def get_context(): """Set up context for solver""" # Get points and weights for Chebyshev weighted integrals ST = ShenDirichletBasis(params.N[0], quad=params.Dquad) SB = ShenBiharmonicBasis(params.N[0], quad=params.Bquad) CT = ST.CT # Chebyshev transform Nu = params.N[0]-2 # Number of velocity modes in Shen basis Nb = params.N[0]-4 # Number of velocity modes in Shen biharmonic basis u_slice = slice(0, Nu) v_slice = slice(0, Nb) FST = SlabShen_R2C(params.N, params.L, comm, threads=params.threads, communication=params.communication, planner_effort=params.planner_effort, dealias_cheb=params.dealias_cheb) float, complex, mpitype = datatypes("double") ST.plan(FST.complex_shape(), 0, complex, {'threads':params.threads, 'planner_effort':params.planner_effort["dct"]}) SB.plan(FST.complex_shape(), 0, complex, {'threads':params.threads, 'planner_effort':params.planner_effort["dct"]}) # Mesh variables X = FST.get_local_mesh(ST) x0, x1, x2 = FST.get_mesh_dims(ST) K = FST.get_local_wavenumbermesh(scaled=True) K2 = K[1]*K[1]+K[2]*K[2] K4 = K2**2 # Set Nyquist frequency to zero on K that is used for odd derivatives Kx = FST.get_local_wavenumbermesh(scaled=True, eliminate_highest_freq=True) K_over_K2 = zeros((2,) + FST.complex_shape()) for i in range(2): K_over_K2[i] = K[i+1] / np.where(K2==0, 1, K2) # Solution variables U = zeros((3,)+FST.real_shape(), dtype=float) U0 = zeros((3,)+FST.real_shape(), dtype=float) U_hat = zeros((3,)+FST.complex_shape(), dtype=complex) U_hat0 = zeros((3,)+FST.complex_shape(), dtype=complex) g = zeros(FST.complex_shape(), dtype=complex) # primary variable u = (U_hat, g) H_hat = zeros((3,)+FST.complex_shape(), dtype=complex) H_hat0 = zeros((3,)+FST.complex_shape(), dtype=complex) H_hat1 = zeros((3,)+FST.complex_shape(), dtype=complex) dU = zeros((3,)+FST.complex_shape(), dtype=complex) hv = zeros(FST.complex_shape(), dtype=complex) hg = zeros(FST.complex_shape(), dtype=complex) Source = zeros((3,)+FST.real_shape(), dtype=float) Sk = zeros((3,)+FST.complex_shape(), dtype=complex) work = work_arrays() nu, dt, N = params.nu, params.dt, params.N kx = K[0][:, 0, 0] # Collect all linear algebra solvers la = config.AttributeDict(dict( HelmholtzSolverG = Helmholtz(N[0], np.sqrt(K2[0]+2.0/nu/dt), ST), BiharmonicSolverU = Biharmonic(N[0], -nu*dt/2., 1.+nu*dt*K2[0], -(K2[0] + nu*dt/2.*K4[0]), quad=SB.quad, solver="cython"), HelmholtzSolverU0 = Helmholtz(N[0], np.sqrt(2./nu/dt), ST), TDMASolverD = TDMA(inner_product((ST, 0), (ST, 0))) ) ) alfa = K2[0] - 2.0/nu/dt # Collect all matrices mat = config.AttributeDict(dict( CDD = inner_product((ST, 0), (ST, 1)), AB = HelmholtzCoeff(N[0], 1.0, -alfa, ST.quad), AC = BiharmonicCoeff(N[0], nu*dt/2., (1. - nu*dt*K2[0]), -(K2[0] - nu*dt/2.*K4[0]), quad=SB.quad), # Matrices for biharmonic equation CBD = inner_product((SB, 0), (ST, 1)), ABB = inner_product((SB, 0), (SB, 2)), BBB = inner_product((SB, 0), (SB, 0)), SBB = inner_product((SB, 0), (SB, 4)), # Matrices for Helmholtz equation ADD = inner_product((ST, 0), (ST, 2)), BDD = inner_product((ST, 0), (ST, 0)), BBD = inner_product((SB, 0), (ST, 0)), CDB = inner_product((ST, 0), (SB, 1)) ) ) hdf5file = KMMWriter({"U":U[0], "V":U[1], "W":U[2]}, chkpoint={'current':{'U':U}, 'previous':{'U':U0}}, filename=params.solver+".h5", mesh={"x": x0, "y": x1, "z": x2}) return config.AttributeDict(locals())
