Ejemplo n.º 1
0
def check_split_tolerance(total_item_cnt, chosen_item_cnt, desired_perc,
                          perc_tolerance, where):
    actual_perc = sf.percent_of_part(chosen_item_cnt, total_item_cnt)
    perc_deviation = abs(actual_perc - desired_perc)
    if perc_deviation > perc_tolerance:
        print('Percentage deviation of {} for {}'.format(
            perc_deviation, where))
Ejemplo n.º 2
0
def calc_centrality_fraction(attacked_nodes, full_centrality_name, file_loader, centrality_file_path):
    if full_centrality_name == 'degree_centrality':
        raise RuntimeError('Call calc_degree_centr_fraction instead')
    elif full_centrality_name == 'degree_centrality':  # redundant, already saved!
        raise RuntimeError('Call calc_indegree_centr_fraction instead')
    centrality_info = file_loader.fetch_json(centrality_file_path)
    centr_by_node = centrality_info[full_centrality_name]
    nodes_degree = 0.0
    for node in attacked_nodes:
        nodes_degree += centr_by_node[node]
    tot_degree = centrality_info['total_' + full_centrality_name]
    fraction = sf.percent_of_part(nodes_degree, tot_degree)
    return fraction
Ejemplo n.º 3
0
def calc_centrality_fraction(attacked_nodes, full_centrality_name, file_loader,
                             centrality_file_path):
    if full_centrality_name == 'degree_centrality':
        raise RuntimeError('Call calc_degree_centr_fraction instead')
    elif full_centrality_name == 'degree_centrality':  # redundant, already saved!
        raise RuntimeError('Call calc_indegree_centr_fraction instead')
    centrality_info = file_loader.fetch_json(centrality_file_path)
    centr_by_node = centrality_info[full_centrality_name]
    nodes_degree = 0.0
    for node in attacked_nodes:
        nodes_degree += centr_by_node[node]
    tot_degree = centrality_info['total_' + full_centrality_name]
    fraction = sf.percent_of_part(nodes_degree, tot_degree)
    return fraction
Ejemplo n.º 4
0
def calc_stats_on_centrality(attacked_nodes, full_centrality_name,
                             short_centrality_name, file_loader,
                             centrality_file_path):
    # load file with precalculated centrality metrics
    centrality_info = file_loader.fetch_json(centrality_file_path)
    centr_by_node = centrality_info[full_centrality_name]
    # TODO: can the fallback be applied to all cases?
    try:
        node_cnt = centrality_info['node_count']
    except KeyError:
        node_cnt = len(centr_by_node)
    centr_sum = 0.0
    for node in attacked_nodes:
        centr_sum += centr_by_node[node]

    # count how many nodes are in each quintile
    quintiles = centrality_info[full_centrality_name + '_quintiles']
    nodes_by_quintile = [0] * 5
    for node in attacked_nodes:
        node_quintile = 0
        for i in range(0, 4):
            if centr_by_node[node] > quintiles[i]:
                node_quintile += 1
            else:
                break
        nodes_by_quintile[node_quintile] += 1

    # calc what percentage of the nodes in the graph are in each quintile
    for i, q_node_cnt in enumerate(nodes_by_quintile):
        nodes_by_quintile[i] = sf.percent_of_part(q_node_cnt, node_cnt)

    # index statistics in a dictionary using shorter names

    centr_stats = {}
    stat_name = short_centrality_name + '_sum'
    centr_stats[stat_name] = centr_sum

    for i, val in enumerate(nodes_by_quintile):
        stat_name = short_centrality_name + '_q_' + str(
            i + 1)  # q_1 is the first quantile
        centr_stats[stat_name] = val

    return centr_stats
Ejemplo n.º 5
0
def calc_stats_on_centrality(attacked_nodes, full_centrality_name, short_centrality_name, file_loader,
                             centrality_file_path):
    # load file with precalculated centrality metrics
    centrality_info = file_loader.fetch_json(centrality_file_path)
    centr_by_node = centrality_info[full_centrality_name]
    # TODO: can the fallback be applied to all cases?
    try:
        node_cnt = centrality_info['node_count']
    except KeyError:
        node_cnt = len(centr_by_node)
    centr_sum = 0.0
    for node in attacked_nodes:
        centr_sum += centr_by_node[node]

    # count how many nodes are in each quintile
    quintiles = centrality_info[full_centrality_name + '_quintiles']
    nodes_by_quintile = [0] * 5
    for node in attacked_nodes:
        node_quintile = 0
        for i in range(0, 4):
            if centr_by_node[node] > quintiles[i]:
                node_quintile += 1
            else:
                break
        nodes_by_quintile[node_quintile] += 1

    # calc what percentage of the nodes in the graph are in each quintile
    for i, q_node_cnt in enumerate(nodes_by_quintile):
        nodes_by_quintile[i] = sf.percent_of_part(q_node_cnt, node_cnt)

    # index statistics in a dictionary using shorter names

    centr_stats = {}
    stat_name = short_centrality_name + '_sum'
    centr_stats[stat_name] = centr_sum

    for i, val in enumerate(nodes_by_quintile):
        stat_name = short_centrality_name + '_q_' + str(i + 1)  # q_1 is the first quantile
        centr_stats[stat_name] = val

    return centr_stats
Ejemplo n.º 6
0
def calc_atkd_percent_by_role(G, attacked_nodes, result_key_by_role):
    atkd_perc_by_role = {}

    node_cnt_by_role = {}
    node_roles = result_key_by_role.keys()
    for node_role in node_roles:
        node_cnt_by_role[node_role] = 0
    atkd_node_cnt_by_role = node_cnt_by_role.copy()

    for node in G.nodes():
        node_role = G.node[node]['role']
        node_cnt_by_role[node_role] += 1

    for node in attacked_nodes:
        node_role = G.node[node]['role']
        atkd_node_cnt_by_role[node_role] += 1

    for node_role in node_roles:
        result_name = result_key_by_role[node_role]
        atkd_perc_by_role[result_name] = sf.percent_of_part(
            atkd_node_cnt_by_role[node_role], node_cnt_by_role[node_role])

    return atkd_perc_by_role
Ejemplo n.º 7
0
def run(conf_fpath, floader):
    global logger
    logger = logging.getLogger(__name__)
    logger.info('conf_fpath = {}'.format(conf_fpath))

    conf_fpath = os.path.normpath(conf_fpath)
    if os.path.isabs(conf_fpath) is False:
        conf_fpath = os.path.abspath(conf_fpath)
    if not os.path.isfile(conf_fpath):
        raise ValueError('Invalid value for parameter "conf_fpath", no such file.\nPath: ' + conf_fpath)
    config = ConfigParser()
    config.read(conf_fpath)

    global time
    time = 0

    # read graphml files and instantiate network graphs

    seed = config.get('run_opts', 'seed')

    if config.has_option('run_opts', 'save_death_cause'):
        save_death_cause = config.getboolean('run_opts', 'save_death_cause')
    else:
        save_death_cause = False

    # TODO: check if directory/files exist
    netw_dir = os.path.normpath(config.get('paths', 'netw_dir'))
    if os.path.isabs(netw_dir) is False:
        netw_dir = os.path.abspath(netw_dir)
    netw_a_fname = config.get('paths', 'netw_a_fname')
    netw_a_fpath_in = os.path.join(netw_dir, netw_a_fname)
    # A = nx.read_graphml(netw_a_fpath_in, node_type=str)
    A = floader.fetch_graphml(netw_a_fpath_in, str)

    netw_b_fname = config.get('paths', 'netw_b_fname')
    netw_b_fpath_in = os.path.join(netw_dir, netw_b_fname)
    # B = nx.read_graphml(netw_b_fpath_in, node_type=str)
    B = floader.fetch_graphml(netw_b_fpath_in, str)

    netw_inter_fname = config.get('paths', 'netw_inter_fname')
    netw_inter_fpath_in = os.path.join(netw_dir, netw_inter_fname)
    # I = nx.read_graphml(netw_inter_fpath_in, node_type=str)
    I = floader.fetch_graphml(netw_inter_fpath_in, str)

    # if the union graph is needed for this simulation, it's better to have it created in advance and just load it
    if config.has_option('paths', 'netw_union_fname'):
        netw_union_fname = config.get('paths', 'netw_union_fname')
        netw_union_fpath_in = os.path.join(netw_dir, netw_union_fname)
        # ab_union = nx.read_graphml(netw_union_fpath_in, node_type=str)
        ab_union = floader.fetch_graphml(netw_union_fpath_in, str)
    else:
        ab_union = None

    # read run options

    attacked_netw = config.get('run_opts', 'attacked_netw')
    attack_tactic = config.get('run_opts', 'attack_tactic')
    if attack_tactic not in ['targeted', 'ith_node']:
        attack_cnt = config.getint('run_opts', 'attacks')
    intra_support_type = config.get('run_opts', 'intra_support_type')
    if intra_support_type == 'cluster_size':
        min_cluster_size = config.getint('run_opts', 'min_cluster_size')
    inter_support_type = config.get('run_opts', 'inter_support_type')

    if attacked_netw == A.graph['name']:
        attacked_G = A
    elif attacked_netw == B.graph['name']:
        attacked_G = B
    elif attacked_netw.lower() == 'both':
        if ab_union is None:
            raise ValueError('A union graph is needed, specify "netw_union_fname" and make sure the file exists')
        attacked_G = ab_union
    else:
        raise ValueError('Invalid value for parameter "attacked_netw": ' + attacked_netw)

    attacks_for_A_only = ['most_inter_used_distr_subs', 'most_intra_used_distr_subs', 'most_intra_used_transm_subs',
                          'most_intra_used_generators']
    if attack_tactic in attacks_for_A_only and attacked_netw != A.graph['name']:
        raise ValueError('Attack {} can only be used on the power network A'.format(attack_tactic))

    usage_attacks = ['most_inter_used_distr_subs', 'most_intra_used_distr_subs', 'most_intra_used_transm_subs',
                     'most_intra_used_generators', 'most_inter_used_relays', 'most_intra_used_relays']

    centrality_attacks = ['betweenness_centrality_rank', 'closeness_centrality_rank', 'indegree_centrality_rank',
                          'katz_centrality_rank']

    if attack_tactic in usage_attacks:
        secondary_sort = config.get('run_opts', 'secondary_sort')
        if secondary_sort not in ['random_shuffle', 'sort_by_id']:
            raise ValueError('Invalid value for parameter "secondary_sort": ' + secondary_sort)

    if attack_tactic in centrality_attacks:
        min_rank = config.getint('run_opts', 'min_rank')
        calc_centr_on = config.get('run_opts', 'calc_centrality_on')
        if calc_centr_on.lower() == 'attacked_netw':
            G_for_centr = attacked_G
        elif calc_centr_on.lower() == 'netw_inter':
            # note that calculating centrality on the inter graph is not the same as calculating it on the union graph
            G_for_centr = I
        else:
            raise ValueError('Invalid value for parameter "calc_centr_on": ' + calc_centr_on)

        # load file with precalculated centrality metrics
        centr_fname = 'node_centrality_{}.json'.format(G_for_centr.graph['name'])
        centr_fpath = os.path.join(netw_dir, centr_fname)
        centrality_info = floader.fetch_json(centr_fpath)

    # read output paths

    # run_stats is a file used to save step-by-step details about this run
    results_dir = os.path.normpath(config.get('paths', 'results_dir'))
    if os.path.isabs(results_dir) is False:
        results_dir = os.path.abspath(results_dir)
    run_stats_fname = config.get('paths', 'run_stats_fname')
    run_stats_fpath = os.path.join(results_dir, run_stats_fname)

    # end_stats is a file used to save a single line (row) of statistics at the end of the simulation
    end_stats_fpath = os.path.normpath(config.get('paths', 'end_stats_fpath'))
    if os.path.isabs(end_stats_fpath) is False:
        end_stats_fpath = os.path.abspath(end_stats_fpath)

    # ml_stats is similar to end_stats as it is used to write a line at the end of the simulation,
    # but it gathers statistics used for machine learning
    ml_stats_fpath = ''
    if config.has_option('paths', 'ml_stats_fpath'):
        ml_stats_fpath = os.path.normpath(config.get('paths', 'ml_stats_fpath'))
        if os.path.isabs(ml_stats_fpath) is False:
            ml_stats_fpath = os.path.abspath(ml_stats_fpath)

    if config.has_option('run_opts', 'save_attacked_roles'):
        save_attacked_roles = config.getboolean('run_opts', 'save_attacked_roles')
    else:
        save_attacked_roles = False

