Ejemplo n.º 1
0
def helicity(prof, lower, upper, stu=0, stv=0, dp=-1, exact=True):
    '''
    Calculates the relative helicity (m2/s2) of a layer from lower to upper.
    If storm-motion vector is supplied, storm-relative helicity, both
    positve and negative, is returned.

    Parameters
    ----------
    prof : profile object
        Profile Object
    lower : number
        Bottom level of layer (m, AGL)
    upper : number
        Top level of layer (m, AGL)
    stu : number (optional; default = 0)
        U-component of storm-motion
    stv : number (optional; default = 0)
        V-component of storm-motion
    dp : negative integer (optional; default -1)
        The pressure increment for the interpolated sounding
    exact : bool (optional; default = True)
        Switch to choose between using the exact data (slower) or using
        interpolated sounding at 'dp' pressure levels (faster)

    Returns
    -------
    phel+nhel : number
        Combined Helicity (m2/s2)
    phel : number
        Positive Helicity (m2/s2)
    nhel : number
        Negative Helicity (m2/s2)

    '''
    if lower != upper:
        lower = interp.to_msl(prof, lower)
        upper = interp.to_msl(prof, upper)
        plower = interp.pres(prof, lower)
        pupper = interp.pres(prof, upper)
        if exact:
            ind1 = np.where(plower >= prof.pres)[0].min()
            ind2 = np.where(pupper <= prof.pres)[0].max()
            u1, v1 = interp.components(prof, plower)
            u2, v2 = interp.components(prof, pupper)
            u = np.concatenate([[u1], prof.u[ind1:ind2 + 1].compressed(),
                                [u2]])
            v = np.concatenate([[v1], prof.v[ind1:ind2 + 1].compressed(),
                                [v2]])
        else:
            ps = np.arange(plower, pupper + dp, dp)
            u, v = interp.components(prof, ps)
        sru = utils.KTS2MS(u - stu)
        srv = utils.KTS2MS(v - stv)
        layers = (sru[1:] * srv[:-1]) - (sru[:-1] * srv[1:])
        phel = layers[layers > 0].sum()
        nhel = layers[layers < 0].sum()
    else:
        phel = nhel = 0

    return phel + nhel, phel, nhel
Ejemplo n.º 2
0
def lapse_rate(lower, upper, prof, pres=1):
    '''
    Calculates the lapse rate (C/km) from a profile object

    Inputs
    ------
        lower       (float)             Lower Bound of lapse rate
        upper       (float)             Upper Bound of lapse rate
        prof        (profile object)    Profile Object
        pres        (int 0/1)           Flag to know to convert pres to height

    Returns
    -------
        lapse rate  (float [C/km])
    '''
    if pres:
        p1 = lower
        p2 = upper
        z1 = interp.hght(lower, prof)
        z2 = interp.hght(upper, prof)
    else:
        z1 = interp.msl(lower, prof)
        z2 = interp.msl(upper, prof)
        p1 = interp.pres(z1, prof)
        p2 = interp.pres(z2, prof)

    tv1 = interp.vtmp(p1, prof)
    tv2 = interp.vtmp(p2, prof)
    if not QC(tv1) or not QC(tv2): return RMISSD
    return (tv2 - tv1) / (z2 - z1) * -1000.
Ejemplo n.º 3
0
def lapse_rate(lower, upper, prof, pres=1):
    '''
    Calculates the lapse rate (C/km) from a profile object

    Inputs
    ------
        lower       (float)             Lower Bound of lapse rate
        upper       (float)             Upper Bound of lapse rate
        prof        (profile object)    Profile Object
        pres        (int 0/1)           Flag to know to convert pres to height

    Returns
    -------
        lapse rate  (float [C/km])
    '''
    if pres:
        p1 = lower
        p2 = upper
        z1 = interp.hght(lower, prof)
        z2 = interp.hght(upper, prof)
    else:
        z1 = interp.msl(lower, prof)
        z2 = interp.msl(upper, prof)
        p1 = interp.pres(z1, prof)
        p2 = interp.pres(z2, prof)

    tv1 = interp.vtmp(p1, prof)
    tv2 = interp.vtmp(p2, prof)
    if not QC(tv1) or not QC(tv2): return RMISSD
    return (tv2 - tv1) / (z2 - z1) * -1000.
Ejemplo n.º 4
0
def helicity(prof, lower, upper, stu=0, stv=0, dp=-1, exact=True):
    '''
    Calculates the relative helicity (m2/s2) of a layer from lower to upper.
    If storm-motion vector is supplied, storm-relative helicity, both
    positve and negative, is returned.

    Parameters
    ----------
    prof : profile object
        Profile Object
    lower : number
        Bottom level of layer (m, AGL)
    upper : number
        Top level of layer (m, AGL)
    stu : number (optional; default = 0)
        U-component of storm-motion
    stv : number (optional; default = 0)
        V-component of storm-motion
    dp : negative integer (optional; default -1)
        The pressure increment for the interpolated sounding
    exact : bool (optional; default = True)
        Switch to choose between using the exact data (slower) or using
        interpolated sounding at 'dp' pressure levels (faster)

    Returns
    -------
    phel+nhel : number
        Combined Helicity (m2/s2)
    phel : number
        Positive Helicity (m2/s2)
    nhel : number
        Negative Helicity (m2/s2)

    '''
    if lower != upper:
        lower = interp.to_msl(prof, lower)
        upper = interp.to_msl(prof, upper)
        plower = interp.pres(prof, lower)
        pupper = interp.pres(prof, upper)
        if np.isnan(plower) or np.isnan(pupper):
            return np.ma.masked, np.ma.masked, np.ma.masked
        if exact:
            ind1 = np.where(plower >= prof.pres)[0].min()
            ind2 = np.where(pupper <= prof.pres)[0].max()
            u1, v1 = interp.components(prof, plower)
            u2, v2 = interp.components(prof, pupper)
            u = np.concatenate([[u1], prof.u[ind1:ind2+1].compressed(), [u2]])
            v = np.concatenate([[v1], prof.v[ind1:ind2+1].compressed(), [v2]])
        else:
            ps = np.arange(plower, pupper+dp, dp)
            u, v = interp.components(prof, ps)
        sru = utils.KTS2MS(u - stu)
        srv = utils.KTS2MS(v - stv)
        layers = (sru[1:] * srv[:-1]) - (sru[:-1] * srv[1:])
        phel = layers[layers > 0].sum()
        nhel = layers[layers < 0].sum()
    else:
        phel = nhel = 0

    return phel+nhel, phel, nhel
Ejemplo n.º 5
0
def max_wind(prof, lower, upper, all=False):
    '''
    Finds the maximum wind speed of the layer given by lower and upper levels.
    In the event of the maximum wind speed occurring at multiple levels, the
    lowest level it occurs is returned by default.

    Parameters
    ----------
    prof : profile object
        Profile Object
    lower : number
        Bottom level of layer (m, AGL)
    upper : number
        Top level of layer (m, AGL)
    all : Boolean
        Switch to change the output to sorted wind levels or maximum level.

    Returns
    -------
    p : number, numpy array
        Pressure level (hPa) of max wind speed
    maxu : number, numpy array
        Maximum Wind Speed U-component (kts)
    maxv : number, numpy array
        Maximum Wind Speed V-component (kts)

    '''
    if prof.wdir.count() == 0 or not utils.QC(lower) or not utils.QC(upper):
        return ma.masked, ma.masked, ma.masked

    lower = interp.to_msl(prof, lower)
    upper = interp.to_msl(prof, upper)
    plower = interp.pres(prof, lower)
    pupper = interp.pres(prof, upper)
    if np.ma.is_masked(plower) or np.ma.is_masked(pupper):
        warnings.warn(
            "winds.max_wind() was unable to interpolate between height and pressure correctly.  This may be due to a data integrity issue."
        )
        return ma.masked, ma.masked, ma.masked
    #print(lower, upper, plower, pupper, prof.pres)
    ind1 = np.where((plower > prof.pres)
                    | (np.isclose(plower, prof.pres)))[0][0]
    ind2 = np.where((pupper < prof.pres)
                    | (np.isclose(pupper, prof.pres)))[0][-1]

    if len(prof.wspd[ind1:ind2 + 1]) == 0 or ind1 == ind2:
        maxu, maxv = utils.vec2comp([prof.wdir[ind1]], [prof.wspd[ind1]])
        return maxu, maxv, prof.pres[ind1]

    arr = prof.wspd[ind1:ind2 + 1]
    inds = np.ma.argsort(arr)
    inds = inds[~arr[inds].mask][::-1]
    maxu, maxv = utils.vec2comp(prof.wdir[ind1:ind2 + 1][inds],
                                prof.wspd[ind1:ind2 + 1][inds])
    if all:
        return maxu, maxv, prof.pres[inds]
    else:
        return maxu[0], maxv[0], prof.pres[inds[0]]
Ejemplo n.º 6
0
def non_parcel_bunkers_motion_experimental(prof):
    '''
        Compute the Bunkers Storm Motion for a Right Moving Supercell
        
        Parameters
        ----------
        prof : profile object
            Profile Object
        
        Returns
        -------
        rstu : number
            Right Storm Motion U-component (kts)
        rstv : number
            Right Storm Motion V-component (kts)
        lstu : number
            Left Storm Motion U-component (kts)
        lstv : number
            Left Storm Motion V-component (kts)
        
        '''
    if prof.wdir.count() == 0:
        return ma.masked, ma.masked, ma.masked, ma.masked

    d = utils.MS2KTS(7.5)  # Deviation value emperically derived as 7.5 m/s
    ## get the msl height of 500m, 5.5km, and 6.0km above the surface
    msl500m = interp.to_msl(prof, 500.)
    msl5500m = interp.to_msl(prof, 5500.)
    msl6000m = interp.to_msl(prof, 6000.)

    ## get the pressure of the surface, 500m, 5.5km, and 6.0km levels
    psfc = prof.pres[prof.sfc]
    p500m = interp.pres(prof, msl500m)
    p5500m = interp.pres(prof, msl5500m)
    p6000m = interp.pres(prof, msl6000m)

    ## sfc-500m Mean Wind
    mnu500m, mnv500m = mean_wind(prof, psfc, p500m)

    ## 5.5km-6.0km Mean Wind
    mnu5500m_6000m, mnv5500m_6000m = mean_wind(prof, p5500m, p6000m)

    # shear vector of the two mean winds
    shru = mnu5500m_6000m - mnu500m
    shrv = mnv5500m_6000m - mnv500m

    # SFC-6km Mean Wind
    mnu6, mnv6 = mean_wind(prof, psfc, p6000m)

    # Bunkers Right Motion
    tmp = d / utils.mag(shru, shrv)
    rstu = mnu6 + (tmp * shrv)
    rstv = mnv6 - (tmp * shru)
    lstu = mnu6 - (tmp * shrv)
    lstv = mnv6 + (tmp * shru)

    return rstu, rstv, lstu, lstv
Ejemplo n.º 7
0
def test_pres():
    input_z = 1000.
    correct_p = 903.8343884049208
    returned_p = interp.pres(prof, input_z)
    npt.assert_almost_equal(returned_p, correct_p)

    input_z = [1000., 3000., 6000.]
    correct_p = np.asarray([903.834388405, 710.02200544, 482.16636819])
    returned_p = interp.pres(prof, input_z)
    npt.assert_almost_equal(returned_p, correct_p)
Ejemplo n.º 8
0
def test_pres():
    input_z = 1000.
    correct_p = 903.8343884049208
    returned_p = interp.pres(prof, input_z)
    npt.assert_almost_equal(returned_p, correct_p)

    input_z = [1000., 3000., 6000.]
    correct_p = np.asarray([903.834388405, 710.02200544, 482.16636819])
    returned_p = interp.pres(prof, input_z)
    npt.assert_almost_equal(returned_p, correct_p)
def test_wind_shear():
    agl1 = 0
    agl2 = 1000
    msl1 = interp.to_msl(prof, agl1)
    msl2 = interp.to_msl(prof, agl2)
    pbot = interp.pres(prof, msl1)
    ptop = interp.pres(prof, msl2)
    correct_u, correct_v = -2.625075135691132, 10.226725739920353
    returned = winds.wind_shear(prof, pbot, ptop)
    npt.assert_almost_equal(returned, [correct_u, correct_v])
Ejemplo n.º 10
0
def test_wind_shear():
    agl1 = 0
    agl2 = 1000
    msl1 = interp.to_msl(prof, agl1)
    msl2 = interp.to_msl(prof, agl2)
    pbot = interp.pres(prof, msl1)
    ptop = interp.pres(prof, msl2)
    correct_u, correct_v = -2.625075135691132, 10.226725739920353
    returned = winds.wind_shear(prof, pbot, ptop)
    npt.assert_almost_equal(returned, [correct_u, correct_v])
Ejemplo n.º 11
0
def bulk_rich(pcl, prof):
    '''
    Calculates the Bulk Richardson Number for a given parcel.

    Inputs
    ------
        pcl         (parcel object)         Parcel Object
        prof        (profile object)        Profile Object

    Returns
    -------
        Bulk Richardson Number
    '''
    # Make sure parcel is initialized
    if pcl.lplvals.flag == RMISSD:
        pbot = RMISSD
    elif pcl.lplvals.flag > 0 and pcl.lplvals.flag < 4:
        ptop = interp.pres(interp.msl(6000., prof), prof)
        pbot = prof.gSndg[prof.sfc][prof.pind]
    else:
        h0 = interp.hght(pcl.pres, prof)
        try:
            pbot = interp.pres(h0 - 500., prof)
        except:
            pbot = RMISSD
        if not QC(pbot): pbot = prof.gSndg[prof.sfc][prof.pind]
        h1 = interp.hght(pbot, prof)
        ptop = interp.pres(h1 + 6000., prof)

    if not QC(pbot) or not QC(ptop):
        pcl.brnshear = RMISSD
        pcl.brn = RMISSD
        return pcl

    # Calculate lowest 500m mean wind
    p = interp.pres(interp.hght(pbot, prof) + 500., prof)
    mnlu, mnlv = winds.mean_wind(pbot, p, prof)

    # Calculate the 6000m mean wind
    mnuu, mnuv = winds.mean_wind(pbot, ptop, prof)

    # Make sure CAPE and Shear are available
    if not QC(pcl.bplus) or not QC(mnlu) or not QC(mnuu):
        pcl.brnshear = RMISSD
        pcl.brn = RMISSD
        return pcl

    # Calculate shear between levels
    dx = mnuu - mnlu
    dy = mnuv - mnlv

    pcl.brnshear = KTS2MS(vector.comp2vec(dx, dy)[1])
    pcl.brnshear = pcl.brnshear**2 / 2.
    pcl.brn = pcl.bplus / pcl.brnshear
    return pcl
Ejemplo n.º 12
0
def bulk_rich(pcl, prof):
    '''
    Calculates the Bulk Richardson Number for a given parcel.