def get_context(): """Set up context for solver""" # Get points and weights for Chebyshev weighted integrals assert params.Dquad == params.Bquad collapse_fourier = False if params.dealias == '3/2-rule' else True ST = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad) SB = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad) CT = Basis(params.N[0], 'C', quad=params.Dquad) ST0 = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad) # For 1D problem K0 = Basis(params.N[1], 'F', domain=(0, params.L[1]), dtype='D') K1 = Basis(params.N[2], 'F', domain=(0, params.L[2]), dtype='d') kw0 = { 'threads': params.threads, 'planner_effort': params.planner_effort["dct"], 'slab': (params.decomposition == 'slab'), 'collapse_fourier': collapse_fourier } FST = TensorProductSpace(comm, (ST, K0, K1), **kw0) # Dirichlet FSB = TensorProductSpace(comm, (SB, K0, K1), **kw0) # Biharmonic FCT = TensorProductSpace(comm, (CT, K0, K1), **kw0) # Regular Chebyshev VFS = MixedTensorProductSpace([FSB, FST, FST]) VFST = MixedTensorProductSpace([FST, FST, FST]) VUG = MixedTensorProductSpace([FSB, FST]) # Padded kw = { 'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1, 'dealias_direct': params.dealias == '2/3-rule' } if params.dealias == '3/2-rule': # Requires new bases due to planning and transforms on different size arrays STp = Basis(params.N[0], 'C', bc=(0, 0), quad=params.Dquad) SBp = Basis(params.N[0], 'C', bc='Biharmonic', quad=params.Bquad) CTp = Basis(params.N[0], 'C', quad=params.Dquad) else: STp, SBp, CTp = ST, SB, CT K0p = Basis(params.N[1], 'F', dtype='D', domain=(0, params.L[1]), **kw) K1p = Basis(params.N[2], 'F', dtype='d', domain=(0, params.L[2]), **kw) FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **kw0) FSBp = TensorProductSpace(comm, (SBp, K0p, K1p), **kw0) FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **kw0) VFSp = MixedTensorProductSpace([FSBp, FSTp, FSTp]) Nu = params.N[0] - 2 # Number of velocity modes in Shen basis Nb = params.N[0] - 4 # Number of velocity modes in Shen biharmonic basis u_slice = slice(0, Nu) v_slice = slice(0, Nb) float, complex, mpitype = datatypes("double") # Mesh variables X = FST.local_mesh(True) x0, x1, x2 = FST.mesh() K = FST.local_wavenumbers(scaled=True) # Solution variables U = Array(VFS) U0 = Array(VFS) U_hat = Function(VFS) U_hat0 = Function(VFS) g = Function(FST) # primary variable u = (U_hat, g) H_hat = Function(VFST) H_hat0 = Function(VFST) H_hat1 = Function(VFST) dU = Function(VUG) hv = Function(FST) hg = Function(FST) Source = Array(VFS) Sk = Function(VFS) K2 = K[1] * K[1] + K[2] * K[2] K4 = K2**2 # Set Nyquist frequency to zero on K that is used for odd derivatives in nonlinear terms Kx = FST.local_wavenumbers(scaled=True, eliminate_highest_freq=True) K_over_K2 = np.zeros((2, ) + g.shape) for i in range(2): K_over_K2[i] = K[i + 1] / np.where(K2 == 0, 1, K2) for i in