    # ensure output directories exist and are empty
    sf.ensure_dir_exists(results_dir)
    sf.ensure_dir_exists(os.path.dirname(end_stats_fpath))

    # read information used to identify this simulation run
    sim_group = config.get('misc', 'sim_group')
    instance = config.get('misc', 'instance')

    # stability check
    unstable_nodes = set()
    if inter_support_type == 'node_interlink':
        unstable_nodes.update(find_nodes_without_inter_links(A, I))
    # elif inter_support_type == 'cluster_interlink':
    #     unstable_nodes.update(find_nodes_in_unsupported_clusters(A, I))
    elif inter_support_type == 'realistic':
        unstable_nodes.update(find_uncontrolled_pow_nodes(A, B, I))
    else:
        raise ValueError('Invalid value for parameter "inter_support_type": ' + inter_support_type)

    if intra_support_type == 'giant_component':
        unstable_nodes.update(find_nodes_not_in_giant_component(A))
    elif intra_support_type == 'cluster_size':
        unstable_nodes.update(find_nodes_in_smaller_clusters(A, min_cluster_size))
    elif intra_support_type == 'realistic':
        unstable_nodes.update(find_unpowered_substations(A))
    else:
        raise ValueError('Invalid value for parameter "intra_support_type": ' + intra_support_type)

    if inter_support_type == 'node_interlink':
        unstable_nodes.update(find_nodes_without_inter_links(B, I))
    # elif inter_support_type == 'cluster_interlink':
    #     unstable_nodes.update(find_nodes_in_unsupported_clusters(B, I))
    elif inter_support_type == 'realistic':
        unstable_nodes.update(find_nodes_without_inter_links(B, I))

    if intra_support_type == 'giant_component':
        unstable_nodes.update(find_nodes_not_in_giant_component(B))
    elif intra_support_type == 'cluster_size':
        unstable_nodes.update(find_nodes_in_smaller_clusters(B, min_cluster_size))
    # elif intra_support_type == 'realistic':
    #     unstable_nodes.update(list())

    if len(unstable_nodes) > 0:
        logger.debug('Time {}) {} nodes unstable before the initial attack: {}'.format(
            time, len(unstable_nodes), sorted(unstable_nodes, key=sf.natural_sort_key)))

    total_dead_a = 0
    total_dead_b = 0
    intra_sup_deaths_a = 0
    intra_sup_deaths_b = 0
    inter_sup_deaths_a = 0
    inter_sup_deaths_b = 0

    if save_death_cause is True and inter_support_type == 'realistic':
        no_sup_ccs_deaths = 0
        no_sup_relays_deaths = 0
        no_com_path_deaths = 0

    # execute simulation of failure propagation
    with open(run_stats_fpath, 'wb') as run_stats_file:

        run_stats = csv.DictWriter(run_stats_file, ['time', 'dead'], delimiter='\t', quoting=csv.QUOTE_MINIMAL)
        run_stats.writeheader()
        time += 1

        # perform initial attack

        if attack_tactic == 'random':
            attacked_nodes = choose_random_nodes(attacked_G, attack_cnt, seed)
        elif attack_tactic == 'ith_node':
            node_rank = config.getint('run_opts', 'node_rank')
            attacked_nodes = [pick_ith_node(attacked_G, node_rank)]
        elif attack_tactic == 'targeted':
            target_nodes = config.get('run_opts', 'target_nodes')
            attacked_nodes = [node for node in target_nodes.split()]  # split list on space
        # TODO: use choose_nodes_by_rank, throw away _centrality_rank columns
        elif attack_tactic == 'betweenness_centrality_rank':
            ranked_nodes = centrality_info['betweenness_centrality_rank']
            attacked_nodes = pick_nodes_by_rank(ranked_nodes, attack_cnt, min_rank)
        elif attack_tactic == 'closeness_centrality_rank':
            ranked_nodes = centrality_info['closeness_centrality_rank']
            attacked_nodes = pick_nodes_by_rank(ranked_nodes, attack_cnt, min_rank)
        elif attack_tactic == 'indegree_centrality_rank':
            ranked_nodes = centrality_info['indegree_centrality_rank']
            attacked_nodes = pick_nodes_by_rank(ranked_nodes, attack_cnt, min_rank)
        elif attack_tactic == 'katz_centrality_rank':
            ranked_nodes = centrality_info['katz_centrality_rank']
            attacked_nodes = pick_nodes_by_rank(ranked_nodes, attack_cnt, min_rank)
        elif attack_tactic == 'most_inter_used_distr_subs':
            attacked_nodes = choose_most_inter_used_nodes(attacked_G, I, attack_cnt, 'distribution_substation',
                                                          secondary_sort, seed)
        elif attack_tactic == 'most_intra_used_distr_subs':
            attacked_nodes = choose_most_intra_used_nodes(attacked_G, attack_cnt, 'distribution_substation',
                                                          secondary_sort, seed)
        elif attack_tactic == 'most_intra_used_transm_subs':
            attacked_nodes = choose_most_intra_used_nodes(attacked_G, attack_cnt, 'transmission_substation',
                                                          secondary_sort, seed)
        elif attack_tactic == 'most_intra_used_generators':
            attacked_nodes = choose_most_intra_used_nodes(attacked_G, attack_cnt, 'generator', secondary_sort, seed)
        else:
            raise ValueError('Invalid value for parameter "attack_tactic": ' + attack_tactic)

        attacked_nodes_a = []
        attacked_nodes_b = []
        for node in attacked_nodes:
            node_netw = I.node[node]['network']
            if node_netw == A.graph['name']:
                attacked_nodes_a.append(node)
            elif node_netw == B.graph['name']:
                attacked_nodes_b.append(node)
            else:
                raise RuntimeError('Node {} network "{}" marked in inter graph is neither A nor B'.format(
                    node, node_netw))

        node_cnt_a = A.number_of_nodes()
        edge_cnt_a = A.number_of_edges()
        p_atkd_a = sf.percent_of_part(len(attacked_nodes_a), node_cnt_a)

        node_cnt_b = B.number_of_nodes()
        edge_cnt_b = B.number_of_edges()
        p_atkd_b = sf.percent_of_part(len(attacked_nodes_b), node_cnt_b)

        p_atkd = sf.percent_of_part(len(attacked_nodes_a) + len(attacked_nodes_b), node_cnt_a + node_cnt_b)

        if ml_stats_fpath:  # if this string is not empty

            # fractions of connectivity lost due to the attacks
            lost_deg_a = calc_degree_centr_fraction(A, attacked_nodes_a)
            lost_deg_b = calc_degree_centr_fraction(B, attacked_nodes_b)
            lost_indeg_i = calc_indegree_centr_fraction(I, attacked_nodes_a + attacked_nodes_b)
            centr_fpath = os.path.join(netw_dir, 'node_centrality_general.json')
            lost_relay_betw = calc_centrality_fraction(attacked_nodes, 'relay_betweenness_centrality', floader,
                                                       centr_fpath)
            lost_ts_betw = calc_centrality_fraction(attacked_nodes, 'transm_subst_betweenness_centrality', floader,
                                                    centr_fpath)

            # Please note that this section only works for nodes created using realistic roles
            if save_attacked_roles is True:
                # count how many nodes there are for each role in the power network
                nodes_a_by_role = {'generator': 0, 'transmission_substation': 0, 'distribution_substation': 0}
                try:
                    for node in A.nodes():
                        node_role = A.node[node]['role']
                        nodes_a_by_role[node_role] += 1
                except KeyError:
                    raise RuntimeError('Unrecognized node role {} in graph {}'.format(node_role, A.graph['name']))

                # count how many nodes were attacked for each power role
                atkd_nodes_a_by_role = {'generator': 0, 'transmission_substation': 0, 'distribution_substation': 0}
                for node in attacked_nodes_a:
                    node_role = A.node[node]['role']
                    atkd_nodes_a_by_role[node_role] += 1

                # calculate the percentage of nodes attacked for each power role
                p_atkd_gen = sf.percent_of_part(atkd_nodes_a_by_role['generator'], nodes_a_by_role['generator'])
                p_atkd_ts = sf.percent_of_part(atkd_nodes_a_by_role['transmission_substation'],
                                               nodes_a_by_role['transmission_substation'])
                p_atkd_ds = sf.percent_of_part(atkd_nodes_a_by_role['distribution_substation'],
                                               nodes_a_by_role['distribution_substation'])

                # count how many nodes there are for each role in the telecom network
                nodes_b_by_role = {'relay': 0, 'controller': 0}
                try:
                    for node in B.nodes():
                        node_role = B.node[node]['role']
                        nodes_b_by_role[node_role] += 1
                except KeyError:
                    raise RuntimeError('Unrecognized node role {} in graph {}'.format(node_role, B.graph['name']))

                # count how many nodes were attacked for each telecom role
                atkd_nodes_b_by_role = {'relay': 0, 'controller': 0}
                for node in attacked_nodes_b:
                    node_role = B.node[node]['role']
                    atkd_nodes_b_by_role[node_role] += 1

                # calculate the percentage of nodes attacked for each telecom role
                p_atkd_rel = sf.percent_of_part(atkd_nodes_b_by_role['relay'], nodes_b_by_role['relay'])
                p_atkd_cc = sf.percent_of_part(atkd_nodes_b_by_role['controller'], nodes_b_by_role['controller'])

        total_dead_a = len(attacked_nodes_a)
        if total_dead_a > 0:
            A.remove_nodes_from(attacked_nodes_a)
            logger.info('Time {}) {} nodes of network {} failed because of initial attack: {}'.format(
                time, total_dead_a, A.graph['name'], sorted(attacked_nodes_a, key=sf.natural_sort_key)))

        total_dead_b = len(attacked_nodes_b)
        if total_dead_b > 0:
            B.remove_nodes_from(attacked_nodes_b)
            logger.info('Time {}) {} nodes of network {} failed because of initial attack: {}'.format(
                time, total_dead_b, B.graph['name'], sorted(attacked_nodes_b, key=sf.natural_sort_key)))

        if total_dead_a == total_dead_b == 0:
            logger.info('Time {}) No nodes were attacked'.format(time))

        I.remove_nodes_from(attacked_nodes)

        # save_state(time, A, B, I, results_dir)
        run_stats.writerow({'time': time, 'dead': attacked_nodes})
        updated = True
        time += 1

        # phase checks

        while updated is True:
            updated = False

            # inter checks for network A
            if inter_support_type == 'node_interlink':
                unsupported_nodes_a = find_nodes_without_inter_links(A, I)
            # elif inter_support_type == 'cluster_interlink':
            #     unsupported_nodes_a = find_nodes_in_unsupported_clusters(A, I)
            elif inter_support_type == 'realistic':
                unsupported_nodes_a = find_uncontrolled_pow_nodes(A, B, I, save_death_cause)

            if save_death_cause is True and inter_support_type == 'realistic':
                no_sup_ccs_deaths += len(unsupported_nodes_a['no_sup_ccs'])
                no_sup_relays_deaths += len(unsupported_nodes_a['no_sup_relays'])
                no_com_path_deaths += len(unsupported_nodes_a['no_com_path'])
                temp_list = list()

                # convert dictionary of lists to simple list
                for node_list in unsupported_nodes_a.values():
                    temp_list.extend(node_list)
                unsupported_nodes_a = temp_list

            failed_cnt_a = len(unsupported_nodes_a)
            if failed_cnt_a > 0:
                logger.info('Time {}) {} nodes of network {} failed for lack of inter support: {}'.format(
                    time, failed_cnt_a, A.graph['name'], sorted(unsupported_nodes_a, key=sf.natural_sort_key)))
                total_dead_a += failed_cnt_a
                inter_sup_deaths_a += failed_cnt_a
                A.remove_nodes_from(unsupported_nodes_a)
                I.remove_nodes_from(unsupported_nodes_a)
                updated = True
                # save_state(time, A, B, I, results_dir)
                run_stats.writerow({'time': time, 'dead': unsupported_nodes_a})
            time += 1

