Ejemplo n.º 1
0
def test_sourceplot_facn(factor, caplog, make_basic_datapha):
    """Change plot factor for test_sourceplot"""

    data = make_basic_datapha
    data.units = "energy"
    data.plot_fac = factor
    assert data.rate

    # use a model that is "okay" to use with keV bins
    #
    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    with caplog.at_level(logging.INFO, logger='sherpa'):
        sp.prepare(data, src)

    assert len(caplog.records) == 0
    check_sourceplot_energy(sp, factor=factor)
Ejemplo n.º 2
0
def test_sourceplot_channels(caplog, make_basic_datapha):
    """Although we ask for channels we get energy units"""

    data = make_basic_datapha
    data.units = "channel"

    # use a model that is "okay" to use with keV bins
    #
    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    with caplog.at_level(logging.INFO, logger='sherpa'):
        sp.prepare(data, src)

    assert len(caplog.records) == 1
    lname, lvl, msg = caplog.record_tuples[0]
    assert lname == 'sherpa.astro.plot'
    assert lvl == logging.WARN
    assert msg == 'Channel space is unappropriate for the PHA unfolded source model,\nusing energy.'

    check_sourceplot_energy(sp)
Ejemplo n.º 3
0
def test_sourceplot_wavelength_counts(caplog):
    """test_sourceplot_wavelength but when rate=False is chosen"""

    bins = np.arange(0.1, 10.1, 0.1)
    data = DataPHA('',
                   np.arange(10),
                   np.ones(10),
                   bin_lo=bins[:-1].copy(),
                   bin_hi=bins[1:].copy())
    data.units = "wave"
    data.rate = False

    # use a model that is "okay" to use with keV bins
    #
    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    with caplog.at_level(logging.INFO, logger='sherpa'):
        sp.prepare(data, src)

    assert len(caplog.records) == 0
    check_sourceplot_wavelength(sp)
Ejemplo n.º 4
0
def test_sourceplot_wavelength_facn(factor, caplog):
    """Change plot factor for test_sourceplot_wavelength"""

    bins = np.arange(0.1, 10.1, 0.1)
    data = DataPHA('',
                   np.arange(10),
                   np.ones(10),
                   bin_lo=bins[:-1].copy(),
                   bin_hi=bins[1:].copy())
    data.units = "wavelength"
    data.plot_fac = factor
    assert data.rate

    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    with caplog.at_level(logging.INFO, logger='sherpa'):
        sp.prepare(data, src)

    assert len(caplog.records) == 0
    check_sourceplot_wavelength(sp, factor=factor)
Ejemplo n.º 5
0
def test_sourceplot_wavelength(caplog):
    """Check we get wavelength units"""

    bins = np.arange(0.1, 10.1, 0.1)
    data = DataPHA('',
                   np.arange(10),
                   np.ones(10),
                   bin_lo=bins[:-1].copy(),
                   bin_hi=bins[1:].copy())
    data.units = "wave"

    # Note that the model evaluation in done in Angstroms
    #
    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    with caplog.at_level(logging.INFO, logger='sherpa'):
        sp.prepare(data, src)

    assert len(caplog.records) == 0
    check_sourceplot_wavelength(sp)
Ejemplo n.º 6
0
def test_sourceplot(caplog):

    bins = np.arange(0.1, 10.1, 0.1)
    data = DataPHA('',
                   np.arange(10),
                   np.ones(10),
                   bin_lo=bins[:-1].copy(),
                   bin_hi=bins[1:].copy())
    data.units = "energy"
    assert data.rate
    assert data.plot_fac == 0

    # use a model that is "okay" to use with keV bins
    #
    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    with caplog.at_level(logging.INFO, logger='sherpa'):
        sp.prepare(data, src)

    assert len(caplog.records) == 0
    check_sourceplot_energy(sp)
Ejemplo n.º 7
0
def test_sourceplot():

    bins = np.arange(0.1, 10.1, 0.1)
    data = DataPHA('', np.arange(10), np.ones(10),
                   bin_lo=bins[:-1].copy(),
                   bin_hi=bins[1:].copy())
    data.units = "energy"

