual = num_features - 1

    # compute the locations of the individual features and plot the dashed connecting lines
    for i in range(num_individual):
        sval = shap_values[order[i]]
        loc -= sval
        if sval >= 0:
            pos_inds.append(rng[i])
            pos_widths.append(sval)
            pos_lefts.append(loc)
        else:
            neg_inds.append(rng[i])
            neg_widths.append(sval)
            neg_lefts.append(loc)
        if num_individual != num_features or i + 4 < num_individual:
            pl.plot([loc, loc], [rng[i] - 1 - 0.4, rng[i] + 0.4],
                    color="#bbbbbb",
                    linestyle="--",
                    linewidth=0.5,
                    zorder=-1)
        if features is None:
            yticklabels[rng[i]] = feature_names[order[i]]
        else:
            yticklabels[
                rng[i]] = feature_names[order[i]] + " = " + format_value(
                    features[order[i]], "%0.03f")

    # add a last grouped feature to represent the impact of all the features we didn't show
    if num_features < len(shap_values):
        yticklabels[0] = "%d other features" % (len(shap_values) -
                                                num_features + 1)
        remaining_impact = expected_value - loc
        if remaining_impact < 0:
            pos_inds.append(0)
            pos_widths.append(-remaining_impact)
            pos_lefts.append(loc + remaining_impact)
            c = colors.red_rgb
        else:
            neg_inds.append(0)
            neg_widths.append(-remaining_impact)
            neg_lefts.append(loc + remaining_impact)
            c = colors.blue_rgb

    # draw invisible bars just for sizing the axes
    pl.barh(pos_inds,
            np.array(pos_widths) * 1.001,
            left=pos_lefts,
            color=colors.red_rgb,
            alpha=0)
    pl.barh(neg_inds,
            np.array(neg_widths) * 1.001,
            left=neg_lefts,
            color=colors.blue_rgb,
            alpha=0)

    # define variable we need for plotting the arrows
    head_length = 0.08
    bar_width = 0.8
    xlen = pl.xlim()[1] - pl.xlim()[0]
    fig = pl.gcf()
    ax = pl.gca()
    xticks = ax.get_xticks()
    bbox = ax.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
    width, height = bbox.width, bbox.height
    bbox_to_xscale = xlen / width
    hl_scaled = bbox_to_xscale * head_length
    renderer = fig.canvas.get_renderer()

    # draw the positive arrows
    for i in range(len(pos_inds)):
        dist = pos_widths[i]
        arrow_obj = pl.arrow(pos_lefts[i],
                             pos_inds[i],
                             max(dist - hl_scaled, 0.000001),
                             0,
                             head_length=min(dist, hl_scaled),
                             color=colors.red_rgb,
                             width=bar_width,
                             head_width=bar_width)

        txt_obj = pl.text(pos_lefts[i] + 0.5 * dist,
                          pos_inds[i],
                          format_value(pos_widths[i], '%+0.02f'),
                          horizontalalignment='center',
                          verticalalignment='center',
                          color="white",
                          fontsize=12)
        text_bbox = txt_obj.get_window_extent(renderer=renderer)
        arrow_bbox = arrow_obj.get_window_extent(renderer=renderer)
        if text_bbox.width > arrow_bbox.width:
            txt_obj.remove()

    # draw the negative arrows
    for i in range(len(neg_inds)):
        dist = neg_widths[i]

        arrow_obj = pl.arrow(neg_lefts[i],
                             neg_inds[i],
                             -max(-dist - hl_scaled, 0.000001),
                             0,
                             head_length=min(-dist, hl_scaled),
                             color=colors.blue_rgb,
                             width=bar_width,
                             head_width=bar_width)

        txt_obj = pl.text(neg_lefts[i] + 0.5 * dist,
                          neg_inds[i],
                          format_value(neg_widths[i], '%+0.02f'),
                          horizontalalignment='center',
                          verticalalignment='center',
                          color="white",
                          fontsize=12)
        text_bbox = txt_obj.get_window_extent(renderer=renderer)
        arrow_bbox = arrow_obj.get_window_extent(renderer=renderer)
        if text_bbox.width > arrow_bbox.width:
            txt_obj.remove()

    pl.yticks(range(num_features), yticklabels, fontsize=13)

    # put horizontal lines for each feature row
    for i in range(num_features):
        pl.axhline(i, color="#cccccc", lw=0.5, dashes=(1, 5), zorder=-1)

    # mark the prior expected value and the model prediction
    pl.axvline(expected_value,
               0,
               1 / num_features,
               color="#bbbbbb",
               linestyle="--",
               linewidth=0.5,
               zorder=-1)
    fx = expected_value + shap_values.sum()
    pl.axvline(fx,
               0,
               1,
               color="#bbbbbb",
               linestyle="--",
               linewidth=0.5,
               zorder=-1)

    # clean up the main axis
    pl.gca().xaxis.set_ticks_position('bottom')
    pl.gca().yaxis.set_ticks_position('none')
    pl.gca().spines['right'].set_visible(False)
    pl.gca().spines['top'].set_visible(False)
    pl.gca().spines['left'].set_visible(False)
    pl.xlabel("Model output", fontsize=12)

    # remove the x tick mark that is closest to E[f(X)]
    xmin, xmax = ax.get_xlim()
    xticks = ax.get_xticks()
    xticks = list(xticks)
    min_ind = 0
    min_diff = 1e10
    for i in range(len(xticks)):
        v = abs(xticks[i] - expected_value)
        if v < min_diff:
            min_diff = v
            min_ind = i
    xticks.pop(min_ind)
    ax.set_xticks(xticks)
    ax.tick_params(labelsize=13)
    ax.set_xlim(xmin, xmax)

    # draw the E[f(X)] tick mark
    ax2 = ax.twiny()
    ax2.set_xlim(xmin, xmax)
    # if min_diff < abs(fx - expected_value):
    #     ax2.set_xticks([fx, expected_value])
    #     ax2.set_xticklabels([format_value(fx, "%0.03f"), "$E[f(X)]$"], fontsize=12)
    # else:
    ax2.set_xticks([expected_value])
    ax2.set_xticklabels(["$E[f(X)]$"], fontsize=12)
    ax2.spines['right'].set_visible(False)
    ax2.spines['top'].set_visible(False)
    ax2.spines['left'].set_visible(False)

    ax3 = ax2.twiny()
    ax3.set_xlim(xmin, xmax)
    ax3.set_xticks([expected_value + shap_values.sum()] * 2)

    # draw the f(x) tick mark
    ax3.set_xticklabels(["$f(x)$", "$ = " + format_value(fx, "%0.03f") + "$"],
                        fontsize=12,
                        ha="left")
    tick_labels = ax3.xaxis.get_majorticklabels()
    tick_labels[0].set_transform(tick_labels[0].get_transform() +
                                 matplotlib.transforms.ScaledTranslation(
                                     -10 / 72., 0, fig.dpi_scale_trans))
    tick_labels[1].set_transform(tick_labels[1].get_transform() +
                                 matplotlib.transforms.ScaledTranslation(
                                     12 / 72., 0, fig.dpi_scale_trans))
    tick_labels[1].set_color("#999999")
    ax3.spines['right'].set_visible(False)
    ax3.spines['top'].set_visible(False)
    ax3.spines['left'].set_visible(False)

    if show:
        pl.show()