            # intra checks for network A
            if intra_support_type == 'giant_component':
                unsupported_nodes_a = find_nodes_not_in_giant_component(A)
            elif intra_support_type == 'cluster_size':
                unsupported_nodes_a = find_nodes_in_smaller_clusters(A, min_cluster_size)
            elif intra_support_type == 'realistic':
                unsupported_nodes_a = find_unpowered_substations(A)
            failed_cnt_a = len(unsupported_nodes_a)
            if failed_cnt_a > 0:
                logger.info('Time {}) {} nodes of network {} failed for lack of intra support: {}'.format(
                    time, failed_cnt_a, A.graph['name'], sorted(unsupported_nodes_a, key=sf.natural_sort_key)))
                total_dead_a += failed_cnt_a
                intra_sup_deaths_a += failed_cnt_a
                A.remove_nodes_from(unsupported_nodes_a)
                I.remove_nodes_from(unsupported_nodes_a)
                updated = True
                # save_state(time, A, B, I, results_dir)
                run_stats.writerow({'time': time, 'dead': unsupported_nodes_a})
            time += 1

            # inter checks for network B
            if inter_support_type == 'node_interlink':
                unsupported_nodes_b = find_nodes_without_inter_links(B, I)
            # elif inter_support_type == 'cluster_interlink':
            #     unsupported_nodes_b = find_nodes_in_unsupported_clusters(B, I)
            elif inter_support_type == 'realistic':
                unsupported_nodes_b = find_nodes_without_inter_links(B, I)
            failed_cnt_b = len(unsupported_nodes_b)
            if failed_cnt_b > 0:
                logger.info('Time {}) {} nodes of network {} failed for lack of inter support: {}'.format(
                    time, failed_cnt_b, B.graph['name'], sorted(unsupported_nodes_b, key=sf.natural_sort_key)))
                total_dead_b += failed_cnt_b
                inter_sup_deaths_b += failed_cnt_b
                B.remove_nodes_from(unsupported_nodes_b)
                I.remove_nodes_from(unsupported_nodes_b)
                updated = True
                # save_state(time, A, B, I, results_dir)
                run_stats.writerow({'time': time, 'dead': unsupported_nodes_b})
            time += 1

            # intra checks for network B
            if intra_support_type == 'giant_component':
                unsupported_nodes_b = find_nodes_not_in_giant_component(B)
            elif intra_support_type == 'cluster_size':
                unsupported_nodes_b = find_nodes_in_smaller_clusters(B, min_cluster_size)
            elif intra_support_type == 'realistic':
                unsupported_nodes_b = list()
            failed_cnt_b = len(unsupported_nodes_b)
            if failed_cnt_b > 0:
                logger.info('Time {}) {} nodes of network {} failed for lack of intra support: {}'.format(
                    time, failed_cnt_b, B.graph['name'], sorted(unsupported_nodes_b, key=sf.natural_sort_key)))
                total_dead_b += failed_cnt_b
                intra_sup_deaths_b += failed_cnt_b
                B.remove_nodes_from(unsupported_nodes_b)
                I.remove_nodes_from(unsupported_nodes_b)
                updated = True
                # save_state(time, A, B, I, results_dir)
                run_stats.writerow({'time': time, 'dead': unsupported_nodes_b})
            time += 1

    # save_state('final', A, B, I, results_dir)

    # write statistics about the final result
    if os.path.isfile(end_stats_fpath) is False:
        write_header = True  # if we are going to create a new file, then add the header
    else:
        write_header = False
    with open(end_stats_fpath, 'ab') as end_stats_file:
        end_stats_header = ['sim_group', 'instance', '#dead', '#dead_a', '#dead_b']
        if save_attacked_roles is True:
            end_stats_header.extend(['#atkd_gen', '#atkd_ts', '#atkd_ds', '#atkd_rel', '#atkd_cc'])
        if save_death_cause is True:
            end_stats_header.extend(['no_intra_sup_a', 'no_inter_sup_a',
                                     'no_intra_sup_b', 'no_inter_sup_b'])
            if inter_support_type == 'realistic':
                end_stats_header.extend(['no_sup_ccs', 'no_sup_relays', 'no_com_path'])

        end_stats = csv.DictWriter(end_stats_file, end_stats_header, delimiter='\t', quoting=csv.QUOTE_MINIMAL)
        if write_header is True:
            end_stats.writeheader()

        end_stats_row = {'sim_group': sim_group, 'instance': instance, '#dead': total_dead_a + total_dead_b,
                         '#dead_a': total_dead_a, '#dead_b': total_dead_b}
        if save_attacked_roles is True:
            end_stats_row.update({'#atkd_gen': atkd_nodes_a_by_role['generator'],
                                  '#atkd_ts': atkd_nodes_a_by_role['transmission_substation'],
                                  '#atkd_ds': atkd_nodes_a_by_role['distribution_substation'],
                                  '#atkd_rel': atkd_nodes_b_by_role['relay'],
                                  '#atkd_cc': atkd_nodes_b_by_role['controller']})
        if save_death_cause is True:
            end_stats_row.update({'no_intra_sup_a': intra_sup_deaths_a, 'no_inter_sup_a': inter_sup_deaths_a,
                                  'no_intra_sup_b': intra_sup_deaths_b, 'no_inter_sup_b': inter_sup_deaths_b})
            if inter_support_type == 'realistic':
                end_stats_row.update({'no_sup_ccs': no_sup_ccs_deaths, 'no_sup_relays': no_sup_relays_deaths,
                                      'no_com_path': no_com_path_deaths})
        end_stats.writerow(end_stats_row)

    if ml_stats_fpath:  # if this string is not empty

        # percentages of dead nodes over the initial number of nodes in the graph
        p_dead_a = sf.percent_of_part(total_dead_a, node_cnt_a)
        p_dead_b = sf.percent_of_part(total_dead_b, node_cnt_b)
        p_dead = sf.percent_of_part(total_dead_a + total_dead_b, node_cnt_a + node_cnt_b)

        # calculate the overall centrality of the attacked nodes

        all_centr_stats = {}

        centr_name = 'betweenness_centrality'
        centr_fpath_a = os.path.join(netw_dir, 'node_centrality_{}.json'.format(A.graph['name']))
        centr_stats = calc_stats_on_centrality(attacked_nodes_a, centr_name, 'betw_c_a', floader, centr_fpath_a)
        all_centr_stats.update(centr_stats)
        centr_fpath_b = os.path.join(netw_dir, 'node_centrality_{}.json'.format(B.graph['name']))
        centr_stats = calc_stats_on_centrality(attacked_nodes_b, centr_name, 'betw_c_b', floader, centr_fpath_b)
        all_centr_stats.update(centr_stats)
        tot_node_cnt = node_cnt_a + node_cnt_b
        centr_fpath_ab = os.path.join(netw_dir, 'node_centrality_{}.json'.format(ab_union.graph['name']))
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'betw_c_ab', floader, centr_fpath_ab)
        all_centr_stats.update(centr_stats)
        centr_fpath_i = os.path.join(netw_dir, 'node_centrality_{}.json'.format(I.graph['name']))
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'betw_c_i', floader, centr_fpath_i)
        all_centr_stats.update(centr_stats)

        centr_name = 'closeness_centrality'
        centr_stats = calc_stats_on_centrality(attacked_nodes_a, centr_name, 'clos_c_a', floader, centr_fpath_a)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes_b, centr_name, 'clos_c_b', floader, centr_fpath_b)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'clos_c_ab', floader, centr_fpath_ab)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'clos_c_i', floader, centr_fpath_i)
        all_centr_stats.update(centr_stats)

        centr_name = 'indegree_centrality'
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'indeg_c_ab', floader, centr_fpath_ab)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'indeg_c_i', floader, centr_fpath_i)
        all_centr_stats.update(centr_stats)

        centr_name = 'katz_centrality'
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'katz_c_ab', floader, centr_fpath_ab)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'katz_c_i', floader, centr_fpath_i)
        all_centr_stats.update(centr_stats)

        centr_name = 'relay_betweenness_centrality'
        centr_fpath_gen = os.path.join(netw_dir, 'node_centrality_general.json')
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'rel_betw_c', floader, centr_fpath_gen)
        all_centr_stats.update(centr_stats)

        centr_name = 'transm_subst_betweenness_centrality'
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name, 'ts_betw_c', floader, centr_fpath_gen)
        all_centr_stats.update(centr_stats)

        # if we need to create a new file, then remember to add the header
        if os.path.isfile(ml_stats_fpath) is False:
            write_header = True
        else:
            write_header = False

        with open(ml_stats_fpath, 'ab') as ml_stats_file:
            ml_stats_header = ['sim_group', 'instance', '#nodes_a', '#edges_a', '#nodes_b', '#edges_b',
                               'p_atkd', 'p_dead', 'p_atkd_a', 'p_dead_a', 'p_atkd_b', 'p_dead_b']

            # add statistics about centrality, sorted so they can be more found easily in the output file
            ml_stats_header.extend(sorted(all_centr_stats.keys(), key=sf.natural_sort_key))

            if save_attacked_roles is True:
                ml_stats_header.extend(['p_atkd_gen', 'p_atkd_ts', 'p_atkd_ds', 'p_atkd_rel', 'p_atkd_cc'])

            ml_stats_header.extend(['lost_deg_a', 'lost_deg_b', 'lost_indeg_i', 'lost_rel_betw', 'lost_ts_betw'])

            if save_death_cause is True:
                ml_stats_header.extend(['p_no_intra_sup_a', 'p_no_inter_sup_a',
                                        'p_no_intra_sup_b', 'p_no_inter_sup_b'])
                if inter_support_type == 'realistic':
                    ml_stats_header.extend(['p_no_sup_ccs', 'p_no_sup_relays', 'p_no_com_path'])

            ml_stats = csv.DictWriter(ml_stats_file, ml_stats_header, delimiter='\t', quoting=csv.QUOTE_MINIMAL)
            if write_header is True:
                ml_stats.writeheader()

            ml_stats_row = {'sim_group': sim_group, 'instance': instance,
                            '#nodes_a': node_cnt_a, '#edges_a': edge_cnt_a,
                            '#nodes_b': node_cnt_b, '#edges_b': edge_cnt_b,
                            'p_atkd': p_atkd, 'p_atkd_a': p_atkd_a, 'p_atkd_b': p_atkd_b,
                            'p_dead': p_dead, 'p_dead_a': p_dead_a, 'p_dead_b': p_dead_b}

            ml_stats_row.update(all_centr_stats)

            if save_attacked_roles is True:
                ml_stats_row.update({'p_atkd_gen': p_atkd_gen, 'p_atkd_ts': p_atkd_ts, 'p_atkd_ds': p_atkd_ds,
                                     'p_atkd_rel': p_atkd_rel, 'p_atkd_cc': p_atkd_cc,})

            ml_stats_row.update({'lost_deg_a': lost_deg_a, 'lost_deg_b': lost_deg_b, 'lost_indeg_i': lost_indeg_i,
                                 'lost_rel_betw': lost_relay_betw, 'lost_ts_betw': lost_ts_betw})

            if save_death_cause is True:
                p_no_intra_sup_a = sf.percent_of_part(intra_sup_deaths_a, total_dead_a)
                p_no_inter_sup_a = sf.percent_of_part(inter_sup_deaths_a, total_dead_a)
                p_no_intra_sup_b = sf.percent_of_part(intra_sup_deaths_b, total_dead_b)
                p_no_inter_sup_b = sf.percent_of_part(inter_sup_deaths_b, total_dead_b)
                ml_stats_row.update({'p_no_intra_sup_a': p_no_intra_sup_a, 'p_no_inter_sup_a': p_no_inter_sup_a,
                                     'p_no_intra_sup_b': p_no_intra_sup_b, 'p_no_inter_sup_b': p_no_inter_sup_b})

                if inter_support_type == 'realistic':
                    p_no_sup_ccs = sf.percent_of_part(no_sup_ccs_deaths, total_dead_a)
                    p_no_sup_relays = sf.percent_of_part(no_sup_relays_deaths, total_dead_a)
                    p_no_com_path = sf.percent_of_part(no_com_path_deaths, total_dead_a)
                    ml_stats_row.update({'p_no_sup_ccs': p_no_sup_ccs, 'p_no_sup_relays': p_no_sup_relays,
                                         'p_no_com_path': p_no_com_path})

            ml_stats.writerow(ml_stats_row)
Ejemplo n.º 8
0
def calc_indegree_centr_fraction(G, nodes):
    tot_indegree = sum(G.in_degree(G.nodes()).values())
    nodes_indegree = sum(G.in_degree(nodes).values())
    fraction = sf.percent_of_part(nodes_indegree, tot_indegree)
    return fraction
Ejemplo n.º 9
0
def run(conf_fpath, floader):
    global logger
    logger = logging.getLogger(__name__)
    logger.info('conf_fpath = {}'.format(conf_fpath))

    conf_fpath = os.path.normpath(conf_fpath)
    if os.path.isabs(conf_fpath) is False:
        conf_fpath = os.path.abspath(conf_fpath)
    if not os.path.isfile(conf_fpath):
        raise ValueError(
            'Invalid value for parameter "conf_fpath", no such file.\nPath: ' +
            conf_fpath)
    config = ConfigParser()
    config.read(conf_fpath)

    global time
    time = 0

    # read graphml files and instantiate network graphs

    seed = config.get('run_opts', 'seed')

    if config.has_option('run_opts', 'save_death_cause'):
        save_death_cause = config.getboolean('run_opts', 'save_death_cause')
    else:
        save_death_cause = False