    Inputs
    ------
        pcl         (parcel object)         Parcel Object
        prof        (profile object)        Profile Object

    Returns
    -------
        Bulk Richardson Number
    '''
    # Make sure parcel is initialized
    if pcl.lplvals.flag == RMISSD:
        pbot = RMISSD
    elif pcl.lplvals.flag > 0 and pcl.lplvals.flag < 4:
        ptop = interp.pres(interp.msl(6000., prof), prof)
        pbot = prof.gSndg[prof.sfc][prof.pind]
    else:
        h0 = interp.hght(pcl.pres, prof)
        try:
            pbot = interp.pres(h0 - 500., prof)
        except:
            pbot = RMISSD
        if not QC(pbot): pbot = prof.gSndg[prof.sfc][prof.pind]
        h1 = interp.hght(pbot, prof)
        ptop = interp.pres(h1 + 6000., prof)

    if not QC(pbot) or not QC(ptop):
        pcl.brnshear = RMISSD
        pcl.brn = RMISSD
        return pcl

    # Calculate lowest 500m mean wind
    p = interp.pres(interp.hght(pbot, prof) + 500., prof)
    mnlu, mnlv = winds.mean_wind(pbot, p, prof)

    # Calculate the 6000m mean wind
    mnuu, mnuv = winds.mean_wind(pbot, ptop, prof)

    # Make sure CAPE and Shear are available
    if not QC(pcl.bplus) or not QC(mnlu) or not QC(mnuu):
        pcl.brnshear = RMISSD
        pcl.brn = RMISSD
        return pcl

    # Calculate shear between levels
    dx = mnuu - mnlu
    dy = mnuv - mnlv

    pcl.brnshear = KTS2MS(vector.comp2vec(dx, dy)[1])
    pcl.brnshear = pcl.brnshear**2 / 2.
    pcl.brn = pcl.bplus / pcl.brnshear
    return pcl
Ejemplo n.º 13
0
def non_parcel_bunkers_motion_experimental(prof):
    '''
        Compute the Bunkers Storm Motion for a Right Moving Supercell
        
        Inputs
        ------
        prof : profile object
        Profile Object
        
        Returns
        -------
        rstu : number
        Right Storm Motion U-component
        rstv : number
        Right Storm Motion V-component
        lstu : number
        Left Storm Motion U-component
        lstv : number
        Left Storm Motion V-component
        
        '''
    d = utils.MS2KTS(7.5)     # Deviation value emperically derived as 7.5 m/s
    ## get the msl height of 500m, 5.5km, and 6.0km above the surface
    msl500m = interp.to_msl(prof, 500.)
    msl5500m = interp.to_msl(prof, 5500.)
    msl6000m = interp.to_msl(prof, 6000.)
    
    ## get the pressure of the surface, 500m, 5.5km, and 6.0km levels
    psfc = prof.pres[prof.sfc]
    p500m = interp.pres(prof, msl500m)
    p5500m = interp.pres(prof, msl5500m)
    p6000m = interp.pres(prof, msl6000m)
    
    ## sfc-500m Mean Wind
    mnu500m, mnv500m = mean_wind(prof, psfc, p500m)
    
    ## 5.5km-6.0km Mean Wind
    mnu5500m_6000m, mnv5500m_6000m = mean_wind(prof, p5500m, p6000m)
    
    # shear vector of the two mean winds
    shru = mnu5500m_6000m - mnu500m
    shrv = mnv5500m_6000m - mnv500m
    
    # SFC-6km Mean Wind
    mnu6, mnv6 = mean_wind(prof, psfc, p6000m)
    
    # Bunkers Right Motion
    tmp = d / utils.mag(shru, shrv)
    rstu = mnu6 + (tmp * shrv)
    rstv = mnv6 - (tmp * shru)
    lstu = mnu6 - (tmp * shrv)
    lstv = mnv6 + (tmp * shru)
    
    return rstu, rstv, lstu, lstv
Ejemplo n.º 14
0
def max_wind(prof, lower, upper, all=False):
    '''
    Finds the maximum wind speed of the layer given by lower and upper levels.
    In the event of the maximum wind speed occurring at multiple levels, the
    lowest level it occurs is returned by default.

    Parameters
    ----------
    prof : profile object
        Profile Object
    lower : number
        Bottom level of layer (m, AGL)
    upper : number
        Top level of layer (m, AGL)
    all : Boolean
        Switch to change the output to sorted wind levels or maximum level.

    Returns
    -------
    p : number, numpy array
        Pressure level (hPa) of max wind speed
    maxu : number, numpy array
        Maximum Wind Speed U-component
    maxv : number, numpy array
        Maximum Wind Speed V-component

    '''
    lower = interp.to_msl(prof, lower)
    upper = interp.to_msl(prof, upper)
    plower = interp.pres(prof, lower)
    pupper = interp.pres(prof, upper)

    ind1 = np.where((plower > prof.pres)
                    | (np.isclose(plower, prof.pres)))[0][0]
    ind2 = np.where((pupper < prof.pres)
                    | (np.isclose(pupper, prof.pres)))[0][-1]

    if len(prof.wspd[ind1:ind2 + 1]) == 0 or ind1 == ind2:
        maxu, maxv = utils.vec2comp([prof.wdir[ind1]], [prof.wspd[ind1]])
        return maxu, maxv, prof.pres[ind1]

    arr = prof.wspd[ind1:ind2 + 1]
    inds = np.ma.argsort(arr)
    inds = inds[~arr[inds].mask][::-1]
    maxu, maxv = utils.vec2comp(prof.wdir[ind1:ind2 + 1][inds],
                                prof.wspd[ind1:ind2 + 1][inds])
    if all:
        return maxu, maxv, prof.pres[inds]
    else:
        return maxu[0], maxv[0], prof.pres[inds[0]]
Ejemplo n.º 15
0
    def get_fire(self):
        '''
        Function to generate different indices and information
        regarding any fire weather in the sounding.  This helps fill
        the data shown in the FIRE inset.
    
        Parameters
        ----------
        None

        Returns
        -------
        None
        '''
        self.fosberg = fire.fosberg(self)
        self.ppbl_top = params.pbl_top(self)
        self.sfc_rh = thermo.relh(self.pres[self.sfc], self.tmpc[self.sfc],
                                  self.dwpc[self.sfc])
        pres_sfc = self.pres[self.sfc]
        pres_1km = interp.pres(self, interp.to_msl(self, 1000.))
        pbl_h = interp.to_agl(self, interp.hght(self, self.ppbl_top))
        self.rh01km = params.mean_relh(self, pbot=pres_sfc, ptop=pres_1km)
        self.pblrh = params.mean_relh(self, pbot=pres_sfc, ptop=self.ppbl_top)
        self.meanwind01km = winds.mean_wind(self, pbot=pres_sfc, ptop=pres_1km)
        self.meanwindpbl = winds.mean_wind(self,
                                           pbot=pres_sfc,
                                           ptop=self.ppbl_top)
        self.pblmaxwind = winds.max_wind(self, lower=0, upper=pbl_h)
        #self.pblmaxwind = [np.ma.masked, np.ma.masked]
        mulplvals = params.DefineParcel(self, flag=3, pres=500)
        mupcl = params.cape(self, lplvals=mulplvals)
        self.bplus_fire = mupcl.bplus
Ejemplo n.º 16
0
 def get_fire(self):
     '''
     Function to generate different indices and information
     regarding any fire weather in the sounding.  This helps fill
     the data shown in the FIRE inset.
 
     Parameters
     ----------
     None
     Returns
     -------
     None
     '''
     self.fosberg = fire.fosberg(self)
     self.ppbl_top = params.pbl_top(self)
     self.sfc_rh = thermo.relh(self.pres[self.sfc], self.tmpc[self.sfc], self.dwpc[self.sfc])
     pres_sfc = self.pres[self.sfc]
     pres_1km = interp.pres(self, interp.to_msl(self, 1000.))
     pbl_h = interp.to_agl(self, interp.hght(self, self.ppbl_top))
     self.rh01km = params.mean_relh(self, pbot=pres_sfc, ptop=pres_1km)
     self.pblrh = params.mean_relh(self, pbot=pres_sfc, ptop=self.ppbl_top)
     self.meanwind01km = winds.mean_wind(self, pbot=pres_sfc, ptop=pres_1km)
     self.meanwindpbl = winds.mean_wind(self, pbot=pres_sfc, ptop=self.ppbl_top)
     self.pblmaxwind = winds.max_wind(self, lower=0, upper=pbl_h)
     #self.pblmaxwind = [np.ma.masked, np.ma.masked]
     mulplvals = params.DefineParcel(self, flag=3, pres=500)
     mupcl = params.cape(self, lplvals=mulplvals)
     self.bplus_fire = mupcl.bplus
Ejemplo n.º 17
0
def corfidi_mcs_motion(prof):
    '''
    Calculated the Meso-beta Elements (Corfidi) Vectors

    Inputs
    ------
        prof        (profile object)    Profile Object

    Returns
    -------
        upu         (float)             U-component of the upshear vector
        upv         (float)             V-component of the upshear vector
        dnu         (float)             U-component of the downshear vector
        dnv         (float)             V-component of the downshear vector
    '''
    # Compute the tropospheric (850hPa-300hPa) mean wind
    mnu1, mnv1 = mean_wind_npw(850., 300., prof)

    # Compute the low-level (SFC-1500m) mean wind
    p_1p5km = interp.pres(interp.msl(1500., prof), prof)
    mnu2, mnv2 = mean_wind_npw(prof.gSndg[prof.sfc][prof.pind], p_1p5km, prof)

    # Compute the upshear vector
    upu = mnu1 - mnu2
    upv = mnv1 - mnv2

    # Compute the downshear vector
    dnu = mnu1 + upu
    dnv = mnv1 + upv

    return upu, upv, dnu, dnv
Ejemplo n.º 18
0
def corfidi_mcs_motion(prof):
    '''
    Calculated the Meso-beta Elements (Corfidi) Vectors

    Inputs
    ------
        prof        (profile object)    Profile Object

    Returns
    -------
        upu         (float)             U-component of the upshear vector
        upv         (float)             V-component of the upshear vector
        dnu         (float)             U-component of the downshear vector
        dnv         (float)             V-component of the downshear vector
    '''
    # Compute the tropospheric (850hPa-300hPa) mean wind
    mnu1, mnv1 = mean_wind_npw(850., 300., prof)

    # Compute the low-level (SFC-1500m) mean wind
    p_1p5km = interp.pres(interp.msl(1500., prof), prof)
    mnu2, mnv2 = mean_wind_npw(prof.gSndg[prof.sfc][prof.pind], p_1p5km, prof)

    # Compute the upshear vector
    upu = mnu1 - mnu2
    upv = mnv1 - mnv2

    # Compute the downshear vector
    dnu = mnu1 + upu
    dnv = mnv1 + upv

    return upu, upv, dnu, dnv
Ejemplo n.º 19
0
def non_parcel_bunkers_motion(prof):
    '''
    Compute the Bunkers Storm Motion for a Right Moving Supercell

    Inputs
    ------
        prof         (profile object)    Profile Object

    Returns
    -------
        rstu         (float)            Right Storm Motion U-component
        rstv         (float)            Right Storm Motion V-component
        lstu         (float)            Left Storm Motion U-component
        lstv         (float)            Left Storm Motion V-component
    '''
    d = MS2KTS(7.5)         # Deviation value emperically derived as 7.5 m/s
    msl6km = interp.msl(6000., prof)
    p6km = interp.pres(msl6km, prof)

    # SFC-6km Mean Wind
    mnu6, mnv6 = mean_wind_npw(prof.gSndg[prof.sfc][prof.pind],
        p6km, prof, 20)

    # SFC-6km Shear Vector
    shru6, shrv6 = wind_shear(prof.gSndg[prof.sfc][prof.pind],
        p6km, prof)

    # Bunkers Right Motion
    tmp = d / vector.comp2vec(shru6, shrv6)[1]
    rstu = mnu6 + (tmp * shrv6)
    rstv = mnv6 - (tmp * shru6)
    lstu = mnu6 - (tmp * shrv6)
    lstv = mnv6 + (tmp * shru6)

    return rstu, rstv, lstu, lstv
Ejemplo n.º 20
0
def non_parcel_bunkers_motion(prof):
    '''
    Compute the Bunkers Storm Motion for a Right Moving Supercell

    Inputs
    ------
        prof         (profile object)    Profile Object

    Returns
    -------
        rstu         (float)            Right Storm Motion U-component
        rstv         (float)            Right Storm Motion V-component
        lstu         (float)            Left Storm Motion U-component
        lstv         (float)            Left Storm Motion V-component
    '''
    d = MS2KTS(7.5)  # Deviation value emperically derived as 7.5 m/s
    msl6km = interp.msl(6000., prof)
    p6km = interp.pres(msl6km, prof)

    # SFC-6km Mean Wind
    mnu6, mnv6 = mean_wind_npw(prof.gSndg[prof.sfc][prof.pind], p6km, prof, 20)

    # SFC-6km Shear Vector
    shru6, shrv6 = wind_shear(prof.gSndg[prof.sfc][prof.pind], p6km, prof)

    # Bunkers Right Motion
    tmp = d / vector.comp2vec(shru6, shrv6)[1]
    rstu = mnu6 + (tmp * shrv6)
    rstv = mnv6 - (tmp * shru6)
    lstu = mnu6 - (tmp * shrv6)
    lstv = mnv6 + (tmp * shru6)

    return rstu, rstv, lstu, lstv
Ejemplo n.º 21
0
def lift_parcels(prof):
    """Lift all the parcels within a given height interval and return the CAPEs, CINHs, and LFCs"""
    ## the height bottom, top, and interval
    zvals = np.arange(0, 5000, 100)
    pvals = interp.pres(prof, interp.to_msl(prof, zvals))

    tvals = interp.temp(prof, pvals)
    dvals = interp.dwpt(prof, pvals)
    hvals = interp.hght(prof, pvals)
    hvals = interp.to_agl(prof, hvals)

    ## empty lists for storing the result
    cape_arr = []
    cinh_arr = []
    lfc_arr = []

    ## lift each parcel in the vertical profile
    for p, t, td, h in zip(pvals, tvals, dvals, hvals):
        ## use SHARPpy to compute the parcel indices
        pcl = params.parcelx(prof, pres=p, tmpc=t, dwpc=td)

        ## store the parcel indices
        cape_arr.append(pcl.bplus)
        cinh_arr.append(pcl.bminus)
        lfc_arr.append(pcl.lfchght - h)

    ## return the data
    return np.ma.masked_invalid(cape_arr), np.ma.masked_invalid(
        cinh_arr), np.ma.masked_invalid(lfc_arr)
Ejemplo n.º 22
0
def max_wind(prof, lower, upper, all=False):
    '''
    Finds the maximum wind speed of the layer given by lower and upper levels.
    In the event of the maximum wind speed occurring at multiple levels, the
    lowest level it occurs is returned by default.

    Parameters
    ----------
    prof : profile object
        Profile Object
    lower : number
        Bottom level of layer (m, AGL)
    upper : number
        Top level of layer (m, AGL)
    all : Boolean
        Switch to change the output to sorted wind levels or maximum level.

    Returns
    -------
    p : number, numpy array
        Pressure level (hPa) of max wind speed
    maxu : number, numpy array
        Maximum Wind Speed U-component
    maxv : number, numpy array
        Maximum Wind Speed V-component

    '''
    lower = interp.to_msl(prof, lower)
    upper = interp.to_msl(prof, upper)
    plower = interp.pres(prof, lower)
    pupper = interp.pres(prof, upper)

    ind1 = np.where((plower > prof.pres) | (np.isclose(plower, prof.pres)))[0][0]
    ind2 = np.where((pupper < prof.pres) | (np.isclose(pupper, prof.pres)))[0][-1]

    if len(prof.wspd[ind1:ind2+1]) == 0 or ind1 == ind2:
        maxu, maxv =  utils.vec2comp([prof.wdir[ind1]], [prof.wspd[ind1]])
        return maxu, maxv, prof.pres[ind1]

    arr = prof.wspd[ind1:ind2+1]
    inds = np.ma.argsort(arr)
    inds = inds[~arr[inds].mask][::-1]
    maxu, maxv =  utils.vec2comp(prof.wdir[ind1:ind2+1][inds], prof.wspd[ind1:ind2+1][inds])
    if all:
        return maxu, maxv, prof.pres[inds]
    else:
        return maxu[0], maxv[0], prof.pres[inds[0]]
Ejemplo n.º 23
0
def bunkers_storm_motion(prof, pbot=None, **kwargs):
    '''
    Compute the Bunkers Storm Motion for a Right Moving Supercell using
    a parcel based approach.