range(3): K[i] = K[i].astype(float) Kx[i] = K[i].astype(float) work = work_arrays() u_dealias = Array(VFSp) u0_hat = np.zeros((2, params.N[0]), dtype=complex) h0_hat = np.zeros((2, params.N[0]), dtype=complex) w = np.zeros((params.N[0], ), dtype=complex) w1 = np.zeros((params.N[0], ), dtype=complex) nu, dt, N = params.nu, params.dt, params.N alfa = K2[0] - 2.0 / nu / dt # Collect all matrices mat = config.AttributeDict( dict( CDD=inner_product((ST, 0), (ST, 1)), AB=HelmholtzCoeff(N[0], 1., -(K2 - 2.0 / nu / dt), 0, ST.quad), AC=BiharmonicCoeff(N[0], nu * dt / 2., (1. - nu * dt * K2), -(K2 - nu * dt / 2. * K4), 0, SB.quad), # Matrices for biharmonic equation CBD=inner_product((SB, 0), (ST, 1)), ABB=inner_product((SB, 0), (SB, 2)), BBB=inner_product((SB, 0), (SB, 0)), SBB=inner_product((SB, 0), (SB, 4)), # Matrices for Helmholtz equation ADD=inner_product((ST, 0), (ST, 2)), BDD=inner_product((ST, 0), (ST, 0)), BBD=inner_product((SB, 0), (ST, 0)), CDB=inner_product((ST, 0), (SB, 1)), ADD0=inner_product((ST0, 0), (ST0, 2)), BDD0=inner_product((ST0, 0), (ST0, 0)), )) la = config.AttributeDict( dict(HelmholtzSolverG=Helmholtz(mat.ADD, mat.BDD, -np.ones((1, 1, 1)), (K2 + 2.0 / nu / dt)), BiharmonicSolverU=Biharmonic(mat.SBB, mat.ABB, mat.BBB, -nu * dt / 2. * np.ones( (1, 1, 1)), (1. + nu * dt * K2), (-(K2 + nu * dt / 2. * K4))), HelmholtzSolverU0=Helmholtz(mat.ADD0, mat.BDD0, np.array([-1.]), np.array([2. / nu / dt])), TDMASolverD=TDMA(inner_product((ST, 0), (ST, 0))))) hdf5file = KMMFile(config.params.solver, checkpoint={ 'space': VFS, 'data': { '0': { 'U': [U_hat] }, '1': { 'U': [U_hat0] } } }, results={ 'space': VFS, 'data': { 'U': [U] } }) return config.AttributeDict(locals())
def get_context(): """Set up context for solver""" # Get points and weights for Chebyshev weighted integrals ST = ShenDirichletBasis(params.N[0], quad=params.Dquad, threads=params.threads, planner_effort=params.planner_effort["dct"]) SN = ShenNeumannBasis(params.N[0], quad=params.Nquad, threads=params.threads, planner_effort=params.planner_effort["dct"]) CT = ST.CT Nf = params.N[ 2] / 2 + 1 # Number of independent complex wavenumbers in z-direction Nu = params.N[0] - 2 # Number of velocity modes in Shen basis Nq = params.N[0] - 3 # Number of pressure modes in Shen basis u_slice = slice(0, Nu) p_slice = slice(1, Nu) FST = SlabShen_R2C(params.N, params.L, comm, threads=params.threads, communication=params.communication, planner_effort=params.planner_effort, dealias_cheb=params.dealias_cheb) float, complex, mpitype = datatypes("double") # Get grid for velocity points X = FST.get_local_mesh(ST) x0, x1, x2 = FST.get_mesh_dims(ST) U = zeros((3, ) + FST.real_shape(), dtype=float) U_hat = zeros((3, ) + FST.complex_shape(), dtype=complex) P = zeros(FST.real_shape(), dtype=float) P_hat = zeros(FST.complex_shape(), dtype=complex) Pcorr = zeros(FST.complex_shape(), dtype=complex) U0 = zeros((3, ) + FST.real_shape(), dtype=float) U_hat0 = zeros((3, ) + FST.complex_shape(), dtype=complex) U_hat1 = zeros((3, ) + FST.complex_shape(), dtype=complex) dU = zeros((3, ) + FST.complex_shape(), dtype=complex) H_hat = zeros((3, ) + FST.complex_shape(), dtype=complex) H_hat0 = zeros((3, ) + FST.complex_shape(), dtype=complex) H_hat1 = zeros((3, ) + FST.complex_shape(), dtype=complex) diff0 = zeros((3, ) + FST.complex_shape(), dtype=complex) Source = zeros((3, ) + FST.real_shape(), dtype=float) Sk = zeros((3, ) + FST.complex_shape(), dtype=complex) K = FST.get_local_wavenumbermesh(scaled=True) K2 = K[1] * K[1] + K[2] * K[2] K_over_K2 = zeros((3, ) + FST.complex_shape()) for i in range(3): K_over_K2[i] = K[i] / np.where(K2 == 0, 1, K2) work = work_arrays() # Primary variable u = (U_hat, P_hat) nu, dt, N = params.nu, params.dt, params.N # Collect all linear algebra solvers la = config.AttributeDict( dict(HelmholtzSolverU=Helmholtz(N[0], np.sqrt(K2[0] + 2.0 / nu / dt), ST), HelmholtzSolverP=Helmholtz(N[0], np.sqrt(K2[0]), SN), TDMASolverD=TDMA(inner_product((ST, 0), (ST, 0))), TDMASolverN=TDMA(inner_product((SN, 0), (SN, 0))))) alfa = K2[0] - 2.0 / nu / dt # Collect all matrices kx = K[0][:, 0, 0] mat = config.AttributeDict( dict(CDN=inner_product((ST, 0), (SN, 1)), CND=inner_product((SN, 0), (ST, 1)), BDN=inner_product((ST, 0), (SN, 0)), CDD=inner_product((ST, 0), (ST, 1)), BDD=inner_product((ST, 0), (ST, 0)), BDT=inner_product((ST, 0), (CT, 0)), AB=HelmholtzCoeff(N[0], 1.0, -alfa, ST.quad))) hdf5file = IPCSWriter({ "U": U[0], "V": U[1], "W": U[2], "P": P }, chkpoint={ 'current': { 'U': U, 'P': P }, 'previous': { 'U': U0 } }, filename=params.solver + ".h5", mesh={ "x": x0, "xp": FST.get_mesh_dim(SN, 0), "y": x1, "z": x2 }) return config.AttributeDict(locals())
def get_context(): """Set up context for solver""" # Get points and weights for Chebyshev weighted integrals assert params.Dquad == params.Bquad ST = ShenDirichletBasis(params.N[0], quad=params.Dquad) SB = ShenBiharmonicBasis(params.N[0], quad=params.Bquad) CT = Basis(params.N[0], quad=params.Dquad) ST0 = ShenDirichletBasis(params.N[0], quad=params.Dquad, plan=True) # For 1D problem K0 = C2CBasis(params.N[1], domain=(0, params.L[1])) K1 = R2CBasis(params.N[2], domain=(0, params.L[2])) FST = TensorProductSpace(comm, (ST, K0, K1), **{'threads':params.threads, 'planner_effort':params.planner_effort["dct"]}) # Dirichlet FSB = TensorProductSpace(comm, (SB, K0, K1), **{'threads':params.threads, 'planner_effort':params.planner_effort["dct"]}) # Biharmonic FCT = TensorProductSpace(comm, (CT, K0, K1), **{'threads':params.threads, 'planner_effort':params.planner_effort["dct"]}) # Regular Chebyshev VFS = VectorTensorProductSpace([FSB, FST, FST]) # Padded kw = {'padding_factor': 1.5 if params.dealias == '3/2-rule' else 1, 'dealias_direct': params.dealias == '2/3-rule'} if params.dealias == '3/2-rule': # Requires new bases due to planning and transforms on different size arrays STp = ShenDirichletBasis(params.N[0], quad=params.Dquad) SBp = ShenBiharmonicBasis(params.N[0], quad=params.Bquad) CTp = Basis(params.N[0], quad=params.Dquad) else: STp, SBp, CTp = ST, SB, CT K0p = C2CBasis(params.N[1], domain=(0, params.L[1]), **kw) K1p = R2CBasis(params.N[2], domain=(0, params.L[2]), **kw) FSTp = TensorProductSpace(comm, (STp, K0p, K1p), **{'threads':params.threads, 