Ejemplo n.º 1
0
def get_amp_data(data_path):
    p = re.compile(r'amp(\d+).csv')

    cond = pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'cond.txt'),
                       sep=",",
                       header=None)
    sample_rate = cond.at[0, 1]
    mV_per_Pa = cond.at[2, 1]
    dt = 1.0 / sample_rate

    results_sound = np.zeros(256)
    c = 0
    for filepath in glob.glob(os.path.join(data_path, '*')):
        m = p.match(filepath.split(os.path.sep)[-1])
        if m is None:
            continue

        df = pd.read_csv(filepath_or_buffer=filepath, sep=",")
        sound = df['  A Max [mV]']

        duty = int(m.group(1))
        results_sound[duty] = get_40kHz_amp(sound, dt) / mV_per_Pa / np.sqrt(2)
        c += 1
        print_progress(c, 256)

    print()
    print(f'max [Pa]: {results_sound.max()}')

    return normalized(results_sound)
Ejemplo n.º 2
0
def get_input_data(data_path):
    p = re.compile(r'input(\d+).csv')

    cond = pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'cond.txt'),
                       sep=",",
                       header=None)
    sample_rate = cond.at[0, 1]
    dt = 1.0 / sample_rate

    results_input = np.zeros(256)
    c = 0
    for filepath in glob.glob(os.path.join(data_path, '*')):
        m = p.match(filepath.split(os.path.sep)[-1])
        if m is None:
            continue

        df = pd.read_csv(filepath_or_buffer=filepath, sep=",")
        input_sig = df['  A Max [mV]']

        duty = int(m.group(1))
        results_input[duty] = get_40kHz_amp(input_sig, dt)
        c += 1
        print_progress(c, 256)

    print()

    return normalized(results_input)
Ejemplo n.º 3
0
def get_amp_data(data_path, total):
    cond = pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'cond.txt'),
                       sep=",",
                       header=None)
    sample_rate = cond.at[0, 1]
    mV_per_Pa = cond.at[2, 1]
    dt = 1.0 / sample_rate

    p = re.compile(
        r'x([+-]?\d+\.?\d+?)y([+-]?\d+\.?\d+?)z([+-]?\d+\.?\d+?).csv')

    results = pd.DataFrame(columns=['amp'])
    c = 0
    for dev_dir in glob.glob(os.path.join(data_path, '*')):
        for tr_dir in glob.glob(os.path.join(dev_dir, '*')):
            for filepath in glob.glob(os.path.join(tr_dir, '*')):
                m = p.match(filepath.split(os.path.sep)[-1])
                if m is None:
                    continue

                z = int(float(m.group(3)))
                if z != 200:
                    continue

                df = pd.read_csv(filepath_or_buffer=filepath, sep=",")
                sound = df['  A Max [mV]']
                results.at[c, 'amp'] = get_40kHz_amp(
                    sound, dt) / mV_per_Pa / np.sqrt(2)
                c += 1
                print_progress(c, total)
    print()
    results.to_csv('individual_amp.csv')
Ejemplo n.º 4
0
def calc(data_path):
    cond = pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'cond.txt'), sep=",", header=None)
    sample_rate = cond.at[0, 1]
    mV_per_Pa = cond.at[2, 1]
    dt = 1.0 / sample_rate

    p = re.compile(r'x([+-]?\d+\.?\d+?)y([+-]?\d+\.?\d+?)z([+-]?\d+\.?\d+?).csv')

    x_axis = []
    y_axis = []

    total = 0
    for filepath in glob.glob(os.path.join(data_path, '*')):
        m = p.match(filepath.split(os.path.sep)[-1])
        if m is None:
            continue

        x = float(m.group(1))
        y = float(m.group(2))

        x_axis.append(x)
        y_axis.append(y)
        total += 1

    x_axis = sorted(set(x_axis))
    y_axis = sorted(set(y_axis))

    rms = pd.DataFrame(index=y_axis, columns=x_axis)

    c = 0
    for filepath in glob.glob(os.path.join(data_path, '*')):
        m = p.match(filepath.split(os.path.sep)[-1])
        if m is None:
            continue

        x = float(m.group(1))
        y = float(m.group(2))

        df = pd.read_csv(filepath_or_buffer=filepath, sep=",")
        sound = df['  A Max [mV]']

        rms.at[y, x] = get_40kHz_amp(sound, dt) / mV_per_Pa / np.sqrt(2)
        c += 1
        print_progress(c, total)

    print()
    rms.to_csv('xy.csv')
Ejemplo n.º 5
0
def get_phase_data(data_path, total):
    p = re.compile(r'dev(\d+)')
    cond = pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'cond.txt'),
                       sep=",",
                       header=None)
    phases = np.array([])
    print_progress(len(phases), total)
    for dev_dir in glob.glob(os.path.join(data_path, '*')):
        m = p.match(dev_dir.split(os.path.sep)[-1])
        if m is None:
            continue
        phases = np.concatenate(
            [phases, process_phase_data_dev(dev_dir, cond)])
        print_progress(len(phases), total)
    print()

    results = pd.DataFrame(columns=['phase'])
    results['phase'] = phases

    results.to_csv('individual_phase.csv')
Ejemplo n.º 6
0
def get_amp_data(data_path):
    p = re.compile(r'duty(\d+).csv')

    cond = pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'cond.txt'), sep=",", header=None)
    sample_rate = cond.at[0, 1]
    mV_per_Pa = cond.at[2, 1]
    dt = 1.0 / sample_rate

    duties = []
    total = 0
    for filepath in glob.glob(os.path.join(data_path, '*')):
        m = p.match(filepath.split(os.path.sep)[-1])
        if m is None:
            continue