    # TODO: check if directory/files exist
    netw_dir = os.path.normpath(config.get('paths', 'netw_dir'))
    if os.path.isabs(netw_dir) is False:
        netw_dir = os.path.abspath(netw_dir)
    netw_a_fname = config.get('paths', 'netw_a_fname')
    netw_a_fpath_in = os.path.join(netw_dir, netw_a_fname)
    # A = nx.read_graphml(netw_a_fpath_in, node_type=str)
    A = floader.fetch_graphml(netw_a_fpath_in, str)

    netw_b_fname = config.get('paths', 'netw_b_fname')
    netw_b_fpath_in = os.path.join(netw_dir, netw_b_fname)
    # B = nx.read_graphml(netw_b_fpath_in, node_type=str)
    B = floader.fetch_graphml(netw_b_fpath_in, str)

    netw_inter_fname = config.get('paths', 'netw_inter_fname')
    netw_inter_fpath_in = os.path.join(netw_dir, netw_inter_fname)
    # I = nx.read_graphml(netw_inter_fpath_in, node_type=str)
    I = floader.fetch_graphml(netw_inter_fpath_in, str)

    # if the union graph is needed for this simulation, it's better to have it created in advance and just load it
    if config.has_option('paths', 'netw_union_fname'):
        netw_union_fname = config.get('paths', 'netw_union_fname')
        netw_union_fpath_in = os.path.join(netw_dir, netw_union_fname)
        # ab_union = nx.read_graphml(netw_union_fpath_in, node_type=str)
        ab_union = floader.fetch_graphml(netw_union_fpath_in, str)
    else:
        ab_union = None

    # read run options

    attacked_netw = config.get('run_opts', 'attacked_netw')
    attack_tactic = config.get('run_opts', 'attack_tactic')
    if attack_tactic not in ['targeted', 'ith_node']:
        attack_cnt = config.getint('run_opts', 'attacks')
    intra_support_type = config.get('run_opts', 'intra_support_type')
    if intra_support_type == 'cluster_size':
        min_cluster_size = config.getint('run_opts', 'min_cluster_size')
    inter_support_type = config.get('run_opts', 'inter_support_type')

    if attacked_netw == A.graph['name']:
        attacked_G = A
    elif attacked_netw == B.graph['name']:
        attacked_G = B
    elif attacked_netw.lower() == 'both':
        if ab_union is None:
            raise ValueError(
                'A union graph is needed, specify "netw_union_fname" and make sure the file exists'
            )
        attacked_G = ab_union
    else:
        raise ValueError('Invalid value for parameter "attacked_netw": ' +
                         attacked_netw)

    attacks_for_A_only = [
        'most_inter_used_distr_subs', 'most_intra_used_distr_subs',
        'most_intra_used_transm_subs', 'most_intra_used_generators'
    ]
    if attack_tactic in attacks_for_A_only and attacked_netw != A.graph['name']:
        raise ValueError(
            'Attack {} can only be used on the power network A'.format(
                attack_tactic))

    usage_attacks = [
        'most_inter_used_distr_subs', 'most_intra_used_distr_subs',
        'most_intra_used_transm_subs', 'most_intra_used_generators',
        'most_inter_used_relays', 'most_intra_used_relays'
    ]

    centrality_attacks = [
        'betweenness_centrality_rank', 'closeness_centrality_rank',
        'indegree_centrality_rank', 'katz_centrality_rank'
    ]

    if attack_tactic in usage_attacks:
        secondary_sort = config.get('run_opts', 'secondary_sort')
        if secondary_sort not in ['random_shuffle', 'sort_by_id']:
            raise ValueError('Invalid value for parameter "secondary_sort": ' +
                             secondary_sort)

    if attack_tactic in centrality_attacks:
        min_rank = config.getint('run_opts', 'min_rank')
        calc_centr_on = config.get('run_opts', 'calc_centrality_on')
        if calc_centr_on.lower() == 'attacked_netw':
            G_for_centr = attacked_G
        elif calc_centr_on.lower() == 'netw_inter':
            # note that calculating centrality on the inter graph is not the same as calculating it on the union graph
            G_for_centr = I
        else:
            raise ValueError('Invalid value for parameter "calc_centr_on": ' +
                             calc_centr_on)

        # load file with precalculated centrality metrics
        centr_fname = 'node_centrality_{}.json'.format(
            G_for_centr.graph['name'])
        centr_fpath = os.path.join(netw_dir, centr_fname)
        centrality_info = floader.fetch_json(centr_fpath)

    # read output paths

    # run_stats is a file used to save step-by-step details about this run
    results_dir = os.path.normpath(config.get('paths', 'results_dir'))
    if os.path.isabs(results_dir) is False:
        results_dir = os.path.abspath(results_dir)
    run_stats_fname = config.get('paths', 'run_stats_fname')
    run_stats_fpath = os.path.join(results_dir, run_stats_fname)

    # end_stats is a file used to save a single line (row) of statistics at the end of the simulation
    end_stats_fpath = os.path.normpath(config.get('paths', 'end_stats_fpath'))
    if os.path.isabs(end_stats_fpath) is False:
        end_stats_fpath = os.path.abspath(end_stats_fpath)

    # ml_stats is similar to end_stats as it is used to write a line at the end of the simulation,
    # but it gathers statistics used for machine learning
    ml_stats_fpath = ''
    if config.has_option('paths', 'ml_stats_fpath'):
        ml_stats_fpath = os.path.normpath(config.get('paths',
                                                     'ml_stats_fpath'))
        if os.path.isabs(ml_stats_fpath) is False:
            ml_stats_fpath = os.path.abspath(ml_stats_fpath)

    if config.has_option('run_opts', 'save_attacked_roles'):
        save_attacked_roles = config.getboolean('run_opts',
                                                'save_attacked_roles')
    else:
        save_attacked_roles = False

    # ensure output directories exist and are empty
    sf.ensure_dir_exists(results_dir)
    sf.ensure_dir_exists(os.path.dirname(end_stats_fpath))

    # read information used to identify this simulation run
    sim_group = config.get('misc', 'sim_group')
    instance = config.get('misc', 'instance')

    # stability check
    unstable_nodes = set()
    if inter_support_type == 'node_interlink':
        unstable_nodes.update(find_nodes_without_inter_links(A, I))
    # elif inter_support_type == 'cluster_interlink':
    #     unstable_nodes.update(find_nodes_in_unsupported_clusters(A, I))
    elif inter_support_type == 'realistic':
        unstable_nodes.update(find_uncontrolled_pow_nodes(A, B, I))
    else:
        raise ValueError('Invalid value for parameter "inter_support_type": ' +
                         inter_support_type)

    if intra_support_type == 'giant_component':
        unstable_nodes.update(find_nodes_not_in_giant_component(A))
    elif intra_support_type == 'cluster_size':
        unstable_nodes.update(
            find_nodes_in_smaller_clusters(A, min_cluster_size))
    elif intra_support_type == 'realistic':
        unstable_nodes.update(find_unpowered_substations(A))
    else:
        raise ValueError('Invalid value for parameter "intra_support_type": ' +
                         intra_support_type)

    if inter_support_type == 'node_interlink':
        unstable_nodes.update(find_nodes_without_inter_links(B, I))
    # elif inter_support_type == 'cluster_interlink':
    #     unstable_nodes.update(find_nodes_in_unsupported_clusters(B, I))
    elif inter_support_type == 'realistic':
        unstable_nodes.update(find_nodes_without_inter_links(B, I))

    if intra_support_type == 'giant_component':
        unstable_nodes.update(find_nodes_not_in_giant_component(B))
    elif intra_support_type == 'cluster_size':
        unstable_nodes.update(
            find_nodes_in_smaller_clusters(B, min_cluster_size))
    # elif intra_support_type == 'realistic':
    #     unstable_nodes.update(list())

    if len(unstable_nodes) > 0:
        logger.debug(
            'Time {}) {} nodes unstable before the initial attack: {}'.format(
                time, len(unstable_nodes),
                sorted(unstable_nodes, key=sf.natural_sort_key)))

    total_dead_a = 0
    total_dead_b = 0
    intra_sup_deaths_a = 0
    intra_sup_deaths_b = 0
    inter_sup_deaths_a = 0
    inter_sup_deaths_b = 0

    if save_death_cause is True and inter_support_type == 'realistic':
        no_sup_ccs_deaths = 0
        no_sup_relays_deaths = 0
        no_com_path_deaths = 0

    # execute simulation of failure propagation
    with open(run_stats_fpath, 'wb') as run_stats_file:

        run_stats = csv.DictWriter(run_stats_file, ['time', 'dead'],
                                   delimiter='\t',
                                   quoting=csv.QUOTE_MINIMAL)
        run_stats.writeheader()
        time += 1

        # perform initial attack

        if attack_tactic == 'random':
            attacked_nodes = choose_random_nodes(attacked_G, attack_cnt, seed)
        elif attack_tactic == 'ith_node':
            node_rank = config.getint('run_opts', 'node_rank')
            attacked_nodes = [pick_ith_node(attacked_G, node_rank)]
        elif attack_tactic == 'targeted':
            target_nodes = config.get('run_opts', 'target_nodes')
            attacked_nodes = [node for node in target_nodes.split()
                              ]  # split list on space
        # TODO: use choose_nodes_by_rank, throw away _centrality_rank columns
        elif attack_tactic == 'betweenness_centrality_rank':
            ranked_nodes = centrality_info['betweenness_centrality_rank']
            attacked_nodes = pick_nodes_by_rank(ranked_nodes, attack_cnt,
                                                min_rank)
        elif attack_tactic == 'closeness_centrality_rank':
            ranked_nodes = centrality_info['closeness_centrality_rank']
            attacked_nodes = pick_nodes_by_rank(ranked_nodes, attack_cnt,
                                                min_rank)
        elif attack_tactic == 'indegree_centrality_rank':
            ranked_nodes = centrality_info['indegree_centrality_rank']
            attacked_nodes = pick_nodes_by_rank(ranked_nodes, attack_cnt,
                                                min_rank)
        elif attack_tactic == 'katz_centrality_rank':
            ranked_nodes = centrality_info['katz_centrality_rank']
            attacked_nodes = pick_nodes_by_rank(ranked_nodes, attack_cnt,
                                                min_rank)
        elif attack_tactic == 'most_inter_used_distr_subs':
            attacked_nodes = choose_most_inter_used_nodes(
                attacked_G, I, attack_cnt, 'distribution_substation',
                secondary_sort, seed)
        elif attack_tactic == 'most_intra_used_distr_subs':
            attacked_nodes = choose_most_intra_used_nodes(
                attacked_G, attack_cnt, 'distribution_substation',
                secondary_sort, seed)
        elif attack_tactic == 'most_intra_used_transm_subs':
            attacked_nodes = choose_most_intra_used_nodes(
                attacked_G, attack_cnt, 'transmission_substation',
                secondary_sort, seed)
        elif attack_tactic == 'most_intra_used_generators':
            attacked_nodes = choose_most_intra_used_nodes(
                attacked_G, attack_cnt, 'generator', secondary_sort, seed)
        else:
            raise ValueError('Invalid value for parameter "attack_tactic": ' +
                             attack_tactic)

        attacked_nodes_a = []
        attacked_nodes_b = []
        for node in attacked_nodes:
            node_netw = I.node[node]['network']
            if node_netw == A.graph['name']:
                attacked_nodes_a.append(node)
            elif node_netw == B.graph['name']:
                attacked_nodes_b.append(node)
            else:
                raise RuntimeError(
                    'Node {} network "{}" marked in inter graph is neither A nor B'
                    .format(node, node_netw))

        node_cnt_a = A.number_of_nodes()
        edge_cnt_a = A.number_of_edges()
        p_atkd_a = sf.percent_of_part(len(attacked_nodes_a), node_cnt_a)

        node_cnt_b = B.number_of_nodes()
        edge_cnt_b = B.number_of_edges()
        p_atkd_b = sf.percent_of_part(len(attacked_nodes_b), node_cnt_b)

        p_atkd = sf.percent_of_part(
            len(attacked_nodes_a) + len(attacked_nodes_b),
            node_cnt_a + node_cnt_b)

        if ml_stats_fpath:  # if this string is not empty

            # fractions of connectivity lost due to the attacks
            lost_deg_a = calc_degree_centr_fraction(A, attacked_nodes_a)
            lost_deg_b = calc_degree_centr_fraction(B, attacked_nodes_b)
            lost_indeg_i = calc_indegree_centr_fraction(
                I, attacked_nodes_a + attacked_nodes_b)
            centr_fpath = os.path.join(netw_dir,
                                       'node_centrality_general.json')
            lost_relay_betw = calc_centrality_fraction(
                attacked_nodes, 'relay_betweenness_centrality', floader,
                centr_fpath)
            lost_ts_betw = calc_centrality_fraction(
                attacked_nodes, 'transm_subst_betweenness_centrality', floader,
                centr_fpath)