    Inputs
    ------
        prof        (profile object)    Profile Object
        pbot        (float)             Base of effective-inflow layer (hPa)

    Returns
    -------
        rstu        (float)             Right Storm Motion U-component
        rstv        (float)             Right Storm Motion V-component
        lstu        (float)             Left Storm Motion U-component
        lstv        (float)             Left Storm Motion V-component
    '''
    d = MS2KTS(7.5)  # Deviation value emperically derived as 7.5 m/s

    # If MUPCL provided, use it, otherwise create MUPCL
    if 'mupcl' in kwargs:
        mupcl = kwargs.get('mupcl')
    else:
        mulplvals = params.DefineParcel(3, prof, pres=400)
        mupcl = params.parcelx(-1,
                               -1,
                               mulplvals.pres,
                               mulplvals.temp,
                               mulplvals.dwpt,
                               prof,
                               lplvals=mulplvals)

    mucape = mupcl.bplus
    mucinh = mupcl.bminus
    muel = mupcl.elhght
    if not pbot:
        pbot, ptop = effective_inflow_layer(100, -250, prof)
    base = interp.agl(interp.hght(pbot, prof), prof)
    if mucape > 100. and QC(muel) and base >= 750:
        depth = muel - base
        htop = base + depth / 2.
        ptop = interp.pres(interp.msl(base + htop, prof), prof)
        mnu, mnv = winds.mean_wind_npw(pbot, ptop, prof)
        sru, srv = winds.wind_shear(pbot, ptop, prof)
        srmag = vector.mag(sru, srv)
        uchg = d / srmag * srv
        vchg = d / srmag * sru
        rstu = mnu + uchg
        rstv = mnv - vchg
        lstu = mnu - uchg
        lstv = mnv + vchg
    else:
        rstu, rstv, lstu, lstv = winds.non_parcel_bunkers_motion(prof)

    return rstu, rstv, lstu, lstv
Ejemplo n.º 24
0
def max_wind(prof, lower, upper, all=False):
    '''
    Finds the maximum wind speed of the layer given by lower and upper levels.
    In the event of the maximum wind speed occurring at multiple levels, the
    lowest level it occurs is returned by default.

    Parameters
    ----------
    prof : profile object
        Profile Object
    lower : number
        Bottom level of layer (m, AGL)
    upper : number
        Top level of layer (m, AGL)

    Returns
    -------
    p : number, numpy array
        Pressure level (hPa) of max wind speed
    maxu : number, numpy array
        Maximum Wind Speed U-component
    maxv : number, numpy array
        Maximum Wind Speed V-component

    '''
    lower = interp.to_msl(prof, lower)
    upper = interp.to_msl(prof, upper)
    plower = interp.pres(prof, lower)
    pupper = interp.pres(prof, upper)
    ind1 = np.where(plower > prof.pres)[0].min()
    ind2 = np.where(pupper < prof.pres)[0].max()
    inds = np.where(
        np.fabs(prof.wspd[ind1:ind2 + 1] -
                prof.wspd[ind1:ind2 + 1].max()) < TOL)[0]
    inds += ind1
    inds.sort()
    maxu, maxv = utils.vec2comp(prof.wdir[inds], prof.wspd[inds])
    if all:
        return maxu, maxv, prof.pres[inds]
    else:
        return maxu[0], maxv[0], prof.pres[inds[0]]
Ejemplo n.º 25
0
def max_wind(prof, lower, upper, all=False):
    '''
    Finds the maximum wind speed of the layer given by lower and upper levels.
    In the event of the maximum wind speed occurring at multiple levels, the
    lowest level it occurs is returned by default.

    Parameters
    ----------
    prof : profile object
        Profile Object
    lower : number
        Bottom level of layer (m, AGL)
    upper : number
        Top level of layer (m, AGL)

    Returns
    -------
    p : number, numpy array
        Pressure level (hPa) of max wind speed
    maxu : number, numpy array
        Maximum Wind Speed U-component
    maxv : number, numpy array
        Maximum Wind Speed V-component

    '''
    lower = interp.to_msl(prof, lower)
    upper = interp.to_msl(prof, upper)
    plower = interp.pres(prof, lower)
    pupper = interp.pres(prof, upper)
    ind1 = np.where(plower > prof.pres)[0].min()
    ind2 = np.where(pupper < prof.pres)[0].max()
    inds = np.where(np.fabs(prof.wspd[ind1:ind2+1] -
                    prof.wspd[ind1:ind2+1].max()) < TOL)[0]
    inds += ind1
    inds.sort()
    maxu, maxv =  utils.vec2comp(prof.wdir[inds], prof.wspd[inds])
    if all:
        return maxu, maxv, prof.pres[inds]
    else:
        return maxu[0], maxv[0], prof.pres[inds[0]]
Ejemplo n.º 26
0
def bunkers_storm_motion(prof, pbot=None, **kwargs):
    '''
    Compute the Bunkers Storm Motion for a Right Moving Supercell using
    a parcel based approach.

    Inputs
    ------
        prof        (profile object)    Profile Object
        pbot        (float)             Base of effective-inflow layer (hPa)

    Returns
    -------
        rstu        (float)             Right Storm Motion U-component
        rstv        (float)             Right Storm Motion V-component
        lstu        (float)             Left Storm Motion U-component
        lstv        (float)             Left Storm Motion V-component
    '''
    d = MS2KTS(7.5)     # Deviation value emperically derived as 7.5 m/s

    # If MUPCL provided, use it, otherwise create MUPCL
    if 'mupcl' in kwargs:
        mupcl = kwargs.get('mupcl')
    else:
        mulplvals = params.DefineParcel(3, prof, pres=400)
        mupcl = params.parcelx(-1, -1, mulplvals.pres, mulplvals.temp,
            mulplvals.dwpt, prof, lplvals=mulplvals)

    mucape = mupcl.bplus
    mucinh = mupcl.bminus
    muel = mupcl.elhght
    if not pbot:
        pbot, ptop = effective_inflow_layer(100, -250, prof)
    base = interp.agl(interp.hght(pbot, prof), prof)
    if mucape > 100. and QC(muel) and base >= 750:
        depth = muel - base
        htop = base + depth / 2.
        ptop = interp.pres(interp.msl(base + htop, prof), prof)
        mnu, mnv = winds.mean_wind_npw(pbot, ptop, prof)
        sru, srv = winds.wind_shear(pbot, ptop, prof)
        srmag = vector.mag(sru, srv)
        uchg = d / srmag * srv
        vchg = d / srmag * sru
        rstu = mnu + uchg
        rstv = mnv - vchg
        lstu = mnu - uchg
        lstv = mnv + vchg
    else:
        rstu, rstv, lstu, lstv =  winds.non_parcel_bunkers_motion(prof)

    return rstu, rstv, lstu, lstv
Ejemplo n.º 27
0
def non_parcel_bunkers_motion(prof):
    '''
    Compute the Bunkers Storm Motion for a Right Moving Supercell

    Inputs
    ------
    prof : profile object
        Profile Object

    Returns
    -------
    rstu : number
        Right Storm Motion U-component
    rstv : number
        Right Storm Motion V-component
    lstu : number
        Left Storm Motion U-component
    lstv : number
        Left Storm Motion V-component

    '''
    d = utils.MS2KTS(7.5)  # Deviation value emperically derived as 7.5 m/s
    msl6km = interp.to_msl(prof, 6000.)
    p6km = interp.pres(prof, msl6km)

    # SFC-6km Mean Wind
    mnu6, mnv6 = mean_wind_npw(prof, prof.pres[prof.sfc], p6km)
    # SFC-6km Shear Vector
    shru, shrv = wind_shear(prof, prof.pres[prof.sfc], p6km)

    # Bunkers Right Motion
    tmp = d / utils.mag(shru, shrv)

    # Cambios para el hemisferio sur JP JP
    if prof.latitude < 0:
        lstu = mnu6 + (tmp * shrv)
        lstv = mnv6 - (tmp * shru)
        rstu = mnu6 - (tmp * shrv)
        rstv = mnv6 + (tmp * shru)
    else:
        rstu = mnu6 + (tmp * shrv)
        rstv = mnv6 - (tmp * shru)
        lstu = mnu6 - (tmp * shrv)
        lstv = mnv6 + (tmp * shru)

    return rstu, rstv, lstu, lstv
Ejemplo n.º 28
0
def corfidi_mcs_motion(prof):
    '''
    Calculated the Meso-beta Elements (Corfidi) Vectors

    Parameters
    ----------
    prof : profile object
        Profile Object

    Returns
    -------
    upu : number
        U-component of the upshear vector (kts)
    upv : number
        V-component of the upshear vector (kts)
    dnu : number
        U-component of the downshear vector (kts)
    dnv : number
        V-component of the downshear vector (kts)

    '''
    if prof.wdir.count() == 0:
        return ma.masked, ma.masked, ma.masked, ma.masked
    # Compute the tropospheric (850hPa-300hPa) mean wind
    if prof.pres[prof.sfc] < 850:
        mnu1, mnv1 = mean_wind_npw(prof, pbot=prof.pres[prof.sfc], ptop=300.)
    else:
        mnu1, mnv1 = mean_wind_npw(prof, pbot=850., ptop=300.)

    # Compute the low-level (SFC-1500m) mean wind
    p_1p5km = interp.pres(prof, interp.to_msl(prof, 1500.))
    mnu2, mnv2 = mean_wind_npw(prof, prof.pres[prof.sfc], p_1p5km)

    # Compute the upshear vector
    upu = mnu1 - mnu2
    upv = mnv1 - mnv2

    # Compute the downshear vector
    dnu = mnu1 + upu
    dnv = mnv1 + upv

    return upu, upv, dnu, dnv
Ejemplo n.º 29
0
def critical_angle(prof, stu=0, stv=0):
    '''
    Calculates the critical angle (degrees) as specified by Esterheld and Giuliano (2008).
    If the critical angle is 90 degrees, this indicates that the lowest 500 meters of 
    the storm is experiencing pure streamwise vorticity.

    Parameters
    ----------
    prof : profile object
        Profile Object
    stu : number (optional; default = 0)
        U-component of storm-motion (kts)
    stv : number (optional; default = 0)
        V-component of storm-motion (kts)

    Returns
    -------
    angle : number
        Critical Angle (degrees)

    '''
    if prof.wdir.count() == 0:
        return ma.masked

    if not utils.QC(stu) or not utils.QC(stv):
        return ma.masked

    pres_500m = interp.pres(prof, interp.to_msl(prof, 500))
    u500, v500 = interp.components(prof, pres_500m)
    sfc_u, sfc_v = interp.components(prof, prof.pres[prof.sfc])

    vec1_u, vec1_v = u500 - sfc_u, v500 - sfc_v
    vec2_u, vec2_v = stu - sfc_u, stv - sfc_v
    vec_1_mag = np.sqrt(np.power(vec1_u, 2) + np.power(vec1_v, 2))
    vec_2_mag = np.sqrt(np.power(vec2_u, 2) + np.power(vec2_v, 2))

    dot = vec1_u * vec2_u + vec1_v * vec2_v
    angle = np.degrees(np.arccos(dot / (vec_1_mag * vec_2_mag)))

    return angle
Ejemplo n.º 30
0
def interpZeroWetbulbs(prof):
    
    tLength = len(prof.wetbulb)
    
    level = 1    
    
    while (level < tLength):
        prevLevel = level - 1
        nextLevel = level + 1
        
        prevT = prof.wetbulb[prevLevel]
        thisT = prof.wetbulb[level]
        
        if (thisT * prevT < 0):
            # print "Crossed wb zero:", prevT, thisT
            
            zeroHt = -9999
            
            if (thisT < prevT):
                zeroHt = np.interp(0,np.flipud(prof.wetbulb[prevLevel:nextLevel]),np.flipud(prof.hght[prevLevel:nextLevel]))
            else:
                zeroHt = np.interp(0,prof.wetbulb[prevLevel:nextLevel],prof.hght[prevLevel:nextLevel])
            
            zeroPres = interp.pres(prof,zeroHt)
            
            prof.wetbulb = np.insert(prof.wetbulb,level,[0])
            
            prof.tmpc = np.insert(prof.tmpc,level,
                          [interp.temp(prof,zeroPres)])
             
            prof = insertLevels(prof,zeroHt,zeroPres,level)                       
            
            tLength += 1
            
            # Double increment j since you just added a new element
            level = level + 2
        else:
            level = level + 1
            
    return prof
Ejemplo n.º 31
0
def corfidi_mcs_motion(prof):
    '''
    Calculated the Meso-beta Elements (Corfidi) Vectors

    Parameters
    ----------
    prof : profile object
        Profile Object

    Returns
    -------
    upu : number
        U-component of the upshear vector
    upv : number
        V-component of the upshear vector
    dnu : number
        U-component of the downshear vector
    dnv : number
        V-component of the downshear vector

    '''
    # Compute the tropospheric (850hPa-300hPa) mean wind
    if prof.pres[ prof.sfc ] < 850:
         mnu1, mnv1 = mean_wind_npw(prof, pbot=prof.pres[prof.sfc], ptop=300.)
    else:
        mnu1, mnv1 = mean_wind_npw(prof, pbot=850., ptop=300.)

    # Compute the low-level (SFC-1500m) mean wind
    p_1p5km = interp.pres(prof, interp.to_msl(prof, 1500.))
    mnu2, mnv2 = mean_wind_npw(prof, prof.pres[prof.sfc], p_1p5km)

    # Compute the upshear vector
    upu = mnu1 - mnu2
    upv = mnv1 - mnv2

    # Compute the downshear vector
    dnu = mnu1 + upu
    dnv = mnv1 + upv

    return upu, upv, dnu, dnv
Ejemplo n.º 32
0
def non_parcel_bunkers_motion(prof):
    '''
    Compute the Bunkers Storm Motion for a Right Moving Supercell

    Parameters
    ----------
    prof : profile object
        Profile Object

    Returns
    -------
    rstu : number
        Right Storm Motion U-component (kts)
    rstv : number
        Right Storm Motion V-component (kts)
    lstu : number
        Left Storm Motion U-component (kts)
    lstv : number
        Left Storm Motion V-component (kts)

    '''
    if prof.wdir.count() == 0:
        return ma.masked, ma.masked, ma.masked, ma.masked

    d = utils.MS2KTS(7.5)  # Deviation value emperically derived as 7.5 m/s
    msl6km = interp.to_msl(prof, 6000.)
    p6km = interp.pres(prof, msl6km)
    # SFC-6km Mean Wind
    mnu6, mnv6 = mean_wind_npw(prof, prof.pres[prof.sfc], p6km)
    # SFC-6km Shear Vector
    shru, shrv = wind_shear(prof, prof.pres[prof.sfc], p6km)

    # Bunkers Right Motion
    tmp = d / utils.mag(shru, shrv)
    rstu = mnu6 + (tmp * shrv)
    rstv = mnv6 - (tmp * shru)
    lstu = mnu6 - (tmp * shrv)
    lstv = mnv6 + (tmp * shru)

    return rstu, rstv, lstu, lstv
Ejemplo n.º 33
0
def non_parcel_bunkers_motion(prof):
    '''
    Compute the Bunkers Storm Motion for a Right Moving Supercell

    Inputs
    ------
    prof : profile object
        Profile Object

    Returns
    -------
    rstu : number
        Right Storm Motion U-component
    rstv : number
        Right Storm Motion V-component
    lstu : number
        Left Storm Motion U-component
    lstv : number
        Left Storm Motion V-component

    '''
    d = utils.MS2KTS(7.5)     # Deviation value emperically derived as 7.5 m/s
    msl6km = interp.to_msl(prof, 6000.)
    p6km = interp.pres(prof, msl6km)

    # SFC-6km Mean Wind
    mnu6, mnv6 = mean_wind_npw(prof, prof.pres[prof.sfc], p6km)

    # SFC-6km Shear Vector
    shru6, shrv6 = wind_shear(prof, prof.pres[prof.sfc], p6km)

    # Bunkers Right Motion
    tmp = d / utils.comp2vec(shru6, shrv6)[1]
    rstu = mnu6 + (tmp * shrv6)
    rstv = mnv6 - (tmp * shru6)
    lstu = mnu6 - (tmp * shrv6)
    lstv = mnv6 + (tmp * shru6)

    return rstu, rstv, lstu, lstv
Ejemplo n.º 34
0
def critical_angle(prof, stu=0, stv=0):
    '''
    Calculates the critical angle (degrees) as specified by Esterheld and Giuliano (2008).
    If the critical angle is 90 degrees, this indicates that the lowest 500 meters of 
    the storm is experiencing pure streamwise vorticity.