    # use a model that is "okay" to use with keV bins
    #
    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    sp.prepare(data, src)

    # add in several asserts to check that something has been
    # added to the object
    #
    assert sp.xlabel == 'Energy (keV)'

    # the following depends on the backend
    # assert sp.ylabel == 'f(E)  Photons/sec/cm$^2$/keV'

    assert sp.title == 'Source Model of '

    assert sp.xlo == pytest.approx(bins[:-1])
    assert sp.xhi == pytest.approx(bins[1:])

    # The check of the values is just to check that things are going
    # as expected, so the model values have been adjusted so that
    # an "integer" check can be used with enough precision to make
    # sure that the model is being evaluated correctly, but without
    # a very-high-precision check
    #
    yexp = np.asarray([9998, 9997, 9997, 9997, 9996, 9996, 9995, 9994,
                       9994, 9993, 9992, 9991, 9990, 9988, 9987, 9985,
                       9983, 9982, 9980, 9977, 9975, 9973, 9970, 9967,
                       9964, 9961, 9958, 9955, 9951, 9948, 9944, 9941,
                       9937, 9934, 9930, 9927, 9923, 9920, 9917, 9914,
                       9911, 9909, 9907, 9905, 9903, 9902, 9901, 9900,
                       9900, 9900, 9900, 9901, 9902, 9903, 9905, 9907,
                       9909, 9911, 9914, 9917, 9920, 9923, 9927, 9930,
                       9934, 9937, 9941, 9944, 9948, 9951, 9955, 9958,
                       9961, 9964, 9967, 9970, 9973, 9975, 9977, 9980,
                       9982, 9983, 9985, 9987, 9988, 9990, 9991, 9992,
                       9993, 9994, 9994, 9995, 9996, 9996, 9997, 9997,
                       9997, 9998, 9998])

    assert (sp.y.astype(np.int) == yexp).all()
Ejemplo n.º 8
0
def test_sourceplot_wavelength(caplog, make_basic_datapha):
    """Check we get wavelength units"""

    data = make_basic_datapha
    data.units = "wave"

    # Note that the model evaluation in done in Angstroms
    #
    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    with caplog.at_level(logging.INFO, logger='sherpa'):
        sp.prepare(data, src)

    assert len(caplog.records) == 0
    check_sourceplot_wavelength(sp)
Ejemplo n.º 9
0
def test_sourceplot_wavelength_counts(caplog, make_basic_datapha):
    """test_sourceplot_wavelength but when rate=False is chosen"""

    data = make_basic_datapha
    data.units = "wave"
    data.rate = False

    # use a model that is "okay" to use with keV bins
    #
    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    with caplog.at_level(logging.INFO, logger='sherpa'):
        sp.prepare(data, src)

    assert len(caplog.records) == 0
    check_sourceplot_wavelength(sp)
Ejemplo n.º 10
0
def test_sourceplot_counts(caplog, make_basic_datapha):
    """test_sourceplot but when rate=False is chosen"""

    data = make_basic_datapha
    data.units = "energy"
    data.rate = False

    # Note that the model evaluation in done in Angstroms
    #
    m1 = Const1D('bgnd')
    m2 = Gauss1D('abs1')
    src = 100 * m1 * (1 - m2) * 10000

    m1.c0 = 0.01
    m2.pos = 5.0
    m2.fwhm = 4.0
    m2.ampl = 0.1

    sp = SourcePlot()
    with caplog.at_level(logging.INFO, logger='sherpa'):
        sp.prepare(data, src)

    assert len(caplog.records) == 0
    check_sourceplot_energy(sp)
Ejemplo n.º 11
0
 def test_sourceplot(self):
     sp = SourcePlot()
     sp.prepare(self.data, self.src)
Ejemplo n.º 12
0
 def test_sourceplot(self):
     sp = SourcePlot()
     sp.prepare(self.data, self.src)