            # Please note that this section only works for nodes created using realistic roles
            if save_attacked_roles is True:
                # count how many nodes there are for each role in the power network
                nodes_a_by_role = {
                    'generator': 0,
                    'transmission_substation': 0,
                    'distribution_substation': 0
                }
                try:
                    for node in A.nodes():
                        node_role = A.node[node]['role']
                        nodes_a_by_role[node_role] += 1
                except KeyError:
                    raise RuntimeError(
                        'Unrecognized node role {} in graph {}'.format(
                            node_role, A.graph['name']))

                # count how many nodes were attacked for each power role
                atkd_nodes_a_by_role = {
                    'generator': 0,
                    'transmission_substation': 0,
                    'distribution_substation': 0
                }
                for node in attacked_nodes_a:
                    node_role = A.node[node]['role']
                    atkd_nodes_a_by_role[node_role] += 1

                # calculate the percentage of nodes attacked for each power role
                p_atkd_gen = sf.percent_of_part(
                    atkd_nodes_a_by_role['generator'],
                    nodes_a_by_role['generator'])
                p_atkd_ts = sf.percent_of_part(
                    atkd_nodes_a_by_role['transmission_substation'],
                    nodes_a_by_role['transmission_substation'])
                p_atkd_ds = sf.percent_of_part(
                    atkd_nodes_a_by_role['distribution_substation'],
                    nodes_a_by_role['distribution_substation'])

                # count how many nodes there are for each role in the telecom network
                nodes_b_by_role = {'relay': 0, 'controller': 0}
                try:
                    for node in B.nodes():
                        node_role = B.node[node]['role']
                        nodes_b_by_role[node_role] += 1
                except KeyError:
                    raise RuntimeError(
                        'Unrecognized node role {} in graph {}'.format(
                            node_role, B.graph['name']))

                # count how many nodes were attacked for each telecom role
                atkd_nodes_b_by_role = {'relay': 0, 'controller': 0}
                for node in attacked_nodes_b:
                    node_role = B.node[node]['role']
                    atkd_nodes_b_by_role[node_role] += 1

                # calculate the percentage of nodes attacked for each telecom role
                p_atkd_rel = sf.percent_of_part(atkd_nodes_b_by_role['relay'],
                                                nodes_b_by_role['relay'])
                p_atkd_cc = sf.percent_of_part(
                    atkd_nodes_b_by_role['controller'],
                    nodes_b_by_role['controller'])

        total_dead_a = len(attacked_nodes_a)
        if total_dead_a > 0:
            A.remove_nodes_from(attacked_nodes_a)
            logger.info(
                'Time {}) {} nodes of network {} failed because of initial attack: {}'
                .format(time, total_dead_a, A.graph['name'],
                        sorted(attacked_nodes_a, key=sf.natural_sort_key)))

        total_dead_b = len(attacked_nodes_b)
        if total_dead_b > 0:
            B.remove_nodes_from(attacked_nodes_b)
            logger.info(
                'Time {}) {} nodes of network {} failed because of initial attack: {}'
                .format(time, total_dead_b, B.graph['name'],
                        sorted(attacked_nodes_b, key=sf.natural_sort_key)))

        if total_dead_a == total_dead_b == 0:
            logger.info('Time {}) No nodes were attacked'.format(time))

        I.remove_nodes_from(attacked_nodes)

        # save_state(time, A, B, I, results_dir)
        run_stats.writerow({'time': time, 'dead': attacked_nodes})
        updated = True
        time += 1

        # phase checks

        while updated is True:
            updated = False

            # inter checks for network A
            if inter_support_type == 'node_interlink':
                unsupported_nodes_a = find_nodes_without_inter_links(A, I)
            # elif inter_support_type == 'cluster_interlink':
            #     unsupported_nodes_a = find_nodes_in_unsupported_clusters(A, I)
            elif inter_support_type == 'realistic':
                unsupported_nodes_a = find_uncontrolled_pow_nodes(
                    A, B, I, save_death_cause)

            if save_death_cause is True and inter_support_type == 'realistic':
                no_sup_ccs_deaths += len(unsupported_nodes_a['no_sup_ccs'])
                no_sup_relays_deaths += len(
                    unsupported_nodes_a['no_sup_relays'])
                no_com_path_deaths += len(unsupported_nodes_a['no_com_path'])
                temp_list = list()

                # convert dictionary of lists to simple list
                for node_list in unsupported_nodes_a.values():
                    temp_list.extend(node_list)
                unsupported_nodes_a = temp_list

            failed_cnt_a = len(unsupported_nodes_a)
            if failed_cnt_a > 0:
                logger.info(
                    'Time {}) {} nodes of network {} failed for lack of inter support: {}'
                    .format(
                        time, failed_cnt_a, A.graph['name'],
                        sorted(unsupported_nodes_a, key=sf.natural_sort_key)))
                total_dead_a += failed_cnt_a
                inter_sup_deaths_a += failed_cnt_a
                A.remove_nodes_from(unsupported_nodes_a)
                I.remove_nodes_from(unsupported_nodes_a)
                updated = True
                # save_state(time, A, B, I, results_dir)
                run_stats.writerow({'time': time, 'dead': unsupported_nodes_a})
            time += 1

            # intra checks for network A
            if intra_support_type == 'giant_component':
                unsupported_nodes_a = find_nodes_not_in_giant_component(A)
            elif intra_support_type == 'cluster_size':
                unsupported_nodes_a = find_nodes_in_smaller_clusters(
                    A, min_cluster_size)
            elif intra_support_type == 'realistic':
                unsupported_nodes_a = find_unpowered_substations(A)
            failed_cnt_a = len(unsupported_nodes_a)
            if failed_cnt_a > 0:
                logger.info(
                    'Time {}) {} nodes of network {} failed for lack of intra support: {}'
                    .format(
                        time, failed_cnt_a, A.graph['name'],
                        sorted(unsupported_nodes_a, key=sf.natural_sort_key)))
                total_dead_a += failed_cnt_a
                intra_sup_deaths_a += failed_cnt_a
                A.remove_nodes_from(unsupported_nodes_a)
                I.remove_nodes_from(unsupported_nodes_a)
                updated = True
                # save_state(time, A, B, I, results_dir)
                run_stats.writerow({'time': time, 'dead': unsupported_nodes_a})
            time += 1

            # inter checks for network B
            if inter_support_type == 'node_interlink':
                unsupported_nodes_b = find_nodes_without_inter_links(B, I)
            # elif inter_support_type == 'cluster_interlink':
            #     unsupported_nodes_b = find_nodes_in_unsupported_clusters(B, I)
            elif inter_support_type == 'realistic':
                unsupported_nodes_b = find_nodes_without_inter_links(B, I)
            failed_cnt_b = len(unsupported_nodes_b)
            if failed_cnt_b > 0:
                logger.info(
                    'Time {}) {} nodes of network {} failed for lack of inter support: {}'
                    .format(
                        time, failed_cnt_b, B.graph['name'],
                        sorted(unsupported_nodes_b, key=sf.natural_sort_key)))
                total_dead_b += failed_cnt_b
                inter_sup_deaths_b += failed_cnt_b
                B.remove_nodes_from(unsupported_nodes_b)
                I.remove_nodes_from(unsupported_nodes_b)
                updated = True
                # save_state(time, A, B, I, results_dir)
                run_stats.writerow({'time': time, 'dead': unsupported_nodes_b})
            time += 1

            # intra checks for network B
            if intra_support_type == 'giant_component':
                unsupported_nodes_b = find_nodes_not_in_giant_component(B)
            elif intra_support_type == 'cluster_size':
                unsupported_nodes_b = find_nodes_in_smaller_clusters(
                    B, min_cluster_size)
            elif intra_support_type == 'realistic':
                unsupported_nodes_b = list()
            failed_cnt_b = len(unsupported_nodes_b)
            if failed_cnt_b > 0:
                logger.info(
                    'Time {}) {} nodes of network {} failed for lack of intra support: {}'
                    .format(
                        time, failed_cnt_b, B.graph['name'],
                        sorted(unsupported_nodes_b, key=sf.natural_sort_key)))
                total_dead_b += failed_cnt_b
                intra_sup_deaths_b += failed_cnt_b
                B.remove_nodes_from(unsupported_nodes_b)
                I.remove_nodes_from(unsupported_nodes_b)
                updated = True
                # save_state(time, A, B, I, results_dir)
                run_stats.writerow({'time': time, 'dead': unsupported_nodes_b})
            time += 1

    # save_state('final', A, B, I, results_dir)

    # write statistics about the final result
    if os.path.isfile(end_stats_fpath) is False:
        write_header = True  # if we are going to create a new file, then add the header
    else:
        write_header = False
    with open(end_stats_fpath, 'ab') as end_stats_file:
        end_stats_header = [
            'sim_group', 'instance', '#dead', '#dead_a', '#dead_b'
        ]
        if save_attacked_roles is True:
            end_stats_header.extend(
                ['#atkd_gen', '#atkd_ts', '#atkd_ds', '#atkd_rel', '#atkd_cc'])
        if save_death_cause is True:
            end_stats_header.extend([
                'no_intra_sup_a', 'no_inter_sup_a', 'no_intra_sup_b',
                'no_inter_sup_b'
            ])
            if inter_support_type == 'realistic':
                end_stats_header.extend(
                    ['no_sup_ccs', 'no_sup_relays', 'no_com_path'])

        end_stats = csv.DictWriter(end_stats_file,
                                   end_stats_header,
                                   delimiter='\t',
                                   quoting=csv.QUOTE_MINIMAL)
        if write_header is True:
            end_stats.writeheader()

        end_stats_row = {
            'sim_group': sim_group,
            'instance': instance,
            '#dead': total_dead_a + total_dead_b,
            '#dead_a': total_dead_a,
            '#dead_b': total_dead_b
        }
        if save_attacked_roles is True:
            end_stats_row.update({
                '#atkd_gen':
                atkd_nodes_a_by_role['generator'],
                '#atkd_ts':
                atkd_nodes_a_by_role['transmission_substation'],
                '#atkd_ds':
                atkd_nodes_a_by_role['distribution_substation'],
                '#atkd_rel':
                atkd_nodes_b_by_role['relay'],
                '#atkd_cc':
                atkd_nodes_b_by_role['controller']
            })
        if save_death_cause is True:
            end_stats_row.update({
                'no_intra_sup_a': intra_sup_deaths_a,
                'no_inter_sup_a': inter_sup_deaths_a,
                'no_intra_sup_b': intra_sup_deaths_b,
                'no_inter_sup_b': inter_sup_deaths_b
            })
            if inter_support_type == 'realistic':
                end_stats_row.update({
                    'no_sup_ccs': no_sup_ccs_deaths,
                    'no_sup_relays': no_sup_relays_deaths,
                    'no_com_path': no_com_path_deaths
                })
        end_stats.writerow(end_stats_row)

    if ml_stats_fpath:  # if this string is not empty

        # percentages of dead nodes over the initial number of nodes in the graph
        p_dead_a = sf.percent_of_part(total_dead_a, node_cnt_a)
        p_dead_b = sf.percent_of_part(total_dead_b, node_cnt_b)
        p_dead = sf.percent_of_part(total_dead_a + total_dead_b,
                                    node_cnt_a + node_cnt_b)