    Parameters
    ----------
    prof : profile object
        Profile Object
    stu : number (optional; default = 0)
        U-component of storm-motion
    stv : number (optional; default = 0)
        V-component of storm-motion

    Returns
    -------
    angle : number
        Critical Angle (degrees)
    '''
    if not utils.QC(stu) or not utils.QC(stv):
        return ma.masked

    pres_500m = interp.pres(prof, interp.to_msl(prof, 500))
    u500, v500 = interp.components(prof, pres_500m)
    sfc_u, sfc_v = interp.components(prof, prof.pres[prof.sfc])

    vec1_u, vec1_v = u500 - sfc_u, v500 - sfc_v    
    vec2_u, vec2_v = stu - sfc_u, stv - sfc_v
    vec_1_mag = np.sqrt(np.power(vec1_u, 2) + np.power(vec1_v, 2))
    vec_2_mag = np.sqrt(np.power(vec2_u, 2) + np.power(vec2_v, 2))

    dot = vec1_u * vec2_u + vec1_v * vec2_v
    angle = np.degrees(np.arccos(dot / (vec_1_mag * vec_2_mag)))

    return angle
Ejemplo n.º 35
0
def indices(prof, debug=False):

    # return a formatted-string list of stability and kinematic indices

    sfcpcl = params.parcelx(prof, flag=1)
    mupcl = params.parcelx(prof, flag=3)  # most unstable
    mlpcl = params.parcelx(prof, flag=4)  # 100 mb mean layer parcel

    pcl = mupcl
    sfc = prof.pres[prof.sfc]
    p3km = interp.pres(prof, interp.to_msl(prof, 3000.))
    p6km = interp.pres(prof, interp.to_msl(prof, 6000.))
    p1km = interp.pres(prof, interp.to_msl(prof, 1000.))
    mean_3km = winds.mean_wind(prof, pbot=sfc, ptop=p3km)
    sfc_6km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p6km)
    sfc_3km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p3km)
    sfc_1km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p1km)
    #print "0-3 km Pressure-Weighted Mean Wind (kt):", utils.comp2vec(mean_3km[0], mean_3km[1])[1]
    #print "0-6 km Shear (kt):", utils.comp2vec(sfc_6km_shear[0], sfc_6km_shear[1])[1]
    srwind = params.bunkers_storm_motion(prof)
    srh3km = winds.helicity(prof, 0, 3000., stu=srwind[0], stv=srwind[1])
    srh1km = winds.helicity(prof, 0, 1000., stu=srwind[0], stv=srwind[1])
    #print "0-3 km Storm Relative Helicity [m2/s2]:",srh3km[0]

    #### Calculating variables based off of the effective inflow layer:

    # The effective inflow layer concept is used to obtain the layer of buoyant parcels that feed a storm's inflow.
    # Here are a few examples of how to compute variables that require the effective inflow layer in order to calculate them:

    stp_fixed = params.stp_fixed(
        sfcpcl.bplus, sfcpcl.lclhght, srh1km[0],
        utils.comp2vec(sfc_6km_shear[0], sfc_6km_shear[1])[1])
    ship = params.ship(prof)

    # If you get an error about not converting masked constant to python int
    # use the round() function instead of int() - Ahijevych May 11 2016
    # 2nd element of list is the # of decimal places
    indices = {
        'SBCAPE': [sfcpcl.bplus, 0, 'J $\mathregular{kg^{-1}}$'],
        'SBCIN': [sfcpcl.bminus, 0, 'J $\mathregular{kg^{-1}}$'],
        'SBLCL': [sfcpcl.lclhght, 0, 'm AGL'],
        'SBLFC': [sfcpcl.lfchght, 0, 'm AGL'],
        'SBEL': [sfcpcl.elhght, 0, 'm AGL'],
        'SBLI': [sfcpcl.li5, 0, 'C'],
        'MLCAPE': [mlpcl.bplus, 0, 'J $\mathregular{kg^{-1}}$'],
        'MLCIN': [mlpcl.bminus, 0, 'J $\mathregular{kg^{-1}}$'],
        'MLLCL': [mlpcl.lclhght, 0, 'm AGL'],
        'MLLFC': [mlpcl.lfchght, 0, 'm AGL'],
        'MLEL': [mlpcl.elhght, 0, 'm AGL'],
        'MLLI': [mlpcl.li5, 0, 'C'],
        'MUCAPE': [mupcl.bplus, 0, 'J $\mathregular{kg^{-1}}$'],
        'MUCIN': [mupcl.bminus, 0, 'J $\mathregular{kg^{-1}}$'],
        'MULCL': [mupcl.lclhght, 0, 'm AGL'],
        'MULFC': [mupcl.lfchght, 0, 'm AGL'],
        'MUEL': [mupcl.elhght, 0, 'm AGL'],
        'MULI': [mupcl.li5, 0, 'C'],
        '0-1 km SRH': [srh1km[0], 0, '$\mathregular{m^{2}s^{-2}}$'],
        '0-1 km Shear':
        [utils.comp2vec(sfc_1km_shear[0], sfc_1km_shear[1])[1], 0, 'kt'],
        '0-3 km SRH': [srh3km[0], 0, '$\mathregular{m^{2}s^{-2}}$'],
        '0-6 km Shear':
        [utils.comp2vec(sfc_6km_shear[0], sfc_6km_shear[1])[1], 0, 'kt'],
        'PWV': [params.precip_water(prof), 2, 'inch'],
        'K-index': [params.k_index(prof), 0, ''],
        'STP(fix)': [stp_fixed, 1, ''],
        'SHIP': [ship, 1, '']
    }

    eff_inflow = params.effective_inflow_layer(prof)
    if any(eff_inflow):
        ebot_hght = interp.to_agl(prof, interp.hght(prof, eff_inflow[0]))
        etop_hght = interp.to_agl(prof, interp.hght(prof, eff_inflow[1]))
        #print "Effective Inflow Layer Bottom Height (m AGL):", ebot_hght
        #print "Effective Inflow Layer Top Height (m AGL):", etop_hght
        effective_srh = winds.helicity(prof,
                                       ebot_hght,
                                       etop_hght,
                                       stu=srwind[0],
                                       stv=srwind[1])
        indices['Eff. SRH'] = [
            effective_srh[0], 0, '$\mathregular{m^{2}s^{-2}}$'
        ]
        #print "Effective Inflow Layer SRH (m2/s2):", effective_srh[0]
        ebwd = winds.wind_shear(prof, pbot=eff_inflow[0], ptop=eff_inflow[1])
        ebwspd = utils.mag(*ebwd)
        indices['EBWD'] = [ebwspd, 0, 'kt']
        #print "Effective Bulk Wind Difference:", ebwspd
        scp = params.scp(mupcl.bplus, effective_srh[0], ebwspd)
        indices['SCP'] = [scp, 1, '']
        stp_cin = params.stp_cin(mlpcl.bplus, effective_srh[0], ebwspd,
                                 mlpcl.lclhght, mlpcl.bminus)
        indices['STP(cin)'] = [stp_cin, 1, '']
        #print "Supercell Composite Parameter:", scp
        #print "Significant Tornado Parameter (w/CIN):", stp_cin
        #print "Significant Tornado Parameter (fixed):", stp_fixed

    # Update the indices within the indices dictionary on the side of the plot.
    string = ''
    for index, value in sorted(indices.items()):
        if np.ma.is_masked(value[0]):
            if debug:
                print("skipping masked value for index=", index)
            continue
        if debug:
            print("index=", index)
            print("value=", value)
        format = '%.' + str(value[1]) + 'f'
        string += index + ": " + format % value[0] + " " + value[2] + '\n'

    return string
Ejemplo n.º 36
0
''' Create the Sounding (Profile) Object '''
Ejemplo n.º 37
0
def plot_sounding(file, imgName):
    try:
        prof, time, location = decode(file)
    except Exception as e:
        print(
            "\n Oops! Couldn't decode the sounding data. No plot produced!\n")
        print(e)
        # return None

    # Open up the text file with the data in columns (e.g. the sample OAX file distributed with SHARPpy)
    locInfo = location.split('_')
    title = locInfo[0] + ' ' + locInfo[1] + ' ' + locInfo[
        2] + '   ' + time.strftime('%Y%m%d/%H%M') + '   (Observed)'

    # Set up the figure in matplotlib.
    fig = plt.figure(figsize=(14, 7.25))
    gs = gridspec.GridSpec(4, 6, width_ratios=[1, 5, 1, 0.5, 3, 3])
    ax = plt.subplot(gs[0:3, 0:2], projection='skewx')
    plt.title(title, fontsize=14, loc='left', color='w')
    ax.set_facecolor('k')
    ax.spines['left'].set_color('w')
    ax.spines['right'].set_color('w')
    ax.spines['bottom'].set_color('w')
    ax.spines['top'].set_color('w')

    #     xticks = ax.xaxis.get_major_ticks() #mute a tick label outside plot
    #     xticks[-4].label1.set_visible(False)

    ax.tick_params(axis='both', colors='w', grid_color='silver')
    ax.ticklabel_format(style='plain')

    # ax.xaxis.label.set_color('w')
    # ax.yaxis.label.set_color('w')
    ax.grid(True)
    plt.grid(True)

    # Ask user for default limits or custom limits
    pt_plot, t_lower, t_upper = ask_limits(prof.pres[~prof.dwpc.mask],
                                           prof.dwpc[~prof.dwpc.mask])

    # Bounds of the pressure axis
    pb_plot = 1050
    dp_plot = 10
    plevs_plot = np.arange(pb_plot, pt_plot - 1, -dp_plot)

    # Plot the background variables
    # presvals = np.arange(1000, 0, -10)

    #draw mixing ratio lines
    draw_mixing_ratio_lines(ax)

    ax.semilogy(prof.tmpc[~prof.tmpc.mask],
                prof.pres[~prof.tmpc.mask],
                'r',
                lw=2)
    ax.semilogy(prof.dwpc[~prof.dwpc.mask],
                prof.pres[~prof.dwpc.mask],
                'lime',
                lw=2)
    ax.semilogy(prof.vtmp[~prof.dwpc.mask],
                prof.pres[~prof.dwpc.mask],
                'r--',
                lw=1)
    ax.semilogy(prof.wetbulb[~prof.dwpc.mask],
                prof.pres[~prof.dwpc.mask],
                'cyan',
                '-',
                lw=1)

    #write sfc temp and dewpoint in F
    sfcT = prof.tmpc[~prof.tmpc.mask][0]
    sfcTd = prof.dwpc[~prof.dwpc.mask][0]
    sfcW = prof.wetbulb[~prof.dwpc.mask][0]
    sfcP = prof.pres[~prof.tmpc.mask][0]
    ax.annotate(str(int(sfcW * (9 / 5) + 32)), (sfcW, sfcP),
                xytext=(-6, -9),
                textcoords='offset points',
                color='cyan',
                weight='black',
                size=8,
                path_effects=[pe.withStroke(linewidth=2, foreground="black")])
    ax.annotate(str(int(sfcT * (9 / 5) + 32)), (sfcT, sfcP),
                xytext=(-2, -9),
                textcoords='offset points',
                color='r',
                weight='black',
                size=8,
                path_effects=[pe.withStroke(linewidth=2, foreground="black")])
    ax.annotate(str(int(sfcTd * (9 / 5) + 32)), (sfcTd, sfcP),
                xytext=(-12, -9),
                textcoords='offset points',
                color='lime',
                weight='black',
                size=8,
                path_effects=[pe.withStroke(linewidth=2, foreground="black")])

    #plot significant levels
    plot_sig_levels(ax, prof)

    # Plot the parcel trace, but this may fail.  If it does so, inform the user.
    try:
        ax.semilogy(prof.mupcl.ttrace, prof.mupcl.ptrace, 'w--')
    except:
        print("Couldn't plot parcel traces...")

    # Highlight the 0 C and -20 C isotherms.
    l = ax.axvline(0, color='b', ls='--')
    l = ax.axvline(-20, color='b', ls='--')

    #plot dry adiabats
    skew.draw_dry_adiabats(ax, color='silver')

    #draw heights
    skew.draw_heights(ax, prof)

    # Disables the log-formatting that comes with semilogy
    ax.yaxis.set_major_formatter(ScalarFormatter())
    pmin = prof.pres[~prof.dwpc.mask][-1]
    if pmin > 700.:
        ax.set_yticks(np.arange(100, 1000, 50))
    else:
        ax.set_yticks(np.linspace(100, 1000, 10))
    ax.set_ylim(pb_plot, pt_plot)

    # Plot the hodograph data.
    # inset_axes = draw_hodo_inset(ax, prof)
    hodoAx = plt.subplot(gs[0:3, 3:])
    hodoAx.set_facecolor('k')
    hodoAx.axis('off')
    hodoAx = draw_hodo_inset(hodoAx, prof)

    # plotHodo(inset_axes, prof.hght, prof.u, prof.v, color='r')
    plotHodo(hodoAx, prof.hght, prof.u, prof.v, color='r')

    #plot bunkers motion unless the most unstable EL does not exist
    srwind = params.bunkers_storm_motion(prof)
    if isinstance(prof.mupcl.elpres, np.float64):
        hodoAx.text(srwind[0], srwind[1], 'RM', color='w', fontsize=8)
        hodoAx.text(srwind[2], srwind[3], 'LM', color='w', fontsize=8)
    else:
        print("couldn't plot Bunkers vectors")

    # inset_axes.text(srwind[0], srwind[1], 'RM', color='r', fontsize=8)
    # inset_axes.text(srwind[2], srwind[3], 'LM', color='b', fontsize=8)

    #mask out barbs above the top of the plot
    below_pmin = np.where(prof.pres >= pt_plot)[0]

    # Draw the wind barbs axis and everything that comes with it.
    if pmin > 700.:
        ax.xaxis.set_major_locator(MultipleLocator(5))
    else:
        ax.xaxis.set_major_locator(MultipleLocator(10))
    ax.set_xlim(t_lower, t_upper)

    ax2 = plt.subplot(gs[0:3, 2])
    ax3 = plt.subplot(gs[3, 0:3])
    plot_wind_axes(ax2, pb_plot, pt_plot, plevs_plot)

    #setting the stride for how many wind barbs plot
    # st = 15

    # plot_wind_barbs(ax2, prof.pres[below_pmin][~prof.pres.mask[below_pmin]][::st],
    #                 prof.u[below_pmin][~prof.u.mask[below_pmin]][::st],
    #                 prof.v[below_pmin][~prof.v.mask[below_pmin]][::st],
    #                 pt_plot)
    plot_wind_barbs(ax2, prof.pres[below_pmin][~prof.pres.mask[below_pmin]],
                    prof.u[below_pmin][~prof.u.mask[below_pmin]],
                    prof.v[below_pmin][~prof.v.mask[below_pmin]], pt_plot)

    gs.update(left=0.05, bottom=0.05, top=0.95, right=1, wspace=0.025)

    # Calculate indices to be shown.  More indices can be calculated here using the tutorial and reading the params module.
    p1km = interp.pres(prof, interp.to_msl(prof, 1000.))
    p6km = interp.pres(prof, interp.to_msl(prof, 6000.))
    sfc = prof.pres[prof.sfc]
    sfc_1km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p1km)
    sfc_6km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p6km)
    srh3km = winds.helicity(prof, 0, 3000., stu=srwind[0], stv=srwind[1])
    srh1km = winds.helicity(prof, 0, 1000., stu=srwind[0], stv=srwind[1])
    scp = params.scp(prof.mupcl.bplus, prof.right_esrh[0], prof.ebwspd)
    stp_cin = params.stp_cin(prof.mlpcl.bplus, prof.right_esrh[0], prof.ebwspd,
                             prof.mlpcl.lclhght, prof.mlpcl.bminus)
    stp_fixed = params.stp_fixed(
        prof.sfcpcl.bplus, prof.sfcpcl.lclhght, srh1km[0],
        utils.comp2vec(prof.sfc_6km_shear[0], prof.sfc_6km_shear[1])[1])
    ship = params.ship(prof)