        duty = int(m.group(1))
        duties.append(duty)
        total += 1

    duties = np.array(sorted(duties))
    results_sound = pd.DataFrame(index=duties, columns=['rms'])
    c = 0
    for filepath in glob.glob(os.path.join(data_path, '*')):
        m = p.match(filepath.split(os.path.sep)[-1])
        if m is None:
            continue

        df = pd.read_csv(filepath_or_buffer=filepath, sep=",")
        sound = df['  A Max [mV]']

        duty = int(m.group(1))
        results_sound.at[duty, 'rms'] = get_40kHz_amp(sound, dt) / mV_per_Pa / np.sqrt(2)
        c += 1
        print_progress(c, total)

    print()

    return results_sound
Ejemplo n.º 7
0
def phase(data_path):
    p = re.compile(r'phase(\d+).csv')

    cond = pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'cond.txt'),
                       sep=",",
                       header=None)
    sample_rate = cond.at[0, 1]
    dt = 1.0 / sample_rate
    period = 25e-6

    df = pd.read_csv(filepath_or_buffer=os.path.join(data_path, 'phase0.csv'),
                     sep=",")
    sig_base = df['  A Max [mV]']
    sig_base = sig_base - sig_base.mean()

    results = np.zeros(256)
    c = 0
    for filepath in glob.glob(os.path.join(data_path, '*')):
        m = p.match(filepath.split(os.path.sep)[-1])
        if m is None:
            continue

        df = pd.read_csv(filepath_or_buffer=filepath, sep=",")
        sig = df['  A Max [mV]']
        sig = sig - sig.mean()

        corr = np.correlate(sig, sig_base, "full")
        delay = corr.argmax() - (len(sig) - 1)
        phases_delay = delay * dt / period * 2 * math.pi
        if phases_delay < 0:
            phases_delay += 2 * math.pi
        phases_delay %= 2 * math.pi

        phase_value = int(m.group(1))
        results[phase_value] = phases_delay
        c += 1
        print_progress(c, 256)
    print()

    x = np.linspace(0, 255, 256)
    fig = plt.figure(figsize=(6, 6), dpi=DPI)
    ax = fig.add_subplot(111)
    ax.plot(x,
            results,
            marker='.',
            zorder=2,
            markersize=4,
            linestyle='None',
            label='measured')
    ax.plot(x,
            x / 256.0 * 2 * math.pi,
            zorder=1,
            linewidth=1,
            label='theoretical')
    plt.ylabel('Phase [rad]', fontname='Arial', fontsize=18)
    plt.xlabel(r'$S$ [-]', fontname='Arial', fontsize=18)
    plt.yticks([0, math.pi, 2 * math.pi], [r'$0$', r'$\pi$', r'$2\pi$'],
               fontname='Arial',
               fontsize=16)
    plt.xticks([0, 127, 255], ['0', '127', '255'],
               fontname='Arial',
               fontsize=16)
    plt.legend(bbox_to_anchor=(1, 0),
               loc='lower right',
               borderaxespad=1,
               fontsize=16,
               frameon=False,
               markerscale=2)

    # delete right up frame
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.get_xaxis().tick_bottom()
    ax.get_yaxis().tick_left()

    ax.set_xlim(0, 255)
    ax.set_ylim(0, 2 * math.pi)

    plt.tight_layout()
    plt.savefig(os.path.join('plot', 'measured_phase' + ext),
                bbox_inches='tight',
                pad_inches=0)
Ejemplo n.º 8
0
def calc():
    NUM_TRANS_X = 18 * 3
    NUM_TRANS_Y = 14 * 3
    TRANS_SIZE = 10.16
    FREQUENCY = 40e3
    TEMPERATURE = 287.6843037730883
    Z_DIR = np.array([0., 0., 1.])  # sound source direction
    R = 8.5
    Z = 500.0

    array_center = np.array([
        TRANS_SIZE * (NUM_TRANS_X - 1) / 2, TRANS_SIZE * (NUM_TRANS_Y - 1) / 2,
        Z
    ])

    # Observe properties, units are mm
    X_RANGE = (array_center[0], array_center[0] + 2 * R)

    # Initialize calculator
    calculator = CpuCalculator()

    # initialize position, direction, amplitude and phase of each sound source
    system = UniformSystem(TEMPERATURE)
    for y in range(NUM_TRANS_Y):
        for x in range(NUM_TRANS_X):
            pos = np.array([TRANS_SIZE * x, TRANS_SIZE * y, 0.])
            source = T4010A1(pos, Z_DIR, 1.0, 0.0, FREQUENCY)
            system.add_wave_source(source)

    # Generate observe area, units are mm
    observe_area = GridAreaBuilder()\
        .x_range(X_RANGE)\
        .y_at(array_center[1])\
        .z_at(Z)\
        .resolution(RESOLUTION)\
        .generate()
    field = PressureFieldBuffer()

    foci_x = np.array([x * RESOLUTION for x in range(85 + 1)])
    phase_div = range(2, 256)
    df = pd.DataFrame(columns=['x'].extend(phase_div))
    df['x'] = foci_x
    c = 0
    total = len(foci_x) * len(phase_div)
    for i in phase_div:
        N = 85 + 1
        results = np.zeros(N)
        d = 0
        for focus_x in foci_x:
            focal_pos = array_center + np.array([focus_x, 0, 0])
            Optimizer.focus(system, focal_pos)
            to_digital(system, i)

            result = calculator.calculate(system, observe_area, field)
            max_index = np.argmax(result)
            results[d] = max_index
            d += 1
            c += 1
            print_progress(c, total)

        df[i] = results

    df.to_csv('pos_vs_argmax.csv')