'planner_effort':params.planner_effort["dct"]}) FSBp = TensorProductSpace(comm, (SBp, K0p, K1p), **{'threads':params.threads, 'planner_effort':params.planner_effort["dct"]}) FCTp = TensorProductSpace(comm, (CTp, K0p, K1p), **{'threads':params.threads, 'planner_effort':params.planner_effort["dct"]}) VFSp = VectorTensorProductSpace([FSBp, FSTp, FSTp]) Nu = params.N[0]-2 # Number of velocity modes in Shen basis Nb = params.N[0]-4 # Number of velocity modes in Shen biharmonic basis u_slice = slice(0, Nu) v_slice = slice(0, Nb) float, complex, mpitype = datatypes("double") # Mesh variables X = FST.local_mesh(True) x0, x1, x2 = FST.mesh() K = FST.local_wavenumbers(scaled=True) # Solution variables U = Array(VFS, False) U0 = Array(VFS, False) U_hat = Array(VFS) U_hat0 = Array(VFS) g = Array(FST) # primary variable u = (U_hat, g) H_hat = Array(VFS) H_hat0 = Array(VFS) H_hat1 = Array(VFS) dU = Array(VFS) hv = Array(FST) hg = Array(FST) Source = Array(VFS, False) Sk = Array(VFS) K2 = K[1]*K[1]+K[2]*K[2] K4 = K2**2 # Set Nyquist frequency to zero on K that is used for odd derivatives in nonlinear terms Kx = FST.local_wavenumbers(scaled=True, eliminate_highest_freq=True) K_over_K2 = np.zeros((2,)+g.shape) for i in range(2): K_over_K2[i] = K[i+1] / np.where(K2 == 0, 1, K2) work = work_arrays() nu, dt, N = params.nu, params.dt, params.N alfa = K2[0] - 2.0/nu/dt # Collect all matrices mat = config.AttributeDict( dict(CDD=inner_product((ST, 0), (ST, 1)), AB=HelmholtzCoeff(N[0], 1.0, -alfa, ST.quad), AC=BiharmonicCoeff(N[0], nu*dt/2., (1. - nu*dt*K2[0]), -(K2[0] - nu*dt/2.*K4[0]), quad=SB.quad), # Matrices for biharmonic equation CBD=inner_product((SB, 0), (ST, 1)), ABB=inner_product((SB, 0), (SB, 2)), BBB=inner_product((SB, 0), (SB, 0)), SBB=inner_product((SB, 0), (SB, 4)), # Matrices for Helmholtz equation ADD=inner_product((ST, 0), (ST, 2)), BDD=inner_product((ST, 0), (ST, 0)), BBD=inner_product((SB, 0), (ST, 0)), CDB=inner_product((ST, 0), (SB, 1)), ADD0=inner_product((ST0, 0), (ST0, 2)), BDD0=inner_product((ST0, 0), (ST0, 0)),)) ## Collect all linear algebra solvers #la = config.AttributeDict(dict( #HelmholtzSolverG = old_Helmholtz(N[0], np.sqrt(K2[0]+2.0/nu/dt), ST), #BiharmonicSolverU = old_Biharmonic(N[0], -nu*dt/2., 1.+nu*dt*K2[0], #-(K2[0] + nu*dt/2.*K4[0]), quad=SB.quad, #solver="cython"), #HelmholtzSolverU0 = old_Helmholtz(N[0], np.sqrt(2./nu/dt), ST), #TDMASolverD = TDMA(inner_product((ST, 0), (ST, 0))) #) #) mat.ADD.axis = 0 mat.BDD.axis = 0 mat.SBB.axis = 0 la = config.AttributeDict( dict(HelmholtzSolverG=Helmholtz(mat.ADD, mat.BDD, -np.ones((1, 1, 1)), (K2[0]+2.0/nu/dt)[np.newaxis, :, :]), BiharmonicSolverU=Biharmonic(mat.SBB, mat.ABB, mat.BBB, -nu*dt/2.*np.ones((1, 1, 1)), (1.+nu*dt*K2[0])[np.newaxis, :, :], (-(K2[0] + nu*dt/2.*K4[0]))[np.newaxis, :, :]), HelmholtzSolverU0=old_Helmholtz(N[0], np.sqrt(2./nu/dt), ST), TDMASolverD=TDMA(inner_product((ST, 0), (ST, 0))))) hdf5file = KMMWriter({"U":U[0], "V":U[1], "W":U[2]}, chkpoint={'current':{'U':U}, 'previous':{'U':U0}}, filename=params.solver+".h5", mesh={"x": x0, "y": x1, "z": x2}) return config.AttributeDict(locals())