    # A routine to perform the correct formatting when writing the indices out to the figure.
    def fmt(value, fmt='int'):
        if fmt == 'int':
            try:
                val = int(value)
            except:
                val = str("M")
        else:
            try:
                val = round(value, 1)
            except:
                val = "M"
        return val

    # Setting a dictionary that is a collection of all of the indices we'll be showing on the figure.
    # the dictionary includes the index name, the actual value, and the units.
    indices = {'SBCAPE': [fmt(prof.sfcpcl.bplus), 'J/kg'],\
               'SBCIN': [fmt(prof.sfcpcl.bminus), 'J/kg'],\
               'SBLCL': [fmt(prof.sfcpcl.lclhght), 'm AGL'],\
               'SBLFC': [fmt(prof.sfcpcl.lfchght), 'm AGL'],\
               'SBEL': [fmt(prof.sfcpcl.elhght), 'm AGL'],\
               'SBLI': [fmt(prof.sfcpcl.li5), 'C'],\
               'MLCAPE': [fmt(prof.mlpcl.bplus), 'J/kg'],\
               'MLCIN': [fmt(prof.mlpcl.bminus), 'J/kg'],\
               'MLLCL': [fmt(prof.mlpcl.lclhght), 'm AGL'],\
               'MLLFC': [fmt(prof.mlpcl.lfchght), 'm AGL'],\
               'MLEL': [fmt(prof.mlpcl.elhght), 'm AGL'],\
               'MLLI': [fmt(prof.mlpcl.li5), 'C'],\
               'MUCAPE': [fmt(prof.mupcl.bplus), 'J/kg'],\
               'MUCIN': [fmt(prof.mupcl.bminus), 'J/kg'],\
               'MULCL': [fmt(prof.mupcl.lclhght), 'm AGL'],\
               'MULFC': [fmt(prof.mupcl.lfchght), 'm AGL'],\
               'MUEL': [fmt(prof.mupcl.elhght), 'm AGL'],\
               'MULI': [fmt(prof.mupcl.li5), 'C'],\
               '0-1 km SRH': [fmt(srh1km[0]), 'm2/s2'],\
               '0-1 km Shear': [fmt(utils.comp2vec(sfc_1km_shear[0], sfc_1km_shear[1])[1]), 'kts'],\
               '0-3 km SRH': [fmt(srh3km[0]), 'm2/s2'],\
               '0-6 km Shear': [fmt(utils.comp2vec(sfc_6km_shear[0], sfc_6km_shear[1])[1]), 'kts'],\
               'Eff. SRH': [fmt(prof.right_esrh[0]), 'm2/s2'],\
               'EBWD': [fmt(prof.ebwspd), 'kts'],\
               'PWV': [round(prof.pwat, 2), 'inch'],\
               'K-index': [fmt(params.k_index(prof)), ''],\
               'STP(fix)': [fmt(stp_fixed, 'flt'), ''],\
               'SHIP': [fmt(ship, 'flt'), ''],\
               'SCP': [fmt(scp, 'flt'), ''],\
               'STP(cin)': [fmt(stp_cin, 'flt'), '']}

    # List the indices within the indices dictionary on the side of the plot.
    trans = transforms.blended_transform_factory(ax.transAxes, ax.transData)

    # Write out all of the indices to the figure.
    #print("##############")
    #print("   INDICES    ")
    #print("##############")
    string = ''
    keys = np.sort(list(indices.keys()))
    x = 0
    counter = 0
    for key in keys:
        string = string + key + ': ' + str(
            indices[key][0]) + ' ' + indices[key][1] + '\n'
        #    print((key + ": " + str(indices[key][0]) + ' ' + indices[key][1]))
        if counter < 7:
            counter += 1
            continue
        else:
            counter = 0
            ax3.text(x,
                     1,
                     string,
                     verticalalignment='top',
                     transform=ax3.transAxes,
                     fontsize=11,
                     color='w')
            string = ''
            x += 0.3
    ax3.text(x,
             1,
             string,
             verticalalignment='top',
             transform=ax3.transAxes,
             fontsize=11,
             color='w')
    ax3.set_axis_off()

    # Show SARS matches (edited for Keith Sherburn)
    #try:
    #    supercell_matches = prof.supercell_matches
    #    hail_matches = prof.matches
    #except:
    #    supercell_matches = prof.right_supercell_matches
    #    hail_matches = prof.right_matches

    #print()
    #print("#############")
    #print(" SARS OUTPUT ")
    #print("#############")
    #for mtype, matches in zip(['Supercell', 'Hail'], [supercell_matches, hail_matches]):
    #    print(mtype)
    #    print('-----------')
    #    if len(matches[0]) == 0:
    #        print("NO QUALITY MATCHES")
    #    for i in range(len(matches[0])):
    #        print(matches[0][i] + ' ' + matches[1][i])
    #    print("Total Loose Matches:", matches[2])
    #    print("# of Loose Matches that met Criteria:", matches[3])
    #    print("SVR Probability:", matches[4])
    #    print()

    #plot logos
    im = plt.imread('logo.png')
    #left, bottom, width, height = [0.25, 0.6, 0.2, 0.2]
    #left, bottom, width, height = [0.1, 0.175, 0.4, 0.4] #bottom left
    left, bottom, width, height = [0.035, 0.65, 0.4, 0.4]
    # ax4 = fig.add_axes([left, bottom, width, height])
    ax4 = plt.subplot(gs[3, 4])
    implot = ax4.imshow(im, alpha=0.99)
    ax4.axis('off')
    ax4.set_facecolor('k')

    im2 = plt.imread('essc_logo.png')
    ax5 = plt.subplot(gs[3, 5])
    implot = ax5.imshow(im2, alpha=0.99)
    ax5.axis('off')
    ax5.set_facecolor('k')

    #plot SHARPpy acknowledgement
    # plt.text(1, 1, 'Plotted with SHARPpy', horizontalalignment='right',
    #             verticalalignment='top', transform=ax.transAxes, color='w')
    hodoAx.annotate(
        'Plotted with SHARPpy - https://sharppy.github.io/SHARPpy/',
        (0.7, 0.96),
        xycoords='figure fraction',
        va='center',
        color='w')

    #filename for the plot
    # plotName = os.path.splitext(file)[0] + '.png'

    # Finalize the image formatting and alignments, and save the image to the file.
    #gs.tight_layout(fig)
    plt.style.use('dark_background')
    fn = time.strftime(
        '%Y%m%d.%H%M') + '_' + locInfo[0] + '_' + locInfo[1] + '.png'
    fn = fn.replace('/', '')
    print('SHARPpy quick-look image output at: ' + imgName)
    #plt.savefig(fn, bbox_inches='tight', dpi=180)
    plt.savefig(imgName, dpi=180)
Ejemplo n.º 38
0
def parcelx(lower, upper, pres, temp, dwpt, prof, **kwargs):
    '''
    Lifts the specified parcel, calculated various levels and parameters from
    the profile object. B+/B- are calculated based on the specified layer.

    !! All calculations use the virtual temperature correction unless noted. !!

    Inputs
    ------
        lower       (float)                 Lower-bound lifting level (hPa)
        upper       (float)                 Upper-bound lifting level
        pres        (float)                 Pressure of parcel to lift (hPa)
        temp        (float)                 Temperature of parcel to lift (C)
        dwpt        (float)                 Dew Point of parcel to lift (C)
        prof        (profile object)        Profile Object

    Returns
    -------
        pcl         (parcel object)         Parcel Object
    '''
    pcl = Parcel(-1, -1, pres, temp, dwpt)
    if 'lplvals' in kwargs: pcl.lplvals = kwargs.get('lplvals')
    else:
        lplvals = DefineParcel(prof, 5, pres=pres, temp=temp, dwpt=dwpt)
        pcl.lplvals = lplvals

    if prof.gNumLevels < 1: return pcl

    lyre = -1
    cap_strength = RMISSD
    cap_strengthpres = RMISSD
    li_max = RMISSD
    li_maxpres = RMISSD
    totp = 0.
    totn = 0.
    tote = 0.
    cinh_old = 0.

    # See if default layer is specified
    if lower == -1:
        lower = prof.gSndg[prof.sfc][prof.pind]
        pcl.blayer = lower
    if upper == -1:
        upper = prof.gSndg[prof.gNumLevels-1][prof.pind]
        pcl.tlayer = upper

    # Make sure that this is a valid layer
    if lower > pres:
        lower = pres
        pcl.blayer = lower
    if not QC(interp.vtmp(lower, prof)) or \
       not QC(interp.vtmp(upper, prof)):
        return RMISSD

    # Begin with the Mixing Layer
    te1 = interp.vtmp(pres, prof)
    pe1 = lower
    h1 = interp.hght(pe1, prof)
    tp1 = thermo.virtemp(pres, temp, dwpt)
    # te1 = tp1

    # Lift parcel and return LCL pres (hPa) and LCL temp (c)
    pe2, tp2 = thermo.drylift(pres, temp, dwpt)
    blupper = pe2       # Define top of layer as LCL pres
    h2 = interp.hght(pe2, prof)
    te2 = interp.vtmp(pe2, prof)
    pcl.lclpres = pe2
    pcl.lclhght = interp.agl(h2, prof)

    # Calculate lifted parcel theta for use in iterative CINH loop below
    # RECALL: lifted parcel theta is CONSTANT from LPL to LCL
    theta_parcel = thermo.theta(pe2, tp2, 1000.)

    # Environmental theta and mixing ratio at LPL
    bltheta = thermo.theta(pres, interp.temp(pres, prof), 1000.)
    blmr = thermo.mixratio(pres, dwpt)

    # ACCUMULATED CINH IN MIXING LAYER BELOW THE LCL
    # This will be done in 10mb increments, and will use the virtual
    # temperature correction where possible
    pinc = -10
    a = int(lower)
    b = int(blupper)
    for pp in range(a, b, int(pinc)):
        pp1 = pp
        pp2 = pp + pinc
        if pp2 < blupper: pp2 = blupper
        dz = interp.hght(pp2, prof) - interp.hght(pp1, prof)

        # Calculate difference between Tv_parcel and Tv_environment at top
        # and bottom of 10mb layers. Make use of constant lifted parcel
        # theta and mixing ratio from LPL to LCL
        tv_env_bot = thermo.virtemp(pp1, thermo.theta(pp1,
            interp.temp(pp1, prof), 1000.), interp.dwpt(pp1, prof))
        tdef1 = (thermo.virtemp(pp1, theta_parcel,
            thermo.temp_at_mixrat(blmr, pp1)) - tv_env_bot) / \
            (thermo.ctok(tv_env_bot))

        tv_env_top = thermo.virtemp(pp2, thermo.theta(pp2,
            interp.temp(pp2, prof), 1000.), interp.dwpt(pp2, prof))
        tdef2 = (thermo.virtemp(pp2, theta_parcel,
            thermo.temp_at_mixrat(blmr, pp2)) - tv_env_top) / \
            (thermo.ctok(tv_env_bot))

        lyre = G * (tdef1 + tdef2) / 2. * dz
        if lyre < 0: totn += lyre

    # Move the bottom layer to the top of the boundary layer
    if lower > pe2:
        lower = pe2
        pcl.blayer = lower

    # Calculate height of various temperature levels
    p0c = temp_lvl(0., prof)
    pm10c = temp_lvl(-10., prof)
    pm20c = temp_lvl(-20., prof)
    pm30c = temp_lvl(-30., prof)
    hgt0c = interp.hght(p0c, prof)
    hgtm10c = interp.hght(pm10c, prof)
    hgtm20c = interp.hght(pm20c, prof)
    hgtm30c = interp.hght(pm30c, prof)
    pcl.p0c = p0c
    pcl.pm10c = pm10c
    pcl.pm20c = pm20c
    pcl.pm30c = pm30c
    pcl.hght0c = hgt0c
    pcl.hghtm10c = hgtm10c
    pcl.hghtm20c = hgtm20c
    pcl.hghtm30c = hgtm30c

    # Find lowest observation in layer
    i = 0
    while prof.gSndg[i][prof.pind] > lower:
        if i == prof.gNumLevels-1: break
        i += 1
    while not QC(prof.gSndg[i][prof.tdind]):
        if i == prof.gNumLevels-1: break
        i += 1
    lptr = i
    if prof.gSndg[i][prof.pind] == lower:
        if i != prof.gNumLevels-1: lptr += 1

    # Find highest observation in layer
    i = prof.gNumLevels-1
    while prof.gSndg[i][prof.pind] < upper:
        if i < lptr: break
        i -= 1
    uptr = i
    if prof.gSndg[i][prof.pind] == upper:
        if i > lptr: uptr -= 1

    # START WITH INTERPOLATED BOTTOM LAYER
    # Begin moist ascent from lifted parcel LCL (pe2, tp2)
    pe1 = lower
    h1 = interp.hght(pe1, prof)
    te1 = interp.vtmp(pe1, prof)
    tp1 = thermo.wetlift(pe2, tp2, pe1)
    lyre = 0
    lyrlast = 0
    for i in range(lptr, prof.gNumLevels):
        if not QC(prof.gSndg[i][prof.tind]): continue
        pe2 = prof.gSndg[i][prof.pind]
        h2 = prof.gSndg[i][prof.zind]
        te2 = interp.vtmp(pe2, prof)
        tp2 = thermo.wetlift(pe1, tp1, pe2)
        tdef1 = (thermo.virtemp(pe1, tp1, tp1) - te1) / thermo.ctok(te1)
        tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2)
        lyrlast = lyre
        lyre = G * (tdef1 + tdef2) / 2. * (h2 - h1)

        # Add layer energy to total positive if lyre > 0
        if lyre > 0: totp += lyre
        # Add layer energy to total negative if lyre < 0, only up to EL
        else:
            if pe2 > 500.: totn += lyre

        # Check for Max LI
        mli = thermo.virtemp(pe2, tp2, tp2) - te2
        if  mli > li_max:
            li_max = mli
            li_maxpres = pe2

        # Check for Max Cap Strength
        mcap = te2 - mli
        if mcap > cap_strength:
            cap_strength = mcap
            cap_strengthpres = pe2

        tote += lyre
        pelast = pe1
        pe1 = pe2
        h1 = h2
        te1 = te2
        tp1 = tp2

        # Is this the top of the specified layer
        if i >= uptr and not QC(pcl.bplus):
            pe3 = pe1
            h3 = h1
            te3 = te1
            tp3 = tp1
            lyrf = lyre
            if lyrf > 0:
                pcl.bplus = totp - lyrf
                pcl.bminus = totn
            else:
                pcl.bplus = totp
                if pe2 > 500.: pcl.bminus = totn + lyrf
                else: pcl.bminus = totn
            pe2 = upper
            h2 = interp.hght(pe2, prof)
            te2 = interp.vtmp(pe2, prof)
            tp2 = thermo.wetlift(pe3, tp3, pe2)
            tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / thermo.ctok(te3)
            tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2)
            lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
            if lyrf > 0: pcl.bplus += lyrf
            else:
                if pe2 > 500.: pcl.bminus += lyrf
            if pcl.bplus == 0: pcl.bminus = 0.

