fc = np.zeros(rms.size) fc[cc] = (rms - rms_o)[cc] b = B #++++++++++++++++++++++++++++++++++++++++++++++++ figura fig = figure(1, figsize=(6, 3.)) ax = fig.add_subplot(111) #ax1 = ax.twinx() #--- plot der #ax1.plot(t[1:-1], fc[1:-1], c='gray') # rmsB #ax1.plot(t[1:-1], b[1:-1], c='gray') # B field tau, bp = 2.36, 0.0 q, off, bo = -9.373, 0.89, 16.15 ncr = ff.nCR2([t, fc, b], tau, q, off, bp, bo) sqr = np.nanmean(np.power(crs - ncr, 2.0)) #--- plot izq ax.plot(org_t, org_crs, '-o', c='gray', ms=3) ax.plot(t, ncr, '-', c='red', lw=5, alpha=0.8, label='$\\tau=%3.3g$' % tau) #++++ region sheath (naranja) trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) rect1 = patches.Rectangle((0., 0.), width=1, height=1, transform=trans, color='orange', alpha=0.3) ax.add_patch(rect1)
fc = np.zeros(rms.size) fc[cc] = (rms - rms_o)[cc] #tau = 3.0 #ncr = nCR2([t, fc], tau, q) #++++++++++++++++++++++++++++++++++++++++++++++++ figura fig = figure(1, figsize=(6, 4)) ax0 = fig.add_subplot(111) ax1 = ax0.twinx() #--- plot der #ax1.plot(t[1:-1], fc[1:-1], c='gray') for tau in (4.0, 14.2, 7.14): #, 4.0): #ncr = ff.func_nCR([t, fc], 0.0, tau, q) ncr = ff.nCR2([t, fc], tau, q) sqr = np.nanmean(np.power(crs - ncr, 2.0)) print sqr #--- plot izq ax0.plot(t, ncr, lw=3, label='$\\tau=%3.3g$' % tau) ax0.plot(t, crs, '-o', c='k', ms=3) ax0.axhline(y=0.0, c='g') ax0.axvline(x=0, ls='--', c='gray', lw=3) ax0.axvline(x=1, ls='--', c='gray', lw=3) ax0.axvline(x=4, ls='--', c='gray', lw=3) ax0.legend() ax0.grid() ax0.set_ylabel('n_CR [%]') ax0.set_xlim(-2, +7) ax0.set_ylim(-4, +2.)
fo = h5(fname_out, 'w') for pname in fit.par.keys(): fo[pname] = fit.par[pname] #--- guardamos la grilla de exploracion fo['grids/tau'] = [tau.min, tau.max, tau.delta(), tau.n] fo['grids/q'] = [q.min, q.max, q.delta(), q.n] fo['grids/off'] = [off.min, off.max, off.delta(), off.n] fo['grids/bp'] = [bp.min, bp.max, bp.delta(), bp.n] fo['grids/bo'] = [bo.min, bo.max, bo.delta(), bo.n] #------------------ #++++++++++++++++++++++++++++++++++++++++++++++++ figura fig = figure(1, figsize=(6, 3.)) ax = fig.add_subplot(111) ncr = ff.nCR2([t, fc, b], **fit.par) sqr = np.nanmean(np.square(crs - ncr)) #--- plot izq ax.plot(org_t, org_crs, '-o', c='gray', ms=3) ax.plot(t, ncr, '-', c='red', lw=5, alpha=0.8, label='$\\{tau:3.3g}$'.format(**fit.par)) #++++ region sheath (naranja) trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) rect1 = patches.Rectangle((0., 0.),
slice(off.min, off.max, off.delta()), slice(bp.min, bp.max, bp.delta()), slice(bo.min, bo.max, bo.delta()), ) #--- start && run the fitter data = np.array([t, fc, crs, b], dtype=np.float32) sems = np.array([tau_, q_, off_, bp_, bo_], dtype=np.int) fit = cf.fit_forbush(data, sems) par = fit.make_fit_brute(rranges) print par # resultado #++++++++++++++++++++++++++++++++++++++++++++++++ figura fig = figure(1, figsize=(6, 3.)) ax = fig.add_subplot(111) ncr = ff.nCR2([t, fc, b], **par) sqr = np.nanmean(np.square(crs - ncr)) #--- plot izq ax.plot(org_t, org_crs, '-o', c='gray', ms=3) ax.plot(t, ncr, '-', c='red', lw=5, alpha=0.8, label='$\\{tau:3.3g}$'.format(**par)) #++++ region sheath (naranja) trans = transforms.blended_transform_factory(ax.transData, ax.transAxes) rect1 = patches.Rectangle((0., 0.),