        # calculate the overall centrality of the attacked nodes

        all_centr_stats = {}

        centr_name = 'betweenness_centrality'
        centr_fpath_a = os.path.join(
            netw_dir, 'node_centrality_{}.json'.format(A.graph['name']))
        centr_stats = calc_stats_on_centrality(attacked_nodes_a, centr_name,
                                               'betw_c_a', floader,
                                               centr_fpath_a)
        all_centr_stats.update(centr_stats)
        centr_fpath_b = os.path.join(
            netw_dir, 'node_centrality_{}.json'.format(B.graph['name']))
        centr_stats = calc_stats_on_centrality(attacked_nodes_b, centr_name,
                                               'betw_c_b', floader,
                                               centr_fpath_b)
        all_centr_stats.update(centr_stats)
        tot_node_cnt = node_cnt_a + node_cnt_b
        centr_fpath_ab = os.path.join(
            netw_dir, 'node_centrality_{}.json'.format(ab_union.graph['name']))
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'betw_c_ab', floader,
                                               centr_fpath_ab)
        all_centr_stats.update(centr_stats)
        centr_fpath_i = os.path.join(
            netw_dir, 'node_centrality_{}.json'.format(I.graph['name']))
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'betw_c_i', floader,
                                               centr_fpath_i)
        all_centr_stats.update(centr_stats)

        centr_name = 'closeness_centrality'
        centr_stats = calc_stats_on_centrality(attacked_nodes_a, centr_name,
                                               'clos_c_a', floader,
                                               centr_fpath_a)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes_b, centr_name,
                                               'clos_c_b', floader,
                                               centr_fpath_b)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'clos_c_ab', floader,
                                               centr_fpath_ab)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'clos_c_i', floader,
                                               centr_fpath_i)
        all_centr_stats.update(centr_stats)

        centr_name = 'indegree_centrality'
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'indeg_c_ab', floader,
                                               centr_fpath_ab)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'indeg_c_i', floader,
                                               centr_fpath_i)
        all_centr_stats.update(centr_stats)

        centr_name = 'katz_centrality'
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'katz_c_ab', floader,
                                               centr_fpath_ab)
        all_centr_stats.update(centr_stats)
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'katz_c_i', floader,
                                               centr_fpath_i)
        all_centr_stats.update(centr_stats)

        centr_name = 'relay_betweenness_centrality'
        centr_fpath_gen = os.path.join(netw_dir,
                                       'node_centrality_general.json')
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'rel_betw_c', floader,
                                               centr_fpath_gen)
        all_centr_stats.update(centr_stats)

        centr_name = 'transm_subst_betweenness_centrality'
        centr_stats = calc_stats_on_centrality(attacked_nodes, centr_name,
                                               'ts_betw_c', floader,
                                               centr_fpath_gen)
        all_centr_stats.update(centr_stats)

        # if we need to create a new file, then remember to add the header
        if os.path.isfile(ml_stats_fpath) is False:
            write_header = True
        else:
            write_header = False

        with open(ml_stats_fpath, 'ab') as ml_stats_file:
            ml_stats_header = [
                'sim_group', 'instance', '#nodes_a', '#edges_a', '#nodes_b',
                '#edges_b', 'p_atkd', 'p_dead', 'p_atkd_a', 'p_dead_a',
                'p_atkd_b', 'p_dead_b'
            ]

            # add statistics about centrality, sorted so they can be more found easily in the output file
            ml_stats_header.extend(
                sorted(all_centr_stats.keys(), key=sf.natural_sort_key))

            if save_attacked_roles is True:
                ml_stats_header.extend([
                    'p_atkd_gen', 'p_atkd_ts', 'p_atkd_ds', 'p_atkd_rel',
                    'p_atkd_cc'
                ])

            ml_stats_header.extend([
                'lost_deg_a', 'lost_deg_b', 'lost_indeg_i', 'lost_rel_betw',
                'lost_ts_betw'
            ])

            if save_death_cause is True:
                ml_stats_header.extend([
                    'p_no_intra_sup_a', 'p_no_inter_sup_a', 'p_no_intra_sup_b',
                    'p_no_inter_sup_b'
                ])
                if inter_support_type == 'realistic':
                    ml_stats_header.extend(
                        ['p_no_sup_ccs', 'p_no_sup_relays', 'p_no_com_path'])

            ml_stats = csv.DictWriter(ml_stats_file,
                                      ml_stats_header,
                                      delimiter='\t',
                                      quoting=csv.QUOTE_MINIMAL)
            if write_header is True:
                ml_stats.writeheader()

            ml_stats_row = {
                'sim_group': sim_group,
                'instance': instance,
                '#nodes_a': node_cnt_a,
                '#edges_a': edge_cnt_a,
                '#nodes_b': node_cnt_b,
                '#edges_b': edge_cnt_b,
                'p_atkd': p_atkd,
                'p_atkd_a': p_atkd_a,
                'p_atkd_b': p_atkd_b,
                'p_dead': p_dead,
                'p_dead_a': p_dead_a,
                'p_dead_b': p_dead_b
            }

            ml_stats_row.update(all_centr_stats)

            if save_attacked_roles is True:
                ml_stats_row.update({
                    'p_atkd_gen': p_atkd_gen,
                    'p_atkd_ts': p_atkd_ts,
                    'p_atkd_ds': p_atkd_ds,
                    'p_atkd_rel': p_atkd_rel,
                    'p_atkd_cc': p_atkd_cc,
                })

            ml_stats_row.update({
                'lost_deg_a': lost_deg_a,
                'lost_deg_b': lost_deg_b,
                'lost_indeg_i': lost_indeg_i,
                'lost_rel_betw': lost_relay_betw,
                'lost_ts_betw': lost_ts_betw
            })

            if save_death_cause is True:
                p_no_intra_sup_a = sf.percent_of_part(intra_sup_deaths_a,
                                                      total_dead_a)
                p_no_inter_sup_a = sf.percent_of_part(inter_sup_deaths_a,
                                                      total_dead_a)
                p_no_intra_sup_b = sf.percent_of_part(intra_sup_deaths_b,
                                                      total_dead_b)
                p_no_inter_sup_b = sf.percent_of_part(inter_sup_deaths_b,
                                                      total_dead_b)
                ml_stats_row.update({
                    'p_no_intra_sup_a': p_no_intra_sup_a,
                    'p_no_inter_sup_a': p_no_inter_sup_a,
                    'p_no_intra_sup_b': p_no_intra_sup_b,
                    'p_no_inter_sup_b': p_no_inter_sup_b
                })

                if inter_support_type == 'realistic':
                    p_no_sup_ccs = sf.percent_of_part(no_sup_ccs_deaths,
                                                      total_dead_a)
                    p_no_sup_relays = sf.percent_of_part(
                        no_sup_relays_deaths, total_dead_a)
                    p_no_com_path = sf.percent_of_part(no_com_path_deaths,
                                                       total_dead_a)
                    ml_stats_row.update({
                        'p_no_sup_ccs': p_no_sup_ccs,
                        'p_no_sup_relays': p_no_sup_relays,
                        'p_no_com_path': p_no_com_path
                    })

            ml_stats.writerow(ml_stats_row)
Ejemplo n.º 10
0
def calc_indegree_centr_fraction(G, nodes):
    tot_indegree = sum(G.in_degree(G.nodes()).values())
    nodes_indegree = sum(G.in_degree(nodes).values())
    fraction = sf.percent_of_part(nodes_indegree, tot_indegree)
    return fraction
Ejemplo n.º 11
0
def check_split_tolerance(total_item_cnt, chosen_item_cnt, desired_perc, perc_tolerance):
    actual_perc = sf.percent_of_part(chosen_item_cnt, total_item_cnt)
    perc_deviation = abs(actual_perc - desired_perc)
    if perc_deviation > perc_tolerance:
        print('Percentage deviation of {}'.format(perc_deviation))
Ejemplo n.º 12
0
def run(conf_fpath, floader):
    global logger
    logger.info('conf_fpath = {}'.format(conf_fpath))

    conf_fpath = os.path.normpath(conf_fpath)
    if os.path.isabs(conf_fpath) is False:
        conf_fpath = os.path.abspath(conf_fpath)
    if not os.path.isfile(conf_fpath):
        raise ValueError(
            'Invalid value for parameter "conf_fpath", no such file.\nPath: ' +
            conf_fpath)
    config = ConfigParser()
    config.read(conf_fpath)

    global time
    time = 0

    # read graphml files and instantiate network graphs

    seed = config.getint('run_opts', 'seed')

    if config.has_option('run_opts', 'save_death_cause'):
        save_death_cause = config.getboolean('run_opts', 'save_death_cause')
    else:
        save_death_cause = False

    # TODO: check if directory/files exist
    netw_dir = os.path.normpath(config.get('paths', 'netw_dir'))
    if os.path.isabs(netw_dir) is False:
        netw_dir = os.path.abspath(netw_dir)
    netw_a_fname = config.get('paths', 'netw_a_fname')
    netw_a_fpath_in = os.path.join(netw_dir, netw_a_fname)
    A = floader.fetch_graphml(netw_a_fpath_in, str)

    netw_b_fname = config.get('paths', 'netw_b_fname')
    netw_b_fpath_in = os.path.join(netw_dir, netw_b_fname)
    B = floader.fetch_graphml(netw_b_fpath_in, str)

    netw_inter_fname = config.get('paths', 'netw_inter_fname')
    netw_inter_fpath_in = os.path.join(netw_dir, netw_inter_fname)
    I = floader.fetch_graphml(netw_inter_fpath_in, str)

    # if the union graph is needed for this simulation, it's better to have it created in advance and just load it
    if config.has_option('paths', 'netw_union_fname'):
        netw_union_fname = config.get('paths', 'netw_union_fname')
        netw_union_fpath_in = os.path.join(netw_dir, netw_union_fname)
        ab_union = floader.fetch_graphml(netw_union_fpath_in, str)
    else:
        ab_union = None

    # read run options

    # nodes that must remain alive no matter what
    safe_nodes = []
    safe_nodes_a = set()
    safe_nodes_b = set()
    if config.has_section('safe_nodes_opts'):
        from_netw = config.get('safe_nodes_opts', 'from_netw')
        safe_sel_tactic = config.get('safe_nodes_opts', 'selection_tactic')
        safe_nodes = choose_nodes_by_config(config, 'safe_nodes_opts',
                                            from_netw, safe_sel_tactic, A, B,
                                            I, ab_union, floader, netw_dir,
                                            seed)

        for node in safe_nodes:
            node_netw = I.node[node]['network']
            if node_netw == A.graph['name']:
                # put the node name in a list, or each char becomes a separate set element
                safe_nodes_a.update([node])
            elif node_netw == B.graph['name']:
                safe_nodes_b.update([node])

    if len(safe_nodes) > 0 and config.has_option('run_opts', 'attacks'):
        logger.info(
            'Nodes marked as safe will not be attacked, so if they get selected to be attacked, the number '
            'of attacked nodes will be lower than specified!')

    attacked_netw = config.get('run_opts', 'attacked_netw')
    attack_tactic = config.get('run_opts', 'attack_tactic')
    attacked_nodes = choose_nodes_by_config(config, 'run_opts', attacked_netw,
                                            attack_tactic, A, B, I, ab_union,
                                            floader, netw_dir, seed)

    intra_support_type = config.get('run_opts', 'intra_support_type')
    if intra_support_type == 'cluster_size':
        min_cluster_size = config.getint('run_opts', 'min_cluster_size')
    inter_support_type = config.get('run_opts', 'inter_support_type')

    # read output paths

    results_dir = os.path.normpath(config.get('paths', 'results_dir'))
    if os.path.isabs(results_dir) is False:
        results_dir = os.path.abspath(results_dir)
    sf.ensure_dir_exists(results_dir)

    # run_stats is a file used to save step-by-step details about this run
    run_stats_fpath = ''
    run_stats_file = None
    run_stats = None
    if config.has_option('paths', 'run_stats_fname'):
        run_stats_fname = config.get('paths', 'run_stats_fname')
        run_stats_fpath = os.path.join(results_dir, run_stats_fname)

    # end_stats is a file used to save a single line (row) of statistics at the end of the simulation
    end_stats_fpath = ''
    if config.has_option('paths', 'end_stats_fpath'):
        end_stats_fpath = os.path.normpath(
            config.get('paths', 'end_stats_fpath'))
        if os.path.isabs(end_stats_fpath) is False:
            end_stats_fpath = os.path.abspath(end_stats_fpath)
        sf.ensure_dir_exists(os.path.dirname(end_stats_fpath))

    # ml_stats is similar to end_stats as it is used to write a line at the end of the simulation,
    # but it gathers statistics used for machine learning
    ml_stats_fpath = ''
    if config.has_option('paths', 'ml_stats_fpath'):
        ml_stats_fpath = os.path.normpath(config.get('paths',
                                                     'ml_stats_fpath'))
        if os.path.isabs(ml_stats_fpath) is False:
            ml_stats_fpath = os.path.abspath(ml_stats_fpath)

    # read information used to identify this simulation run
    sim_group = config.getint('misc', 'sim_group')
    instance = config.getint('misc', 'instance')

    batch_conf_fpath = ''
    if config.has_option('paths', 'batch_conf_fpath'):
        batch_conf_fpath = config.get('paths', 'batch_conf_fpath')

    if config.has_option('misc', 'run'):
        run_num = config.getint('misc', 'run')
    else:
        run_num = 0

    # statistics meant for machine learning are stored in this dictionary
    ml_stats = {
        'batch_conf_fpath': batch_conf_fpath,
        'sim_group': sim_group,
        'instance': instance,
        'run': run_num,
        'seed': seed
    }

    # stability check
    unstable_nodes = set()
    if inter_support_type == 'node_interlink':
        unstable_nodes.update(find_nodes_without_inter_links(A, I))
    # elif inter_support_type == 'cluster_interlink':
    #     unstable_nodes.update(find_nodes_in_unsupported_clusters(A, I))
    elif inter_support_type == 'realistic':
        unstable_nodes.update(find_uncontrolled_pow_nodes(A, B, I))
    else:
        raise ValueError('Invalid value for parameter "inter_support_type": ' +
                         inter_support_type)

    if intra_support_type == 'giant_component':
        unstable_nodes.update(find_nodes_not_in_giant_component(A))
    elif intra_support_type == 'cluster_size':
        unstable_nodes.update(
            find_nodes_in_smaller_clusters(A, min_cluster_size))
    elif intra_support_type == 'realistic':
        unstable_nodes.update(find_unpowered_substations(A))
    else:
        raise ValueError('Invalid value for parameter "intra_support_type": ' +
                         intra_support_type)

    if inter_support_type == 'node_interlink':
        unstable_nodes.update(find_nodes_without_inter_links(B, I))
    # elif inter_support_type == 'cluster_interlink':
    #     unstable_nodes.update(find_nodes_in_unsupported_clusters(B, I))
    elif inter_support_type == 'realistic':
        unstable_nodes.update(find_nodes_without_inter_links(B, I))

    if intra_support_type == 'giant_component':
        unstable_nodes.update(find_nodes_not_in_giant_component(B))
    elif intra_support_type == 'cluster_size':
        unstable_nodes.update(
            find_nodes_in_smaller_clusters(B, min_cluster_size))
    # TODO: find out why we skipped / did not implement stability checks for this case
    # elif intra_support_type == 'realistic':
    #     unstable_nodes.update(list())

    # remove nodes that can't fail
    if len(safe_nodes_a) > 0 or len(safe_nodes_b) > 0:
        unstable_nodes -= safe_nodes_a.union(safe_nodes_b)

    if len(unstable_nodes) > 0:
        logger.debug(
            'Time {}) {} nodes unstable before the initial attack: {}'.format(
                time, len(unstable_nodes),
                sorted(unstable_nodes, key=sf.natural_sort_key)))

    total_dead_a = 0
    total_dead_b = 0
    intra_sup_deaths_a = 0
    intra_sup_deaths_b = 0
    inter_sup_deaths_a = 0
    inter_sup_deaths_b = 0

    # only used if save_death_cause is True and inter_support_type == 'realistic'
    no_sup_ccs_deaths = 0
    no_sup_relays_deaths = 0
    no_com_path_deaths = 0

    base_node_cnt_a = A.number_of_nodes()
    base_node_cnt_b = B.number_of_nodes()

    # execute simulation of failure propagation
    try:
        if run_stats_fpath:
            run_stats_file = open(run_stats_fpath, 'wb')
            run_stats_header = ['time', 'dead']
            run_stats = csv.DictWriter(run_stats_file,
                                       run_stats_header,
                                       delimiter='\t',
                                       quoting=csv.QUOTE_MINIMAL)
            run_stats.writeheader()

        time += 1

        # perform initial attack

        attacked_nodes_a = []  # nodes in network A hit by the initial attack
        attacked_nodes_b = []  # nodes in network B hit by the initial attack
        dead_nodes_a = []
        dead_nodes_b = []
        for node in attacked_nodes:
            node_netw = I.node[node]['network']
            if node_netw == A.graph['name']:
                attacked_nodes_a.append(node)
            elif node_netw == B.graph['name']:
                attacked_nodes_b.append(node)
            else:
                raise RuntimeError(
                    'Node {} network "{}" marked in inter graph is neither A nor B'
                    .format(node, node_netw))

        if ml_stats_fpath:  # if this string is not empty
            ml_stats.update({
                '#atkd':
                len(attacked_nodes_a) + len(attacked_nodes_b),
                '#atkd_a':
                len(attacked_nodes_a),
                '#atkd_b':
                len(attacked_nodes_b)
            })
            ml_stats.update({
                'atkd_nodes_a': attacked_nodes_a,
                'atkd_nodes_b': attacked_nodes_b
            })
            ml_stats.update(
                calc_atk_centr_stats(A.graph['name'], B.graph['name'],
                                     I.graph['name'], ab_union.graph['name'],
                                     attacked_nodes_a, attacked_nodes_b,
                                     floader, netw_dir))

            result_key_by_role = {
                'generator': 'p_atkd_gen',
                'transmission_substation': 'p_atkd_ts',
                'distribution_substation': 'p_atkd_ds'
            }
            ml_stats.update(
                calc_atkd_percent_by_role(A, attacked_nodes_a,
                                          result_key_by_role))

            result_key_by_role = {
                'relay': 'p_atkd_rel',
                'controller': 'p_atkd_cc'
            }
            ml_stats.update(
                calc_atkd_percent_by_role(B, attacked_nodes_b,
                                          result_key_by_role))

        total_dead_a = len(attacked_nodes_a)
        if total_dead_a > 0:
            dead_nodes_a.extend(attacked_nodes_a)
            A.remove_nodes_from(attacked_nodes_a)
            logger.info(
                'Time {}) {} nodes of network {} failed because of initial attack: {}'
                .format(time, total_dead_a, A.graph['name'],
                        sorted(attacked_nodes_a, key=sf.natural_sort_key)))

        total_dead_b = len(attacked_nodes_b)
        if total_dead_b > 0:
            dead_nodes_b.extend(attacked_nodes_b)
            B.remove_nodes_from(attacked_nodes_b)
            logger.info(
                'Time {}) {} nodes of network {} failed because of initial attack: {}'
                .format(time, total_dead_b, B.graph['name'],
                        sorted(attacked_nodes_b, key=sf.natural_sort_key)))

        if total_dead_a == total_dead_b == 0:
            logger.info('Time {}) No nodes were attacked'.format(time))

        I.remove_nodes_from(attacked_nodes)

        # save_state(time, A, B, I, results_dir)
        if run_stats is not None:
            run_stats.writerow({'time': time, 'dead': attacked_nodes})

        updated = True
        time += 1

        # phase checks

        while updated is True:
            updated = False

            # inter checks for network A
            if inter_support_type == 'node_interlink':
                unsupported_nodes_a = find_nodes_without_inter_links(A, I)
            # elif inter_support_type == 'cluster_interlink':
            #     unsupported_nodes_a = find_nodes_in_unsupported_clusters(A, I)
            elif inter_support_type == 'realistic':
                unsupported_nodes_a = find_uncontrolled_pow_nodes(
                    A, B, I, save_death_cause)

            if save_death_cause is False:
                unsupported_nodes_a = remove_list_items(
                    unsupported_nodes_a, safe_nodes_a)
            elif inter_support_type == 'realistic':  # save_death_cause is True
                remove_items_from_lists_in_dict(unsupported_nodes_a,
                                                safe_nodes_a)
                no_sup_ccs_deaths += len(unsupported_nodes_a['no_sup_ccs'])
                no_sup_relays_deaths += len(
                    unsupported_nodes_a['no_sup_relays'])
                no_com_path_deaths += len(unsupported_nodes_a['no_com_path'])
                temp_list = []
                for node_list in unsupported_nodes_a.values(
                ):  # convert dictionary of lists into a simple list
                    temp_list.extend(node_list)
                unsupported_nodes_a = temp_list

            failed_cnt_a = len(unsupported_nodes_a)
            if failed_cnt_a > 0:
                logger.info(
                    'Time {}) {} nodes of network {} failed for lack of inter support: {}'
                    .format(
                        time, failed_cnt_a, A.graph['name'],
                        sorted(unsupported_nodes_a, key=sf.natural_sort_key)))
                total_dead_a += failed_cnt_a
                inter_sup_deaths_a += failed_cnt_a
                dead_nodes_a.extend(unsupported_nodes_a)
                A.remove_nodes_from(unsupported_nodes_a)
                I.remove_nodes_from(unsupported_nodes_a)
                updated = True
                # save_state(time, A, B, I, results_dir)
                if run_stats is not None:
                    run_stats.writerow({
                        'time': time,
                        'dead': unsupported_nodes_a
                    })
            time += 1

            # intra checks for network A
            if intra_support_type == 'giant_component':
                unsupported_nodes_a = find_nodes_not_in_giant_component(A)
            elif intra_support_type == 'cluster_size':
                unsupported_nodes_a = find_nodes_in_smaller_clusters(
                    A, min_cluster_size)
            elif intra_support_type == 'realistic':
                unsupported_nodes_a = find_unpowered_substations(A)

            unsupported_nodes_a = remove_list_items(unsupported_nodes_a,
                                                    safe_nodes_a)
            failed_cnt_a = len(unsupported_nodes_a)
            if failed_cnt_a > 0:
                logger.info(
                    'Time {}) {} nodes of network {} failed for lack of intra support: {}'
                    .format(
                        time, failed_cnt_a, A.graph['name'],
                        sorted(unsupported_nodes_a, key=sf.natural_sort_key)))
                total_dead_a += failed_cnt_a
                intra_sup_deaths_a += failed_cnt_a
                dead_nodes_a.extend(unsupported_nodes_a)
                A.remove_nodes_from(unsupported_nodes_a)
                I.remove_nodes_from(unsupported_nodes_a)
                updated = True
                # save_state(time, A, B, I, results_dir)
                if run_stats is not None:
                    run_stats.writerow({
                        'time': time,
                        'dead': unsupported_nodes_a
                    })
            time += 1

            # inter checks for network B
            if inter_support_type == 'node_interlink':
                unsupported_nodes_b = find_nodes_without_inter_links(B, I)
            # elif inter_support_type == 'cluster_interlink':
            #     unsupported_nodes_b = find_nodes_in_unsupported_clusters(B, I)
            elif inter_support_type == 'realistic':
                unsupported_nodes_b = find_nodes_without_inter_links(B, I)

            unsupported_nodes_b = remove_list_items(unsupported_nodes_b,
                                                    safe_nodes_b)
            failed_cnt_b = len(unsupported_nodes_b)
            if failed_cnt_b > 0:
                logger.info(
                    'Time {}) {} nodes of network {} failed for lack of inter support: {}'
                    .format(
                        time, failed_cnt_b, B.graph['name'],
                        sorted(unsupported_nodes_b, key=sf.natural_sort_key)))
                total_dead_b += failed_cnt_b
                inter_sup_deaths_b += failed_cnt_b
                dead_nodes_b.extend(unsupported_nodes_b)
                B.remove_nodes_from(unsupported_nodes_b)
                I.remove_nodes_from(unsupported_nodes_b)
                updated = True
                # save_state(time, A, B, I, results_dir)
                if run_stats is not None:
                    run_stats.writerow({
                        'time': time,
                        'dead': unsupported_nodes_b
                    })
            time += 1

            # intra checks for network B
            if intra_support_type == 'giant_component':
                unsupported_nodes_b = find_nodes_not_in_giant_component(B)
            elif intra_support_type == 'cluster_size':
                unsupported_nodes_b = find_nodes_in_smaller_clusters(
                    B, min_cluster_size)
            elif intra_support_type == 'realistic':
                # in the realistic model, telecom nodes can survive without intra support, they just cant't communicate
                unsupported_nodes_b = []

            unsupported_nodes_b = remove_list_items(unsupported_nodes_b,
                                                    safe_nodes_b)
            failed_cnt_b = len(unsupported_nodes_b)
            if failed_cnt_b > 0:
                logger.info(
                    'Time {}) {} nodes of network {} failed for lack of intra support: {}'
                    .format(
                        time, failed_cnt_b, B.graph['name'],
                        sorted(unsupported_nodes_b, key=sf.natural_sort_key)))
                total_dead_b += failed_cnt_b
                intra_sup_deaths_b += failed_cnt_b
                dead_nodes_b.extend(unsupported_nodes_b)
                B.remove_nodes_from(unsupported_nodes_b)
                I.remove_nodes_from(unsupported_nodes_b)
                updated = True
                # save_state(time, A, B, I, results_dir)
                if run_stats is not None:
                    run_stats.writerow({
                        'time': time,
                        'dead': unsupported_nodes_b
                    })
            time += 1
    except:
        if run_stats_file is not None:
            run_stats_file.close()
        raise

    # save_state('final', A, B, I, results_dir)

    # write statistics about the final result

    if end_stats_fpath:  # if this string is not empty
        end_stats_file_existed = os.path.isfile(end_stats_fpath)
        with open(end_stats_fpath, 'ab') as end_stats_file:
            end_stats_header = [
                'batch_conf_fpath', 'sim_group', 'instance', 'run', '#dead',
                '#dead_a', '#dead_b'
            ]

            if save_death_cause is True:
                end_stats_header.extend([
                    'no_intra_sup_a', 'no_inter_sup_a', 'no_intra_sup_b',
                    'no_inter_sup_b'
                ])
                if inter_support_type == 'realistic':
                    end_stats_header.extend(
                        ['no_sup_ccs', 'no_sup_relays', 'no_com_path'])

            end_stats_writer = csv.DictWriter(end_stats_file,
                                              end_stats_header,
                                              delimiter='\t',
                                              quoting=csv.QUOTE_MINIMAL)
            if end_stats_file_existed is False:
                end_stats_writer.writeheader()

            end_stats_row = {
                'batch_conf_fpath': batch_conf_fpath,
                'sim_group': sim_group,
                'instance': instance,
                'run': run_num,
                '#dead': total_dead_a + total_dead_b,
                '#dead_a': total_dead_a,
                '#dead_b': total_dead_b
            }

            if save_death_cause is True:
                end_stats_row.update({
                    'no_intra_sup_a': intra_sup_deaths_a,
                    'no_inter_sup_a': inter_sup_deaths_a,
                    'no_intra_sup_b': intra_sup_deaths_b,
                    'no_inter_sup_b': inter_sup_deaths_b
                })
                if inter_support_type == 'realistic':
                    end_stats_row.update({
                        'no_sup_ccs': no_sup_ccs_deaths,
                        'no_sup_relays': no_sup_relays_deaths,
                        'no_com_path': no_com_path_deaths
                    })
            end_stats_writer.writerow(end_stats_row)

    if ml_stats_fpath:  # if this string is not empty

        # percentages of dead nodes over the initial number of nodes in the graph
        ml_stats['p_dead_a'] = sf.percent_of_part(total_dead_a,
                                                  base_node_cnt_a)
        ml_stats['p_dead_b'] = sf.percent_of_part(total_dead_b,
                                                  base_node_cnt_b)
        ml_stats['p_dead'] = sf.percent_of_part(
            total_dead_a + total_dead_b, base_node_cnt_a + base_node_cnt_b)
        ml_stats['dead_nodes_a'] = dead_nodes_a
        ml_stats['dead_nodes_b'] = dead_nodes_b
        ml_stats['dead_count_a'] = len(dead_nodes_a)
        ml_stats['dead_count_b'] = len(dead_nodes_b)
        ml_stats['dead_count'] = len(dead_nodes_a) + len(dead_nodes_b)

        if config.has_section('safe_nodes_opts'):
            ml_stats['safe_count'] = len(safe_nodes)

        ml_stats_file_existed = os.path.isfile(ml_stats_fpath)
        with open(ml_stats_fpath, 'ab') as ml_stats_file:

            # sort statistics columns by name so they can be more found easily in the output file
            ml_stats_header = sorted(ml_stats.keys(), key=sf.natural_sort_key)

            ml_stats_writer = csv.DictWriter(ml_stats_file,
                                             ml_stats_header,
                                             delimiter='\t',
                                             quoting=csv.QUOTE_MINIMAL)
            if ml_stats_file_existed is False:
                ml_stats_writer.writeheader()

            ml_stats_writer.writerow(ml_stats)
Ejemplo n.º 13
0
def calc_atk_centr_stats(name_A, name_B, name_I, name_AB, attacked_nodes_a,
                         attacked_nodes_b, floader, netw_dir):
    attacked_nodes = attacked_nodes_a + attacked_nodes_b
    centr_stats = {}

    # load files with precalculated centrality metrics
    centr_fpath_a = os.path.join(netw_dir,
                                 'node_centrality_{}.json'.format(name_A))
    centr_info_a = floader.fetch_json(centr_fpath_a)
    centr_fpath_b = os.path.join(netw_dir,
                                 'node_centrality_{}.json'.format(name_B))
    centr_info_b = floader.fetch_json(centr_fpath_b)
    centr_fpath_ab = os.path.join(netw_dir,
                                  'node_centrality_{}.json'.format(name_AB))
    centr_info_ab = floader.fetch_json(centr_fpath_ab)
    centr_fpath_i = os.path.join(netw_dir,
                                 'node_centrality_{}.json'.format(name_I))
    centr_info_i = floader.fetch_json(centr_fpath_i)
    centr_fpath_gen = os.path.join(netw_dir, 'node_centrality_misc.json')
    centr_info_misc = floader.fetch_json(centr_fpath_gen)

    node_cnt_a = centr_info_a['node_count']
    centr_stats['p_atkd_a'] = sf.percent_of_part(len(attacked_nodes_a),
                                                 node_cnt_a)

    node_cnt_b = centr_info_b['node_count']
    centr_stats['p_atkd_b'] = sf.percent_of_part(len(attacked_nodes_b),
                                                 node_cnt_b)

    centr_name = 'betweenness_centrality'
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes_a, centr_name,
                                  'atkd_betw_c_a', centr_info_a))
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes_b, centr_name,
                                  'atkd_betw_c_b', centr_info_b))
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes, centr_name, 'atkd_betw_c_ab',
                                  centr_info_ab))
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes, centr_name, 'atkd_betw_c_i',
                                  centr_info_i))

    centr_name = 'closeness_centrality'
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes_a, centr_name,
                                  'atkd_clos_c_a', centr_info_a))
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes_b, centr_name,
                                  'atkd_clos_c_b', centr_info_b))
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes, centr_name, 'atkd_clos_c_ab',
                                  centr_info_ab))
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes, centr_name, 'atkd_clos_c_i',
                                  centr_info_i))

    centr_name = 'degree_centrality'
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes_a, centr_name, 'atkd_deg_c_a',
                                  centr_info_a))
    centr_stats.update(
        calc_atk_centrality_stats(attacked_nodes_b, centr_name, 'atkd_deg_c_b',
                                  centr_info_b))

    centr_name = 'indegree_centrality'
    if centr_name in centr_info_ab:
        centr_stats.update(
            calc_atk_centrality_stats(attacked_nodes, centr_name,
                                      'atkd_indeg_c_ab', centr_info_ab))
    if centr_name in centr_info_i:
        centr_stats.update(
            calc_atk_centrality_stats(attacked_nodes, centr_name,
                                      'atkd_indeg_c_i', centr_info_i))

    centr_name = 'katz_centrality'
    if centr_name in centr_info_ab:
        centr_stats.update(
            calc_atk_centrality_stats(attacked_nodes, centr_name,
                                      'atkd_katz_c_ab', centr_info_ab))
    if centr_name in centr_info_i:
        centr_stats.update(
            calc_atk_centrality_stats(attacked_nodes, centr_name,
                                      'atkd_katz_c_i', centr_info_i))

    centr_name = 'relay_betweenness_centrality'
    if centr_name in centr_info_misc:
        centr_info_misc['node_count'] = centr_info_misc[
            'relay_count']  # trick to reuse the same logic
        centr_stats.update(
            calc_atk_centrality_stats(attacked_nodes, centr_name,
                                      'atkd_rel_betw_c', centr_info_misc))

    centr_name = 'transm_subst_betweenness_centrality'
    if centr_name in centr_info_misc:
        centr_info_misc['node_count'] = centr_info_misc[
            'transmission_substation_count']  # trick
        centr_stats.update(
            calc_atk_centrality_stats(attacked_nodes, centr_name,
                                      'atkd_ts_betw_c', centr_info_misc))

    return centr_stats
Ejemplo n.º 14
0
def calc_atk_centrality_stats(attacked_nodes, centrality_name,
                              result_key_suffix, centrality_info):
    global logger
    centr_stats = {}  # dictionary used to index statistics with shorter names

    node_cnt = centrality_info['node_count']
    centr_by_node = centrality_info[centrality_name]

    # sum the centrality scores of the attacked nodes
    atkd_centr_sum = 0.0
    total_centr = centrality_info['total_' + centrality_name]
    for node in attacked_nodes:
        atkd_centr_sum += centr_by_node[node]
    stat_name = 'sum_' + result_key_suffix
    centr_stats[stat_name] = atkd_centr_sum
    stat_name = 'p_tot_' + result_key_suffix
    centr_stats[stat_name] = sf.percent_of_part(atkd_centr_sum, total_centr)

    # count how many nodes were attacked in each quintile
    quintiles = centrality_info[centrality_name + '_quintiles']
    atkd_cnt_by_quintile = [0] * 5
    quintiles_set = set(quintiles)
    if len(quintiles_set) == len(quintiles):
        for node in attacked_nodes:
            node_quintile = 0
            node_centr = centr_by_node[node]
            for quintile_val in quintiles:
                if node_centr > quintile_val:
                    node_quintile += 1
                else:
                    break
            atkd_cnt_by_quintile[node_quintile] += 1
    else:
        # this is a corner case presented by graphs in which many nodes have identical centrality scores, like in
        # random regular graphs. To determine what quintile each node belongs to, we check their position in our
        # deterministic ranking, where they are sorted by their centrality score first and then by their id
        # logger.info('There are only {} different quintiles for centrality {}'.format(len(quintiles_set),
        #                                                                              centrality_name))
        ranked_nodes = centrality_info[centrality_name + '_rank']
        # find the positions that separate the quintiles
        rank_of_quintiles = percentile(range(0, node_cnt),
                                       [20, 40, 60, 80]).tolist()
        logger.debug('rank_of_quintiles {}'.format(rank_of_quintiles))

        for node in attacked_nodes:
            node_quintile = 0
            node_rank = ranked_nodes.index(node)
            for quintile_rank in rank_of_quintiles:
                if node_rank > quintile_rank:
                    node_quintile += 1
                else:
                    break
            atkd_cnt_by_quintile[node_quintile] += 1

    logger.debug('atkd_cnt_by_quintile {}'.format(atkd_cnt_by_quintile))

    nodes_in_quintile = 1.0 * node_cnt / 5
    logger.debug('nodes_in_quintile {}'.format(nodes_in_quintile))

    # calculate the percentage of nodes attacked in each quintile
    atkd_perc_of_quintile = [0.0] * 5
    for i in range(0, 5):
        atkd_perc_of_quintile[i] = sf.percent_of_part(atkd_cnt_by_quintile[i],
                                                      nodes_in_quintile)
    logger.debug('atkd_perc_of_quintile {}'.format(atkd_perc_of_quintile))

    # p_q_1 is fraction of nodes attacked in the first quintile
    for i, val in enumerate(atkd_perc_of_quintile):
        stat_name = 'p_q_{}_{}'.format(i + 1, result_key_suffix)
        centr_stats[stat_name] = val

    return centr_stats