        # Is this the freezing level
        if te2 < 0. and not QC(pcl.bfzl):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.bfzl = totp - lyrf
            else: pcl.bfzl = totp
            if not QC(p0c) or p0c > pe3:
                pcl.bfzl = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgt0c - h3)
                if lyrf > 0: pcl.bfzl += lyrf

        # Is this the -10C level
        if te2 < -10. and not QC(pcl.wm10c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm10c = totp - lyrf
            else: pcl.wm10c = totp
            if not QC(pm10c) or pm10c > pcl.lclpres:
                pcl.wm10c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm10c - h3)
                if lyrf > 0: pcl.wm10c += lyrf

        # Is this the -20C level
        if te2 < -20. and not QC(pcl.wm20c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm20c = totp - lyrf
            else: pcl.wm20c = totp
            if not QC(pm20c) or pm20c > pcl.lclpres:
                pcl.wm20c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm20c - h3)
                if lyrf > 0: pcl.wm20c += lyrf

        # Is this the -30C level
        if te2 < -30. and not QC(pcl.wm30c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm30c = totp - lyrf
            else: pcl.wm30c = totp
            if not QC(pm30c) or pm30c > pcl.lclpres:
                pcl.wm30c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm30c - h3)
                if lyrf > 0: pcl.wm30c += lyrf

        # Is this the 3km level
        if pcl.lclhght < 3000.:
            h = interp.agl(interp.hght(pe2, prof), prof)
            if h >= 3000. and not QC(pcl.b3km):
                pe3 = pelast
                h3 = interp.hght(pe3, prof)
                te3 = interp.vtmp(pe3, prof)
                tp3 = thermo.wetlift(pe1, tp1, pe3)
                lyrf = lyre
                if lyrf > 0: pcl.b3km = totp - lyrf
                else: pcl.b3km = totp
                h2 = interp.msl(3000., prof)
                pe2 = interp.pres(h2, prof)
                if QC(pe2):
                    te2 = interp.vtmp(pe2, prof)
                    tp2 = thermo.wetlift(pe3, tp3, pe2)
                    tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                        thermo.ctok(te3)
                    tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                        thermo.ctok(te2)
                    lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                    if lyrf > 0: pcl.b3km += lyrf
        else: pcl.b3km = 0.

        # Is this the 6km level
        if pcl.lclhght < 6000.:
            h = interp.agl(interp.hght(pe2, prof), prof)
            if h >= 6000. and not QC(pcl.b6km):
                pe3 = pelast
                h3 = interp.hght(pe3, prof)
                te3 = interp.vtmp(pe3, prof)
                tp3 = thermo.wetlift(pe1, tp1, pe3)
                lyrf = lyre
                if lyrf > 0: pcl.b6km = totp - lyrf
                else: pcl.b6km = totp
                h2 = interp.msl(6000., prof)
                pe2 = interp.pres(h2, prof)
                if QC(pe2):
                    te2 = interp.vtmp(pe2, prof)
                    tp2 = thermo.wetlift(pe3, tp3, pe2)
                    tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                        thermo.ctok(te3)
                    tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                        thermo.ctok(te2)
                    lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                    if lyrf > 0: pcl.b6km += lyrf
        else: pcl.b6km = 0.

        # LFC Possibility
        if lyre >= 0. and lyrlast <= 0.:
            tp3 = tp1
            te3 = te1
            pe2 = pe1
            pe3 = pelast
            while interp.vtmp(pe3, prof) > thermo.virtemp(pe3,
                thermo.wetlift(pe2, tp3, pe3), thermo.wetlift(pe2, tp3, pe3)):
                    pe3 -= 5
            pcl.lfcpres = pe3
            pcl.lfchght = interp.agl(interp.hght(pe3, prof), prof)
            cinh_old = totn
            tote = 0.
            pcl.elpres = RMISSD
            li_max = RMISSD

            if cap_strength < 0.: cap_strength = 0.
            pcl.cap = cap_strength
            pcl.cappres = cap_strengthpres
            # Hack to force LFC to be at least at the LCL
            if pcl.lfcpres > pcl.lclpres:
                pcl.lfcpres = pcl.lclpres
                pcl.lfchght = pcl.lclhght

        # EL Possibility
        if lyre <= 0. and lyrlast >= 0.:
            tp3 = tp1
            te3 = te1
            pe2 = pe1
            pe3 = pelast
            while interp.vtmp(pe3, prof) < thermo.virtemp(pe3,
                thermo.wetlift(pe2, tp3, pe3), thermo.wetlift(pe2, tp3, pe3)):
                    pe3 -= 5
            pcl.elpres = pe3
            pcl.elhght = interp.agl(interp.hght(pe3, prof), prof)
            pcl.mplpres = RMISSD
            pcl.limax = -li_max
            pcl.limaxpress = li_maxpres

        # MPL Possibility
        if tote < 0. and not QC(pcl.mplpres) and QC(pcl.elpres):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            totx = tote - lyre
            pe2 = pelast
            while totx > 0:
                pe2 -= 1
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                h2 = interp.hght(pe2, prof)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                totx += lyrf
                tp3 = tp2
                te3 = te2
                pe3 = pe2
            pcl.mplpres = pe2
            pcl.mplhght = interp.agl(interp.hght(pe2, prof), prof)

        # 500 hPa Lifted Index
        if prof.gSndg[i][prof.pind] <= 500. and pcl.li5 == RMISSD:
            a = interp.vtmp(500., prof)
            b = thermo.wetlift(pe1, tp1, 500.)
            pcl.li5 = a - thermo.virtemp(500, b, b)

        # 300 hPa Lifted Index
        if prof.gSndg[i][prof.pind] <= 300. and pcl.li3 == RMISSD:
            a = interp.vtmp(300., prof)
            b = thermo.wetlift(pe1, tp1, 300.)
            pcl.li3 = a - thermo.virtemp(300, b, b)

    # Calculate BRN if available
    pcl = bulk_rich(pcl, prof)

    pcl.bminus = cinh_old
    if pcl.bplus == 0: pcl.bminus = 0.
    return pcl
Ejemplo n.º 39
0
spd_std = spd_std * units.knot
direc = direc * units.deg
direc_std = direc_std * units.deg

# Convert wind speed and direction to components
u, v = get_wind_components(spd, direc)
u_std, v_std = get_wind_components(spd_std, direc_std)

#PARCEL CALCULATIONS with sharppy
sfcpcl = params.parcelx(prof, flag=1)  # Surface Parcel
fcstpcl = params.parcelx(prof, flag=2)  # Forecast Parcel
mupcl = params.parcelx(prof, flag=3)  # Most-Unstable Parcel
mlpcl = params.parcelx(prof, flag=4)  # 100 mb Mean Layer Parcel

sfc = prof.pres[prof.sfc]
p3km = interp.pres(prof, interp.to_msl(prof, 3000.))
p6km = interp.pres(prof, interp.to_msl(prof, 6000.))
p1km = interp.pres(prof, interp.to_msl(prof, 1000.))
mean_3km = winds.mean_wind(prof, pbot=sfc, ptop=p3km)
sfc_6km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p6km)
sfc_3km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p3km)
sfc_1km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p1km)
srwind = params.bunkers_storm_motion(prof)
srh3km = winds.helicity(prof, 0, 3000., stu=srwind[0], stv=srwind[1])
srh1km = winds.helicity(prof, 0, 1000., stu=srwind[0], stv=srwind[1])

stp_fixed = params.stp_fixed(
    sfcpcl.bplus, sfcpcl.lclhght, srh1km[0],
    utils.comp2vec(sfc_6km_shear[0], sfc_6km_shear[1])[1])
ship = params.ship(prof)
eff_inflow = params.effective_inflow_layer(prof)
Ejemplo n.º 40
0
 def get_kinematics(self):
     '''
     Function to generate the numerous kinematic quantities
     used for display and calculations. It requires that the
     parcel calculations have already been called for the lcl
     to el shear and mean wind vectors, as well as indices
     that require an effective inflow layer.
     Parameters
     ----------
     None
     Returns
     -------
     None
     '''
     sfc = self.pres[self.sfc]
     heights = np.array([1000., 3000., 4000., 5000., 6000., 8000., 9000.])
     p1km, p3km, p4km, p5km, p6km, p8km, p9km = interp.pres(self, interp.to_msl(self, heights))
     ## 1km and 6km winds
     self.wind1km = interp.vec(self, p1km)
     self.wind6km = interp.vec(self, p6km)
     ## calcluate wind shear
     self.sfc_1km_shear = winds.wind_shear(self, pbot=sfc, ptop=p1km)
     self.sfc_3km_shear = winds.wind_shear(self, pbot=sfc, ptop=p3km)
     self.sfc_6km_shear = winds.wind_shear(self, pbot=sfc, ptop=p6km)
     self.sfc_8km_shear = winds.wind_shear(self, pbot=sfc, ptop=p8km)
     self.sfc_9km_shear = winds.wind_shear(self, pbot=sfc, ptop=p9km)
     self.lcl_el_shear = winds.wind_shear(self, pbot=self.mupcl.lclpres, ptop=self.mupcl.elpres)
     ## calculate mean wind
     self.mean_1km = utils.comp2vec(*winds.mean_wind(self, pbot=sfc, ptop=p1km))
     self.mean_3km = utils.comp2vec(*winds.mean_wind(self, pbot=sfc, ptop=p3km))
     self.mean_6km = utils.comp2vec(*winds.mean_wind(self, pbot=sfc, ptop=p6km))
     self.mean_8km = utils.comp2vec(*winds.mean_wind(self, pbot=sfc, ptop=p8km))
     self.mean_lcl_el = utils.comp2vec(*winds.mean_wind(self, pbot=self.mupcl.lclpres, ptop=self.mupcl.elpres))
     ## parameters that depend on the presence of an effective inflow layer
     if self.etop is ma.masked or self.ebottom is ma.masked:
         self.etopm = ma.masked; self.ebotm = ma.masked
         self.srwind = winds.non_parcel_bunkers_motion( self )
         self.eff_shear = [MISSING, MISSING]
         self.ebwd = [MISSING, MISSING, MISSING]
         self.ebwspd = MISSING
         self.mean_eff = [MISSING, MISSING, MISSING]
         self.mean_ebw = [MISSING, MISSING, MISSING]
         self.srw_eff = [MISSING, MISSING, MISSING]
         self.srw_ebw = [MISSING, MISSING, MISSING]
         self.right_esrh = [ma.masked, ma.masked, ma.masked]
         self.left_esrh = [ma.masked, ma.masked, ma.masked]
         self.critical_angle = ma.masked
     else:
         self.srwind = params.bunkers_storm_motion(self, mupcl=self.mupcl, pbot=self.ebottom)
         depth = ( self.mupcl.elhght - self.ebotm ) / 2
         elh = interp.pres(self, interp.to_msl(self, self.ebotm + depth))
         ## calculate mean wind
         self.mean_eff = winds.mean_wind(self, self.ebottom, self.etop )
         self.mean_ebw = winds.mean_wind(self, pbot=self.ebottom, ptop=elh )
         ## calculate wind shear of the effective layer
         self.eff_shear = winds.wind_shear(self, pbot=self.ebottom, ptop=self.etop)
         self.ebwd = winds.wind_shear(self, pbot=self.ebottom, ptop=elh)
         self.ebwspd = utils.mag( self.ebwd[0], self.ebwd[1] )
         ## calculate the mean sr wind
         self.srw_eff = winds.sr_wind(self, pbot=self.ebottom, ptop=self.etop, stu=self.srwind[0], stv=self.srwind[1] )
         self.srw_ebw = winds.sr_wind(self, pbot=self.ebottom, ptop=elh, stu=self.srwind[0], stv=self.srwind[1] )
         self.right_esrh = winds.helicity(self, self.ebotm, self.etopm, stu=self.srwind[0], stv=self.srwind[1])
         self.left_esrh = winds.helicity(self, self.ebotm, self.etopm, stu=self.srwind[2], stv=self.srwind[3])
         self.critical_angle = winds.critical_angle(self, stu=self.srwind[0], stv=self.srwind[1])
     ## calculate mean srw
     self.srw_1km = utils.comp2vec(*winds.sr_wind(self, pbot=sfc, ptop=p1km, stu=self.srwind[0], stv=self.srwind[1] ))
     self.srw_3km = utils.comp2vec(*winds.sr_wind(self, pbot=sfc, ptop=p3km, stu=self.srwind[0], stv=self.srwind[1] ))
     self.srw_6km = utils.comp2vec(*winds.sr_wind(self, pbot=sfc, ptop=p6km, stu=self.srwind[0], stv=self.srwind[1] ))
     self.srw_8km = utils.comp2vec(*winds.sr_wind(self, pbot=sfc, ptop=p8km, stu=self.srwind[0], stv=self.srwind[1] ))
     self.srw_4_5km = utils.comp2vec(*winds.sr_wind(self, pbot=p4km, ptop=p5km, stu=self.srwind[0], stv=self.srwind[1] ))
     self.srw_lcl_el = utils.comp2vec(*winds.sr_wind(self, pbot=self.mupcl.lclpres, ptop=self.mupcl.elpres, stu=self.srwind[0], stv=self.srwind[1] ))
     # This is for the red, blue, and purple bars that appear on the SR Winds vs. Height plot
     self.srw_0_2km = winds.sr_wind(self, pbot=sfc, ptop=interp.pres(self, interp.to_msl(self, 2000.)), stu=self.srwind[0], stv=self.srwind[1])
     self.srw_4_6km = winds.sr_wind(self, pbot=interp.pres(self, interp.to_msl(self, 4000.)), ptop=p6km, stu=self.srwind[0], stv=self.srwind[1])
     self.srw_9_11km = winds.sr_wind(self, pbot=interp.pres(self, interp.to_msl(self, 9000.)), ptop=interp.pres(self, interp.to_msl(self, 11000.)), stu=self.srwind[0], stv=self.srwind[1])
     
     ## calculate upshear and downshear
     self.upshear_downshear = winds.mbe_vectors(self)
     self.srh1km = winds.helicity(self, 0, 1000., stu=self.srwind[0], stv=self.srwind[1])
     self.srh3km = winds.helicity(self, 0, 3000., stu=self.srwind[0], stv=self.srwind[1])
Ejemplo n.º 41
0
def helicity(lower, upper, prof, stu=0, stv=0):
    '''
    Calculates the relative helicity (m2/s2) of a layer from lower to upper.
    If storm-motion vector is supplied, storm-relative helicity, both
    positve and negative, is returned.

    Inputs
    ------
        lower       (float)             Bottom level of layer (m, AGL)
        upper       (float)             Top level of layer (m, AGL)
        prof        (profile object)    Profile Object
        stu         (float; optional)   U-component of storm-motion
        stv         (float; optional)   V-component of storm-motion

    Returns
    -------
        phel+nhel   (float)             Combined Helicity (m2/s2)
        phel        (float)             Positive Helicity (m2/s2)
        nhel        (float)             Negative Helicity (m2/s2)
    '''
    lower = interp.msl(lower, prof)
    upper = interp.msl(upper, prof)
    plower = interp.pres(lower, prof)
    pupper = interp.pres(upper, prof)
    phel = 0
    nhel = 0

    # Find lower and upper ind bounds for looping
    i = 0
    while interp.msl(prof.gSndg[i][prof.zind], prof) < lower:
        i += 1
    lptr = i
    if interp.msl(prof.gSndg[i][prof.zind], prof) == lower: lptr += 1
    while interp.msl(prof.gSndg[i][prof.zind], prof) <= upper:
        i += 1
    uptr = i
    if interp.msl(prof.gSndg[i][prof.zind], prof) == upper: uptr -= 1

    # Integrate from interpolated bottom level to iptr level
    sru1, srv1 = interp.components(plower, prof)
    sru1 = KTS2MS(sru1 - stu)
    srv1 = KTS2MS(srv1 - stv)

    # Loop through levels
    for i in range(lptr, uptr + 1):
        if QC(prof.gSndg[i][prof.uind]) and QC(prof.gSndg[i][prof.vind]):
            sru2, srv2 = interp.components(prof.gSndg[i][prof.pind], prof)
            sru2 = KTS2MS(sru2 - stu)
            srv2 = KTS2MS(srv2 - stv)
            lyrh = (sru2 * srv1) - (sru1 * srv2)
            if lyrh > 0: phel += lyrh
            else: nhel += lyrh
            sru1 = sru2
            srv1 = srv2

    # Integrate from tptr level to interpolated top level
    sru2, srv2 = interp.components(pupper, prof)
    sru2 = KTS2MS(sru2 - stu)
    srv2 = KTS2MS(srv2 - stv)

    lyrh = (sru2 * srv1) - (sru1 * srv2)
    if lyrh > 0: phel += lyrh
    else: nhel += lyrh
    return phel + nhel, phel, nhel
Ejemplo n.º 42
0
def helicity(lower, upper, prof, stu=0, stv=0):
    '''
    Calculates the relative helicity (m2/s2) of a layer from lower to upper.
    If storm-motion vector is supplied, storm-relative helicity, both
    positve and negative, is returned.

    Inputs
    ------
        lower       (float)             Bottom level of layer (m, AGL)
        upper       (float)             Top level of layer (m, AGL)
        prof        (profile object)    Profile Object
        stu         (float; optional)   U-component of storm-motion
        stv         (float; optional)   V-component of storm-motion

    Returns
    -------
        phel+nhel   (float)             Combined Helicity (m2/s2)
        phel        (float)             Positive Helicity (m2/s2)
        nhel        (float)             Negative Helicity (m2/s2)
    '''
    lower = interp.msl(lower, prof)
    upper = interp.msl(upper, prof)
    plower = interp.pres(lower, prof)
    pupper = interp.pres(upper, prof)
    phel = 0
    nhel = 0

    # Find lower and upper ind bounds for looping
    i = 0
    while interp.msl(prof.gSndg[i][prof.zind], prof) < lower: i+=1
    lptr = i
    if interp.msl(prof.gSndg[i][prof.zind], prof) == lower: lptr+=1
    while interp.msl(prof.gSndg[i][prof.zind], prof) <= upper: i+=1
    uptr = i
    if interp.msl(prof.gSndg[i][prof.zind], prof) == upper: uptr-=1


    # Integrate from interpolated bottom level to iptr level
    sru1, srv1 = interp.components(plower, prof)
    sru1 = KTS2MS(sru1 - stu)
    srv1 = KTS2MS(srv1 - stv)

    # Loop through levels
    for i in range(lptr, uptr+1):
        if QC(prof.gSndg[i][prof.uind]) and QC(prof.gSndg[i][prof.vind]):
            sru2, srv2 = interp.components(prof.gSndg[i][prof.pind], prof)
            sru2 = KTS2MS(sru2 - stu)
            srv2 = KTS2MS(srv2 - stv)
            lyrh = (sru2 * srv1) - (sru1 * srv2)
            if lyrh > 0: phel += lyrh
            else: nhel += lyrh
            sru1 = sru2
            srv1 = srv2

    # Integrate from tptr level to interpolated top level
    sru2, srv2 = interp.components(pupper, prof)
    sru2 = KTS2MS(sru2 - stu)
    srv2 = KTS2MS(srv2 - stv)

    lyrh = (sru2 * srv1) - (sru1 * srv2)
    if lyrh > 0: phel += lyrh
    else: nhel += lyrh
    return phel+nhel, phel, nhel
Ejemplo n.º 43
0
def process_site(file):
    try:
        ## switch out the reading function for the anticipated data type
        data = read_wyoming_file(file)
        #data = read_sounding_file(file)

        ## depending on the data reader used, different block of code is requires
        #"""
        p = data[:, 0]
        Z = data[:, 1]
        T = data[:, 2]
        Td = data[:, 3]
        U = np.zeros(T.shape)
        V = np.zeros(T.shape)
        """
        
        p = data[:, 0]
        T = data[:, 1]
        Td = data[:, 2]
        Z = data[:, 5]
        U = np.zeros(T.shape)
        V = np.zeros(T.shape)
        """
        ## comment out this triple quote if using the above block

        dz = None
        p_og = None
        z_og = None

        p[p == 9999.0] = np.nan
        T[T == 999.0] = np.nan
        Td[Td == 999.0] = np.nan
        Z[Z == 9999.0] = np.nan

        p = np.ma.masked_invalid(p)
        T = np.ma.masked_invalid(T)
        Td = np.ma.masked_invalid(Td)
        Z = np.ma.masked_invalid(Z)

    except:
        ## read in Kevins beautiful data
        data = read_kevins_file(file)
        Z = data[:, 0]
        p = data[:, 1]
        T = data[:, 2]
        U = np.zeros(T.shape)
        V = np.zeros(T.shape)
        Td = data[:, 3]

        dz = data[:, 4][::10]
        p_og = data[:, 5][::10]
        z_og = data[:, 6][::10]

        p = np.ma.masked_invalid(p)
        T = np.ma.masked_invalid(T)
        Td = np.ma.masked_invalid(Td)
        Z = np.ma.masked_invalid(Z)
    print file

    ## create profile object for processing
    prof = profile.create_profile(profile='default',
                                  pres=p,
                                  hght=Z,
                                  tmpc=T,
                                  dwpc=Td,
                                  u=U,
                                  v=V,
                                  strictQC=False)

    if dz is not None:
        pvals = interp.pres(prof, interp.to_msl(prof, np.arange(0, 5000, 100)))
        dz = interp.generic_interp_pres(np.log10(pvals),
                                        np.log10(p_og)[::-1], dz[::-1])
    print dz
    ## return the lifted parcel indices and the bore dz
    return lift_parcels(prof), dz
Ejemplo n.º 44
0
def parcelx(lower, upper, pres, temp, dwpt, prof, **kwargs):
    '''
    Lifts the specified parcel, calculated various levels and parameters from
    the profile object. B+/B- are calculated based on the specified layer.

    !! All calculations use the virtual temperature correction unless noted. !!

    Inputs
    ------
        lower       (float)                 Lower-bound lifting level (hPa)
        upper       (float)                 Upper-bound lifting level
        pres        (float)                 Pressure of parcel to lift (hPa)
        temp        (float)                 Temperature of parcel to lift (C)
        dwpt        (float)                 Dew Point of parcel to lift (C)
        prof        (profile object)        Profile Object

    Returns
    -------
        pcl         (parcel object)         Parcel Object
    '''
    pcl = Parcel(-1, -1, pres, temp, dwpt)
    if 'lplvals' in kwargs: pcl.lplvals = kwargs.get('lplvals')
    else:
        lplvals = DefineParcel(prof, 5, pres=pres, temp=temp, dwpt=dwpt)
        pcl.lplvals = lplvals

    if prof.gNumLevels < 1: return pcl

    lyre = -1
    cap_strength = RMISSD
    cap_strengthpres = RMISSD
    li_max = RMISSD
    li_maxpres = RMISSD
    totp = 0.
    totn = 0.
    tote = 0.
    cinh_old = 0.

    # See if default layer is specified
    if lower == -1:
        lower = prof.gSndg[prof.sfc][prof.pind]
        pcl.blayer = lower
    if upper == -1:
        upper = prof.gSndg[prof.gNumLevels - 1][prof.pind]
        pcl.tlayer = upper

    # Make sure that this is a valid layer
    if lower > pres:
        lower = pres
        pcl.blayer = lower
    if not QC(interp.vtmp(lower, prof)) or \
       not QC(interp.vtmp(upper, prof)):
        return RMISSD

    # Begin with the Mixing Layer
    te1 = interp.vtmp(pres, prof)
    pe1 = lower
    h1 = interp.hght(pe1, prof)
    tp1 = thermo.virtemp(pres, temp, dwpt)
    # te1 = tp1

    # Lift parcel and return LCL pres (hPa) and LCL temp (c)
    pe2, tp2 = thermo.drylift(pres, temp, dwpt)
    blupper = pe2  # Define top of layer as LCL pres
    h2 = interp.hght(pe2, prof)
    te2 = interp.vtmp(pe2, prof)
    pcl.lclpres = pe2
    pcl.lclhght = interp.agl(h2, prof)

    # Calculate lifted parcel theta for use in iterative CINH loop below
    # RECALL: lifted parcel theta is CONSTANT from LPL to LCL
    theta_parcel = thermo.theta(pe2, tp2, 1000.)

    # Environmental theta and mixing ratio at LPL
    bltheta = thermo.theta(pres, interp.temp(pres, prof), 1000.)
    blmr = thermo.mixratio(pres, dwpt)

    # ACCUMULATED CINH IN MIXING LAYER BELOW THE LCL
    # This will be done in 10mb increments, and will use the virtual
    # temperature correction where possible
    pinc = -10
    a = int(lower)
    b = int(blupper)
    for pp in range(a, b, int(pinc)):
        pp1 = pp
        pp2 = pp + pinc
        if pp2 < blupper: pp2 = blupper
        dz = interp.hght(pp2, prof) - interp.hght(pp1, prof)

        # Calculate difference between Tv_parcel and Tv_environment at top
        # and bottom of 10mb layers. Make use of constant lifted parcel
        # theta and mixing ratio from LPL to LCL
        tv_env_bot = thermo.virtemp(
            pp1, thermo.theta(pp1, interp.temp(pp1, prof), 1000.),
            interp.dwpt(pp1, prof))
        tdef1 = (thermo.virtemp(pp1, theta_parcel,
            thermo.temp_at_mixrat(blmr, pp1)) - tv_env_bot) / \
            (thermo.ctok(tv_env_bot))

        tv_env_top = thermo.virtemp(
            pp2, thermo.theta(pp2, interp.temp(pp2, prof), 1000.),
            interp.dwpt(pp2, prof))
        tdef2 = (thermo.virtemp(pp2, theta_parcel,
            thermo.temp_at_mixrat(blmr, pp2)) - tv_env_top) / \
            (thermo.ctok(tv_env_bot))

        lyre = G * (tdef1 + tdef2) / 2. * dz
        if lyre < 0: totn += lyre

    # Move the bottom layer to the top of the boundary layer
    if lower > pe2:
        lower = pe2
        pcl.blayer = lower

    # Calculate height of various temperature levels
    p0c = temp_lvl(0., prof)
    pm10c = temp_lvl(-10., prof)
    pm20c = temp_lvl(-20., prof)
    pm30c = temp_lvl(-30., prof)
    hgt0c = interp.hght(p0c, prof)
    hgtm10c = interp.hght(pm10c, prof)
    hgtm20c = interp.hght(pm20c, prof)
    hgtm30c = interp.hght(pm30c, prof)
    pcl.p0c = p0c
    pcl.pm10c = pm10c
    pcl.pm20c = pm20c
    pcl.pm30c = pm30c
    pcl.hght0c = hgt0c
    pcl.hghtm10c = hgtm10c
    pcl.hghtm20c = hgtm20c
    pcl.hghtm30c = hgtm30c

    # Find lowest observation in layer
    i = 0
    while prof.gSndg[i][prof.pind] > lower:
        if i == prof.gNumLevels - 1: break
        i += 1
    while not QC(prof.gSndg[i][prof.tdind]):
        if i == prof.gNumLevels - 1: break
        i += 1
    lptr = i
    if prof.gSndg[i][prof.pind] == lower:
        if i != prof.gNumLevels - 1: lptr += 1

    # Find highest observation in layer
    i = prof.gNumLevels - 1
    while prof.gSndg[i][prof.pind] < upper:
        if i < lptr: break
        i -= 1
    uptr = i
    if prof.gSndg[i][prof.pind] == upper:
        if i > lptr: uptr -= 1

    # START WITH INTERPOLATED BOTTOM LAYER
    # Begin moist ascent from lifted parcel LCL (pe2, tp2)
    pe1 = lower
    h1 = interp.hght(pe1, prof)
    te1 = interp.vtmp(pe1, prof)
    tp1 = thermo.wetlift(pe2, tp2, pe1)
    lyre = 0
    lyrlast = 0
    for i in range(lptr, prof.gNumLevels):
        if not QC(prof.gSndg[i][prof.tind]): continue
        pe2 = prof.gSndg[i][prof.pind]
        h2 = prof.gSndg[i][prof.zind]
        te2 = interp.vtmp(pe2, prof)
        tp2 = thermo.wetlift(pe1, tp1, pe2)
        tdef1 = (thermo.virtemp(pe1, tp1, tp1) - te1) / thermo.ctok(te1)
        tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2)
        lyrlast = lyre
        lyre = G * (tdef1 + tdef2) / 2. * (h2 - h1)

        # Add layer energy to total positive if lyre > 0
        if lyre > 0:
            totp += lyre
            # Add layer energy to total negative if lyre < 0, only up to EL
        else:
            if pe2 > 500.: totn += lyre

        # Check for Max LI
        mli = thermo.virtemp(pe2, tp2, tp2) - te2
        if mli > li_max:
            li_max = mli
            li_maxpres = pe2

        # Check for Max Cap Strength
        mcap = te2 - mli
        if mcap > cap_strength:
            cap_strength = mcap
            cap_strengthpres = pe2

        tote += lyre
        pelast = pe1
        pe1 = pe2
        h1 = h2
        te1 = te2
        tp1 = tp2

        # Is this the top of the specified layer
        if i >= uptr and not QC(pcl.bplus):
            pe3 = pe1
            h3 = h1
            te3 = te1
            tp3 = tp1
            lyrf = lyre
            if lyrf > 0:
                pcl.bplus = totp - lyrf
                pcl.bminus = totn
            else:
                pcl.bplus = totp
                if pe2 > 500.: pcl.bminus = totn + lyrf
                else: pcl.bminus = totn
            pe2 = upper
            h2 = interp.hght(pe2, prof)
            te2 = interp.vtmp(pe2, prof)
            tp2 = thermo.wetlift(pe3, tp3, pe2)
            tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / thermo.ctok(te3)
            tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / thermo.ctok(te2)
            lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
            if lyrf > 0: pcl.bplus += lyrf
            else:
                if pe2 > 500.: pcl.bminus += lyrf
            if pcl.bplus == 0: pcl.bminus = 0.

        # Is this the freezing level
        if te2 < 0. and not QC(pcl.bfzl):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.bfzl = totp - lyrf
            else: pcl.bfzl = totp
            if not QC(p0c) or p0c > pe3:
                pcl.bfzl = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgt0c - h3)
                if lyrf > 0: pcl.bfzl += lyrf

        # Is this the -10C level
        if te2 < -10. and not QC(pcl.wm10c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm10c = totp - lyrf
            else: pcl.wm10c = totp
            if not QC(pm10c) or pm10c > pcl.lclpres:
                pcl.wm10c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm10c - h3)
                if lyrf > 0: pcl.wm10c += lyrf

        # Is this the -20C level
        if te2 < -20. and not QC(pcl.wm20c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm20c = totp - lyrf
            else: pcl.wm20c = totp
            if not QC(pm20c) or pm20c > pcl.lclpres:
                pcl.wm20c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm20c - h3)
                if lyrf > 0: pcl.wm20c += lyrf

        # Is this the -30C level
        if te2 < -30. and not QC(pcl.wm30c):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            lyrf = lyre
            if lyrf > 0.: pcl.wm30c = totp - lyrf
            else: pcl.wm30c = totp
            if not QC(pm30c) or pm30c > pcl.lclpres:
                pcl.wm30c = 0
            elif QC(pe2):
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (hgtm30c - h3)
                if lyrf > 0: pcl.wm30c += lyrf

        # Is this the 3km level
        if pcl.lclhght < 3000.:
            h = interp.agl(interp.hght(pe2, prof), prof)
            if h >= 3000. and not QC(pcl.b3km):
                pe3 = pelast
                h3 = interp.hght(pe3, prof)
                te3 = interp.vtmp(pe3, prof)
                tp3 = thermo.wetlift(pe1, tp1, pe3)
                lyrf = lyre
                if lyrf > 0: pcl.b3km = totp - lyrf
                else: pcl.b3km = totp
                h2 = interp.msl(3000., prof)
                pe2 = interp.pres(h2, prof)
                if QC(pe2):
                    te2 = interp.vtmp(pe2, prof)
                    tp2 = thermo.wetlift(pe3, tp3, pe2)
                    tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                        thermo.ctok(te3)
                    tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                        thermo.ctok(te2)
                    lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                    if lyrf > 0: pcl.b3km += lyrf
        else: pcl.b3km = 0.

        # Is this the 6km level
        if pcl.lclhght < 6000.:
            h = interp.agl(interp.hght(pe2, prof), prof)
            if h >= 6000. and not QC(pcl.b6km):
                pe3 = pelast
                h3 = interp.hght(pe3, prof)
                te3 = interp.vtmp(pe3, prof)
                tp3 = thermo.wetlift(pe1, tp1, pe3)
                lyrf = lyre
                if lyrf > 0: pcl.b6km = totp - lyrf
                else: pcl.b6km = totp
                h2 = interp.msl(6000., prof)
                pe2 = interp.pres(h2, prof)
                if QC(pe2):
                    te2 = interp.vtmp(pe2, prof)
                    tp2 = thermo.wetlift(pe3, tp3, pe2)
                    tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                        thermo.ctok(te3)
                    tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                        thermo.ctok(te2)
                    lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                    if lyrf > 0: pcl.b6km += lyrf
        else: pcl.b6km = 0.

        # LFC Possibility
        if lyre >= 0. and lyrlast <= 0.:
            tp3 = tp1
            te3 = te1
            pe2 = pe1
            pe3 = pelast
            while interp.vtmp(pe3, prof) > thermo.virtemp(
                    pe3, thermo.wetlift(pe2, tp3, pe3),
                    thermo.wetlift(pe2, tp3, pe3)):
                pe3 -= 5
            pcl.lfcpres = pe3
            pcl.lfchght = interp.agl(interp.hght(pe3, prof), prof)
            cinh_old = totn
            tote = 0.
            pcl.elpres = RMISSD
            li_max = RMISSD

            if cap_strength < 0.: cap_strength = 0.
            pcl.cap = cap_strength
            pcl.cappres = cap_strengthpres
            # Hack to force LFC to be at least at the LCL
            if pcl.lfcpres > pcl.lclpres:
                pcl.lfcpres = pcl.lclpres
                pcl.lfchght = pcl.lclhght

        # EL Possibility
        if lyre <= 0. and lyrlast >= 0.:
            tp3 = tp1
            te3 = te1
            pe2 = pe1
            pe3 = pelast
            while interp.vtmp(pe3, prof) < thermo.virtemp(
                    pe3, thermo.wetlift(pe2, tp3, pe3),
                    thermo.wetlift(pe2, tp3, pe3)):
                pe3 -= 5
            pcl.elpres = pe3
            pcl.elhght = interp.agl(interp.hght(pe3, prof), prof)
            pcl.mplpres = RMISSD
            pcl.limax = -li_max
            pcl.limaxpress = li_maxpres

        # MPL Possibility
        if tote < 0. and not QC(pcl.mplpres) and QC(pcl.elpres):
            pe3 = pelast
            h3 = interp.hght(pe3, prof)
            te3 = interp.vtmp(pe3, prof)
            tp3 = thermo.wetlift(pe1, tp1, pe3)
            totx = tote - lyre
            pe2 = pelast
            while totx > 0:
                pe2 -= 1
                te2 = interp.vtmp(pe2, prof)
                tp2 = thermo.wetlift(pe3, tp3, pe2)
                h2 = interp.hght(pe2, prof)
                tdef3 = (thermo.virtemp(pe3, tp3, tp3) - te3) / \
                    thermo.ctok(te3)
                tdef2 = (thermo.virtemp(pe2, tp2, tp2) - te2) / \
                    thermo.ctok(te2)
                lyrf = G * (tdef3 + tdef2) / 2. * (h2 - h3)
                totx += lyrf
                tp3 = tp2
                te3 = te2
                pe3 = pe2
            pcl.mplpres = pe2
            pcl.mplhght = interp.agl(interp.hght(pe2, prof), prof)

        # 500 hPa Lifted Index
        if prof.gSndg[i][prof.pind] <= 500. and pcl.li5 == RMISSD:
            a = interp.vtmp(500., prof)
            b = thermo.wetlift(pe1, tp1, 500.)
            pcl.li5 = a - thermo.virtemp(500, b, b)

        # 300 hPa Lifted Index
        if prof.gSndg[i][prof.pind] <= 300. and pcl.li3 == RMISSD:
            a = interp.vtmp(300., prof)
            b = thermo.wetlift(pe1, tp1, 300.)
            pcl.li3 = a - thermo.virtemp(300, b, b)

    # Calculate BRN if available
    pcl = bulk_rich(pcl, prof)

    pcl.bminus = cinh_old
    if pcl.bplus == 0: pcl.bminus = 0.
    return pcl
Ejemplo n.º 45
0
    # Update the hodograph on the Skew-T.
    # Draw the hodograph on the Skew-T.
    hodo_ax = myskewt.draw_hodo()
    hodo, AGL = myskewt.add_hodo(hodo_ax, prof)

    # Plot Bunker's Storm motion left mover as a blue dot
    bunkerL, = hodo_ax.plot([], [], color='b', alpha=0.7, linestyle="None", marker="o", markersize=5, mew=0, label="left mover")
    # Plot Bunker's Storm motion right mover as a red dot
    # The comma after bunkerR de-lists it.
    bunkerR, = hodo_ax.plot([], [], color='r', alpha=0.7, linestyle="None", marker="o", markersize=5, mew=0, label="right mover")
    # Explanation for red and blue dots. Put only 1 point in the legend entry.
    bunkerleg = hodo_ax.legend(handles=[bunkerL,bunkerR], fontsize=5, frameon=False, numpoints=1)

    # show Bunker left/right movers if 0-6km shear magnitude >= 20kts
    p6km = interp.pres(prof, interp.to_msl(prof, 6000.))
    sfc_6km_shear = winds.wind_shear(prof, pbot=prof.pres[prof.sfc], ptop=p6km)
    if utils.comp2vec(sfc_6km_shear[0], sfc_6km_shear[1])[1] >= 20.:
        bunkerR.set_visible(True)
        bunkerL.set_visible(True)
        bunkerleg.set_visible(True)
        bunkerR.set_data(srwind[0], srwind[1]) # Update Bunker's Storm motion right mover
        bunkerL.set_data(srwind[2], srwind[3]) # Update Bunker's Storm motion left mover
    else:
        bunkerR.set_visible(False)
        bunkerL.set_visible(False)
        bunkerleg.set_visible(False)

    # Recreate stack of wind barbs
    s = []
    bot=2000.
    ax3 = plt.subplot(gs[3, 0:3])
    skew.plot_wind_axes(ax2)
    #skew.plot_wind_barbs(ax2, prof.pres, prof.u, prof.v)  # all the wind barbs (usually too many to see pattern)

    # Reduce the number of data points to use for the wind barbs
    p_less, u_less, v_less = pressure_interval(prof.pres, prof.u, prof.v, 0,
                                               1050, 25)
    skew.plot_wind_barbs(ax2, p_less, u_less, v_less)

    srwind = params.bunkers_storm_motion(prof)
    gs.update(left=0.05, bottom=0.05, top=0.95, right=1, wspace=0.025)

    #########################

    # Calculate indices to be shown.
    p1km = interp.pres(prof, interp.to_msl(prof, 1000.))
    p3km = interp.pres(prof, interp.to_msl(prof, 3000.))
    p6km = interp.pres(prof, interp.to_msl(prof, 6000.))
    p8km = interp.pres(prof, interp.to_msl(prof, 8000.))
    p9km = interp.pres(prof, interp.to_msl(prof, 9000.))
    sfc = prof.pres[prof.sfc]
    sfc_1km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p1km)
    sfc_3km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p3km)
    sfc_6km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p6km)
    sfc_8km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p8km)
    sfc_9km_shear = winds.wind_shear(prof, pbot=sfc, ptop=p9km)
    srh3km = winds.helicity(prof, 0, 3000., stu=srwind[0], stv=srwind[1])
    srh1km = winds.helicity(prof, 0, 1000., stu=srwind[0], stv=srwind[1])
    scp = params.scp(prof.mupcl.bplus, prof.right_esrh[0], prof.ebwspd)
    stp_cin = params.stp_cin(prof.mlpcl.bplus, prof.right_esrh[0], prof.ebwspd,
                             prof.mlpcl.lclhght, prof.mlpcl.bminus)
Ejemplo n.º 47
0
    def get_kinematics(self):
        '''
        Function to generate the numerous kinematic quantities
        used for display and calculations. It requires that the
        parcel calculations have already been called for the lcl
        to el shear and mean wind vectors, as well as indices
        that require an effective inflow layer.

        Parameters
        ----------
        None

        Returns
        -------
        None
        '''
        sfc = self.pres[self.sfc]
        heights = np.array([1000., 3000., 4000., 5000., 6000., 8000., 9000.])
        p1km, p3km, p4km, p5km, p6km, p8km, p9km = interp.pres(
            self, interp.to_msl(self, heights))
        ## 1km and 6km winds
        self.wind1km = interp.vec(self, p1km)
        self.wind6km = interp.vec(self, p6km)
        ## calcluate wind shear
        self.sfc_1km_shear = winds.wind_shear(self, pbot=sfc, ptop=p1km)
        self.sfc_3km_shear = winds.wind_shear(self, pbot=sfc, ptop=p3km)
        self.sfc_6km_shear = winds.wind_shear(self, pbot=sfc, ptop=p6km)
        self.sfc_8km_shear = winds.wind_shear(self, pbot=sfc, ptop=p8km)
        self.sfc_9km_shear = winds.wind_shear(self, pbot=sfc, ptop=p9km)
        self.lcl_el_shear = winds.wind_shear(self,
                                             pbot=self.mupcl.lclpres,
                                             ptop=self.mupcl.elpres)
        ## calculate mean wind
        self.mean_1km = utils.comp2vec(
            *winds.mean_wind(self, pbot=sfc, ptop=p1km))
        self.mean_3km = utils.comp2vec(
            *winds.mean_wind(self, pbot=sfc, ptop=p3km))
        self.mean_6km = utils.comp2vec(
            *winds.mean_wind(self, pbot=sfc, ptop=p6km))
        self.mean_8km = utils.comp2vec(
            *winds.mean_wind(self, pbot=sfc, ptop=p8km))
        self.mean_lcl_el = utils.comp2vec(*winds.mean_wind(
            self, pbot=self.mupcl.lclpres, ptop=self.mupcl.elpres))
        ## parameters that depend on the presence of an effective inflow layer
        if self.etop is ma.masked or self.ebottom is ma.masked:
            self.etopm = ma.masked
            self.ebotm = ma.masked
            self.srwind = winds.non_parcel_bunkers_motion(self)
            self.eff_shear = [MISSING, MISSING]
            self.ebwd = [MISSING, MISSING, MISSING]
            self.ebwspd = MISSING
            self.mean_eff = [MISSING, MISSING, MISSING]
            self.mean_ebw = [MISSING, MISSING, MISSING]
            self.srw_eff = [MISSING, MISSING, MISSING]
            self.srw_ebw = [MISSING, MISSING, MISSING]
            self.right_esrh = [ma.masked, ma.masked, ma.masked]
            self.left_esrh = [ma.masked, ma.masked, ma.masked]
            self.critical_angle = ma.masked
        else:
            self.srwind = params.bunkers_storm_motion(self,
                                                      mupcl=self.mupcl,
                                                      pbot=self.ebottom)
            depth = (self.mupcl.elhght - self.ebotm) / 2
            elh = interp.pres(self, interp.to_msl(self, self.ebotm + depth))
            ## calculate mean wind
            self.mean_eff = winds.mean_wind(self, self.ebottom, self.etop)
            self.mean_ebw = winds.mean_wind(self, pbot=self.ebottom, ptop=elh)
            ## calculate wind shear of the effective layer
            self.eff_shear = winds.wind_shear(self,
                                              pbot=self.ebottom,
                                              ptop=self.etop)
            self.ebwd = winds.wind_shear(self, pbot=self.ebottom, ptop=elh)
            self.ebwspd = utils.mag(self.ebwd[0], self.ebwd[1])
            ## calculate the mean sr wind
            self.srw_eff = winds.sr_wind(self,
                                         pbot=self.ebottom,
                                         ptop=self.etop,
                                         stu=self.srwind[0],
                                         stv=self.srwind[1])
            self.srw_ebw = winds.sr_wind(self,
                                         pbot=self.ebottom,
                                         ptop=elh,
                                         stu=self.srwind[0],
                                         stv=self.srwind[1])
            self.right_esrh = winds.helicity(self,
                                             self.ebotm,
                                             self.etopm,
                                             stu=self.srwind[0],
                                             stv=self.srwind[1])
            self.left_esrh = winds.helicity(self,
                                            self.ebotm,
                                            self.etopm,
                                            stu=self.srwind[2],
                                            stv=self.srwind[3])
            self.critical_angle = winds.critical_angle(self,
                                                       stu=self.srwind[0],
                                                       stv=self.srwind[1])
        ## calculate mean srw
        self.srw_1km = utils.comp2vec(*winds.sr_wind(
            self, pbot=sfc, ptop=p1km, stu=self.srwind[0], stv=self.srwind[1]))
        self.srw_3km = utils.comp2vec(*winds.sr_wind(
            self, pbot=sfc, ptop=p3km, stu=self.srwind[0], stv=self.srwind[1]))
        self.srw_6km = utils.comp2vec(*winds.sr_wind(
            self, pbot=sfc, ptop=p6km, stu=self.srwind[0], stv=self.srwind[1]))
        self.srw_8km = utils.comp2vec(*winds.sr_wind(
            self, pbot=sfc, ptop=p8km, stu=self.srwind[0], stv=self.srwind[1]))
        self.srw_4_5km = utils.comp2vec(*winds.sr_wind(
            self, pbot=p4km, ptop=p5km, stu=self.srwind[0],
            stv=self.srwind[1]))
        self.srw_lcl_el = utils.comp2vec(
            *winds.sr_wind(self,
                           pbot=self.mupcl.lclpres,
                           ptop=self.mupcl.elpres,
                           stu=self.srwind[0],
                           stv=self.srwind[1]))
        # This is for the red, blue, and purple bars that appear on the SR Winds vs. Height plot
        self.srw_0_2km = winds.sr_wind(self,
                                       pbot=sfc,
                                       ptop=interp.pres(
                                           self, interp.to_msl(self, 2000.)),
                                       stu=self.srwind[0],
                                       stv=self.srwind[1])
        self.srw_4_6km = winds.sr_wind(self,
                                       pbot=interp.pres(
                                           self, interp.to_msl(self, 4000.)),
                                       ptop=p6km,
                                       stu=self.srwind[0],
                                       stv=self.srwind[1])
        self.srw_9_11km = winds.sr_wind(
            self,
            pbot=interp.pres(self, interp.to_msl(self, 9000.)),
            ptop=interp.pres(self, interp.to_msl(self, 11000.)),
            stu=self.srwind[0],
            stv=self.srwind[1])

        ## calculate upshear and downshear
        self.upshear_downshear = winds.mbe_vectors(self)
        self.srh1km = winds.helicity(self,
                                     0,
                                     1000.,
                                     stu=self.srwind[0],
                                     stv=self.srwind[1])
        self.srh3km = winds.helicity(self,
                                     0,
                                     3000.,
                                     stu=self.srwind[0],
                                     stv=self.srwind[1])
Ejemplo n.º 48
0
    bunkerR, = hodo_ax.plot([], [],
                            color='r',
                            alpha=0.7,
                            linestyle="None",
                            marker="o",
                            markersize=5,
                            mew=0,
                            label="right mover")
    # Explanation for red and blue dots. Put only 1 point in the legend entry.
    bunkerleg = hodo_ax.legend(handles=[bunkerL, bunkerR],
                               fontsize=5,
                               frameon=False,
                               numpoints=1)

    # show Bunker left/right movers if 0-6km shear magnitude >= 20kts
    p6km = interp.pres(prof, interp.to_msl(prof, 6000.))
    sfc_6km_shear = winds.wind_shear(prof, pbot=prof.pres[prof.sfc], ptop=p6km)
    if utils.comp2vec(sfc_6km_shear[0], sfc_6km_shear[1])[1] >= 20.:
        bunkerR.set_visible(True)
        bunkerL.set_visible(True)
        bunkerleg.set_visible(True)
        bunkerR.set_data(srwind[0],
                         srwind[1])  # Update Bunker's Storm motion right mover
        bunkerL.set_data(srwind[2],
                         srwind[3])  # Update Bunker's Storm motion left mover
    else:
        bunkerR.set_visible(False)
        bunkerL.set_visible(False)
        bunkerleg.set_visible(False)

    if debug: