Ejemplo n.º 1
0
def check_integrals():
    """Check that Sherpa normed models integrate to 1."""
    from sherpa.astro import ui
    from sherpa.astro.ui import normgauss2d
    from models import normdisk2d, normshell2d

    ui.clean()

    g = normgauss2d('g')
    g.xpos, g.ypos, g.ampl, g.fwhm = 100, 100, 42, 5

    d = normdisk2d('d')
    d.xpos, d.ypos, d.ampl, d.r0 = 100, 100, 42, 50

    s = normshell2d('s')
    s.xpos, s.ypos, s.ampl, s.r0, s.width = 100, 100, 42, 30, 20

    models = [g, d, s]

    ui.dataspace2d((200, 200))
    for model in models:
        ui.set_model(model)
        # In sherpa normed model values are flux per pixel area.
        # So to get the total flux (represented by the `ampl` parameter)
        # one can simply sum over all pixels, because a pixel has area 1 pix^2.
        # :-)
        integral = ui.get_model_image().y.sum()
        print model.name, integral
Ejemplo n.º 2
0
def test_eqwith_err1(make_data_path, restore_xspec_settings):

    def check1(e0, e1, e2):
        assert e0 == pytest.approx(0.028335201547206704, rel=1.0e-3)
        assert e1 == pytest.approx(-0.00744118799274448756, rel=1.0e-3)
        assert e2 == pytest.approx(0.0706249544851336, rel=1.0e-3)

    ui.set_xsabund('angr')
    ui.set_xsxsect('bcmc')

    ui.load_pha(make_data_path('3c273.pi'))
    ui.notice(0.5, 7.0)
    ui.set_stat("chi2datavar")
    ui.set_method("simplex")
    ui.set_model('powlaw1d.p1+gauss1d.g1')
    g1.fwhm = 0.1
    g1.pos = 2.0
    ui.freeze(g1.pos, g1.fwhm)
    ui.fit()

    np.random.seed(2345)
    e = ui.eqwidth(p1, p1 + g1, error=True, niter=100)
    check1(e[0], e[1], e[2])
    params = e[3]

    np.random.seed(2345)
    e = ui.eqwidth(p1, p1 + g1, error=True, params=params, niter=100)
    check1(e[0], e[1], e[2])

    parvals = ui.get_fit_results().parvals
    assert parvals[0] == pytest.approx(1.9055272902160334, rel=1.0e-3)
    assert parvals[1] == pytest.approx(0.00017387966749772638, rel=1.0e-3)
    assert parvals[2] == pytest.approx(1.279415076070516e-05, rel=1.0e-3)
Ejemplo n.º 3
0
    def test_ARFModelPHA(self):
        from sherpa.astro import ui
        ui.load_pha(self.make_path("3c120_meg_1.pha"))

        # remove the RMF to ensure this is an ARF-only analysis
        # (which is what is needed to trigger the bug that lead to #699)
        ui.get_data().set_rmf(None)

        ui.group_counts(20)
        ui.notice(0.5, 6)
        ui.subtract()
        ui.set_model(ui.xsphabs.abs1 * (ui.xsapec.bubble + ui.powlaw1d.p1))
        ui.set_xsabund('angr')
        ui.set_xsxsect('vern')
        abs1.nh = 0.163
        abs1.nh.freeze()
        p1.ampl = 0.017
        p1.gamma = 1.9
        bubble.kt = 0.5
        bubble.norm = 4.2e-5
        tol = 1.0e-2
        ui.set_method_opt('ftol', tol)
        ui.fit()
        result = ui.get_fit_results()
        assert result.numpoints == self._fit_using_ARFModelPHA['numpoints']
        assert result.dof == self._fit_using_ARFModelPHA['dof']
Ejemplo n.º 4
0
def test_eqwith_err1(make_data_path, restore_xspec_settings):

    def check1(e0, e1, e2):
        assert e0 == approx(0.028335201547206704, rel=1.0e-3)
        assert e1 == approx(-0.00744118799274448756, rel=1.0e-3)
        assert e2 == approx(0.0706249544851336, rel=1.0e-3)

    ui.set_xsabund('angr')
    ui.set_xsxsect('bcmc')

    ui.load_pha(make_data_path('3c273.pi'))
    ui.notice(0.5, 7.0)
    ui.set_stat("chi2datavar")
    ui.set_method("simplex")
    ui.set_model('powlaw1d.p1+gauss1d.g1')
    g1.fwhm = 0.1
    g1.pos = 2.0
    ui.freeze(g1.pos, g1.fwhm)
    ui.fit()

    numpy.random.seed(2345)
    e = ui.eqwidth(p1, p1 + g1, error=True, niter=100)
    check1(e[0], e[1], e[2])
    params = e[3]

    numpy.random.seed(2345)
    e = ui.eqwidth(p1, p1 + g1, error=True, params=params, niter=100)
    check1(e[0], e[1], e[2])

    parvals = ui.get_fit_results().parvals
    assert parvals[0] == approx(1.9055272902160334, rel=1.0e-3)
    assert parvals[1] == approx(0.00017387966749772638, rel=1.0e-3)
    assert parvals[2] == approx(1.279415076070516e-05, rel=1.0e-3)
Ejemplo n.º 5
0
    def test_sherpa_fit(self, tmpdir):
        # this is to make sure that the written PHA files work with sherpa
        import sherpa.astro.ui as sau
        from sherpa.models import PowLaw1D

        # TODO: this works a little bit, but some info and warnings
        # from Sherpa remain. Not sure what to do, OK as-is for now.
        import logging

        logging.getLogger("sherpa").setLevel("ERROR")

        for obs in self.obs_list:
            obs.to_ogip_files(str(tmpdir), use_sherpa=True)

        filename = tmpdir / "pha_obs23523.fits"
        sau.load_pha(str(filename))
        sau.set_stat("wstat")
        model = PowLaw1D("powlaw1d.default")
        model.ref = 1e9
        model.ampl = 1
        model.gamma = 2
        sau.set_model(model * 1e-20)
        sau.fit()
        assert_allclose(model.pars[0].val, 2.732, rtol=1e-3)
        assert_allclose(model.pars[2].val, 4.647, rtol=1e-3)
Ejemplo n.º 6
0
def test_bug_276(make_data_path):
    ui.load_pha(make_data_path('3c273.pi'))
    ui.set_model('polynom1d.p1')
    ui.fit()
    ui.covar()
    scal = ui.get_covar_results().parmaxes
    ui.sample_flux(ui.get_model_component('p1'), 0.5, 1, num=5, correlated=False, scales=scal)
Ejemplo n.º 7
0
def fit_coeffs(method='simplex'):
    method = method
    dummy_data = np.zeros(100)
    dummy_times = np.arange(100)
    ui.load_arrays(1, dummy_times, dummy_data)

    ui.set_method(method)
    ui.get_method().config.update(SHERPA_CONFIGS.get(method, {}))

    calc_model = CalcModel()
    ui.load_user_model(calc_model, 'axo_mod')  # sets global axo_mod

    parnames = []
    for row in range(N_ROWS):
        for col in range(N_COLS):
            parnames.append('adj_{}_{}'.format(row, col))
    ui.add_user_pars('axo_mod', parnames)
    ui.set_model(1, 'axo_mod')

    calc_stat = CalcStat(axo_mod, M_2d, displ_x)
    ui.load_user_stat('axo_stat', calc_stat, lambda x: np.ones_like(x))
    ui.set_stat(axo_stat)
    calc_model.set_calc_stat(calc_stat)

    # Set frozen, min, and max attributes for each axo_mod parameter
    for par in axo_mod.pars:
        par.val = 0.0
        par.min = -5
        par.max = 5

    ui.fit(1)

    coeffs = np.array([(par.val) for pars in axo_mod.pars])
    return coeffs
Ejemplo n.º 8
0
def check_integrals():
    """Check that Sherpa normed models integrate to 1."""
    from sherpa.astro import ui
    from sherpa.astro.ui import normgauss2d
    from models import normdisk2d, normshell2d
    
    ui.clean()
    
    g = normgauss2d('g')
    g.xpos, g.ypos, g.ampl, g.fwhm = 100, 100, 42, 5
    
    d = normdisk2d('d')
    d.xpos, d.ypos, d.ampl, d.r0 = 100, 100, 42, 50
    
    s = normshell2d('s')
    s.xpos, s.ypos, s.ampl, s.r0, s.width = 100, 100, 42, 30, 20
    
    models = [g, d, s]
    
    ui.dataspace2d((200, 200))
    for model in models:
        ui.set_model(model)
        # In sherpa normed model values are flux per pixel area.
        # So to get the total flux (represented by the `ampl` parameter)
        # one can simply sum over all pixels, because a pixel has area 1 pix^2.
        # :-) 
        integral = ui.get_model_image().y.sum()
        print model.name, integral
Ejemplo n.º 9
0
def test_user_stat_unit():
    given_stat_error = [1.1, 2.2, 3.3]
    given_sys_error = [10.1, 10.2, 10.3]

    def calc_stat(data, _model, staterror, syserror=None, weight=None):
        # Make sure values are being injected correctly
        np.testing.assert_array_equal(given_stat_error, staterror)
        np.testing.assert_array_equal(given_sys_error, syserror)
        return 3.235, np.ones_like(data)

    xdata = [1, 2, 3]
    ydata = xdata

    ui.load_arrays(1, xdata, ydata, None, given_sys_error, Data1D)

    ui.set_model(1, 'polynom1d.p')

    ui.load_user_stat('customstat', calc_stat, lambda x: given_stat_error)
    ui.set_stat(eval('customstat'))

    try:
        ui.fit(1)
    except StatErr:
        pytest.fail("Call should not be throwing any exception (bug #341)")

    # Test the result is what we made the user stat return
    assert 3.235 == ui.get_fit_results().statval
Ejemplo n.º 10
0
def match_wcs(wcs_img, sky_img, sky_ref, opt_alg='scipy'):
    """Adjust ``wcs_img`` (CRVAL{1,2} and CD{1,2}_{1,2}) using a rotation and linear
    offset so that ``coords_img`` matches ``coords_ref``.

    :param sky_img: list of (world_x, world_y) [aka RA, Dec] coords in input image
    :param sky_ref: list of reference (world_x, world_y) coords to match
    :param wcs_img: pywcs WCS object for input image

    :returns: d_ra, d_dec, d_theta
    """
    pix_img = wcs_img.wcs_sky2pix(sky_img, 1)
    wcsmodel = WcsModel(wcs_img, sky_ref, pix_img)
    y = np.array(pix_img).flatten()
    
    if opt_alg == 'sherpa':
        x = np.arange(len(y))
        import sherpa.astro.ui as ui
        ui.load_user_model(wcsmodel.calc_pix, 'wcsmod')
        ui.add_user_pars('wcsmod', ['d_ra', 'd_dec', 'd_theta'])
        wcsmod.d_ra = 0.0
        wcsmod.d_dec = 0.0
        wcsmod.d_theta = 0.0
        ui.load_arrays(1, x, y, np.ones(len(y)))
        ui.set_model(1, wcsmod)
        ui.set_method('simplex')
        ui.fit()
    else:
        import scipy.optimize
        x0 = np.array([0.0, 0.0, 0.0])
        d_ra, d_dec, d_theta = scipy.optimize.fmin(wcsmodel.calc_resid2, x0)
        print 'Scipy fit values:', d_ra, d_dec, d_theta

    return wcsmodel.wcs
Ejemplo n.º 11
0
def test_plot_pvalue(make_data_path, clean_astro_ui, hide_log_output):

    fname = make_data_path("qso.pi")
    ui.load_pha(fname)

    ui.set_stat('cstat')
    ui.set_method("neldermead")

    ui.group_counts(10)
    ui.notice(0.3, 8)

    ui.set_model("xsphabs.abs1*xspowerlaw.p1")
    ui.set_model("abs1*(p1+gauss1d.g1)")

    # move the fit close to the best fit to save a small amount
    # of time.
    abs1.nh = 0.05
    p1.phoindex = 1.28
    p1.norm = 2e-4
    g1.ampl = 1.8e-5

    g1.pos = 3.
    ui.freeze(g1.pos)
    g1.fwhm = 0.1
    ui.freeze(g1.fwhm)

    ui.fit()
    ui.plot_pvalue(p1, p1 + g1, num=100)

    tmp = ui.get_pvalue_results()

    assert tmp.null == pytest.approx(210.34566845619273)
    assert tmp.alt == pytest.approx(207.66618095925094)
    assert tmp.lr == pytest.approx(2.679487496941789)
Ejemplo n.º 12
0
def fit_coeffs(method='simplex'):
    method = method
    dummy_data = np.zeros(100)
    dummy_times = np.arange(100)
    ui.load_arrays(1, dummy_times, dummy_data)

    ui.set_method(method)
    ui.get_method().config.update(SHERPA_CONFIGS.get(method, {}))

    calc_model = CalcModel()
    ui.load_user_model(calc_model, 'axo_mod')  # sets global axo_mod

    parnames = []
    for row in range(N_ROWS):
        for col in range(N_COLS):
            parnames.append('adj_{}_{}'.format(row, col))
    ui.add_user_pars('axo_mod', parnames)
    ui.set_model(1, 'axo_mod')

    calc_stat = CalcStat(axo_mod, M_2d, displ_x)
    ui.load_user_stat('axo_stat', calc_stat, lambda x: np.ones_like(x))
    ui.set_stat(axo_stat)
    calc_model.set_calc_stat(calc_stat)

    # Set frozen, min, and max attributes for each axo_mod parameter
    for par in axo_mod.pars:
        par.val = 0.0
        par.min = -5
        par.max = 5

    ui.fit(1)

    coeffs = np.array([(par.val) for pars in axo_mod.pars])
    return coeffs
Ejemplo n.º 13
0
def test_background():

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    kT_sim = 1.0
    Z_sim = 0.0
    norm_sim = 4.0e-2
    nH_sim = 0.04
    redshift = 0.01

    exp_time = (200., "ks")
    area = (1000., "cm**2")

    wcs = create_dummy_wcs()

    abs_model = WabsModel(nH_sim)

    events = EventList.create_empty_list(exp_time, area, wcs)

    spec_model = TableApecModel(0.05, 12.0, 5000, thermal_broad=False)
    spec = spec_model.return_spectrum(kT_sim, Z_sim, redshift, norm_sim)

    new_events = events.add_background(spec_model.ebins, spec, prng=prng,
                                       absorb_model=abs_model)

    new_events = ACIS_I(new_events, rebin=False, convolve_psf=False, prng=prng)

    new_events.write_spectrum("background_evt.pi", clobber=True)

    os.system("cp %s ." % new_events.parameters["ARF"])
    os.system("cp %s ." % new_events.parameters["RMF"])

    load_user_model(mymodel, "wapec")
    add_user_pars("wapec", ["nH", "kT", "metallicity", "redshift", "norm"],
                  [0.01, 4.0, 0.2, redshift, norm_sim*0.8],
                  parmins=[0.0, 0.1, 0.0, -20.0, 0.0],
                  parmaxs=[10.0, 20.0, 10.0, 20.0, 1.0e9],
                  parfrozen=[False, False, False, True, False])

    load_pha("background_evt.pi")
    set_stat("cstat")
    set_method("simplex")
    ignore(":0.5, 8.0:")
    set_model("wapec")
    fit()
    set_covar_opt("sigma", 1.6)
    covar()
    res = get_covar_results()

    assert np.abs(res.parvals[0]-nH_sim) < res.parmaxes[0]
    assert np.abs(res.parvals[1]-kT_sim) < res.parmaxes[1]
    assert np.abs(res.parvals[2]-Z_sim) < res.parmaxes[2]
    assert np.abs(res.parvals[3]-norm_sim) < res.parmaxes[3]

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 14
0
def test_background():

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    kT_sim = 1.0
    Z_sim = 0.0
    norm_sim = 4.0e-2
    nH_sim = 0.04
    redshift = 0.01

    exp_time = (200., "ks")
    area = (1000., "cm**2")
    fov = (10.0, "arcmin")

    prng = 24

    agen = ApecGenerator(0.05, 12.0, 5000, broadening=False)
    spec = agen.get_spectrum(kT_sim, Z_sim, redshift, norm_sim)
    spec.apply_foreground_absorption(norm_sim)

    events = make_background(area, exp_time, fov, (30.0, 45.0), spec, prng=prng)
    events.write_simput_file("bkgnd", overwrite=True)

    instrument_simulator("bkgnd_simput.fits", "bkgnd_evt.fits", 
                         exp_time, "sq_acisi_cy19", [30.0, 45.0],
                         overwrite=True, foreground=False, ptsrc_bkgnd=False,
                         instr_bkgnd=False,
                         prng=prng)

    write_spectrum("bkgnd_evt.fits", "background_evt.pi", overwrite=True)

    os.system("cp %s %s ." % (arf.filename, rmf.filename))

    load_user_model(mymodel, "wapec")
    add_user_pars("wapec", ["nH", "kT", "metallicity", "redshift", "norm"],
                  [0.01, 4.0, 0.2, redshift, norm_sim*0.8],
                  parmins=[0.0, 0.1, 0.0, -20.0, 0.0],
                  parmaxs=[10.0, 20.0, 10.0, 20.0, 1.0e9],
                  parfrozen=[False, False, False, True, False])

    load_pha("background_evt.pi")
    set_stat("cstat")
    set_method("simplex")
    ignore(":0.5, 8.0:")
    set_model("wapec")
    fit()
    res = get_fit_results()

    assert np.abs(res.parvals[0]-nH_sim)/nH_sim < 0.1
    assert np.abs(res.parvals[1]-kT_sim)/kT_sim < 0.05
    assert np.abs(res.parvals[2]-Z_sim) < 0.05
    assert np.abs(res.parvals[3]-norm_sim)/norm_sim < 0.05

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 15
0
def test_point_source():

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    nH_sim = 0.02
    norm_sim = 1.0e-4
    alpha_sim = 0.95
    redshift = 0.02

    exp_time = (100., "ks")
    area = (3000., "cm**2")

    spec = Spectrum.from_powerlaw(alpha_sim, redshift, norm_sim, 
                                  emin=0.1, emax=11.5, nbins=2000)

    spec.apply_foreground_absorption(nH_sim, model="tbabs")

    positions = [(30.01, 45.0)]

    events = make_point_sources(area, exp_time, positions, (30.0, 45.0),
                                spec, prng=prng)

    events.write_simput_file("ptsrc", overwrite=True)

    instrument_simulator("ptsrc_simput.fits", "ptsrc_evt.fits",
                         exp_time, "sq_aciss_cy19", [30.0, 45.0],
                         overwrite=True, foreground=False, ptsrc_bkgnd=False,
                         instr_bkgnd=False,
                         prng=prng)

    write_spectrum("ptsrc_evt.fits", "point_source_evt.pi", overwrite=True)

    os.system("cp %s %s ." % (arf.filename, rmf.filename))

    load_user_model(mymodel, "tplaw")
    add_user_pars("tplaw", ["nH", "norm", "redshift", "alpha"],
                  [0.02, norm_sim*0.8, redshift, 0.9],
                  parmins=[0.0, 0.0, 0.0, 0.1],
                  parmaxs=[10.0, 1.0e9, 10.0, 10.0],
                  parfrozen=[True, False, True, False])

    load_pha("point_source_evt.pi")
    set_stat("cstat")
    set_method("simplex")
    ignore(":0.4, 9.0:")
    set_model("tplaw")
    fit()
    res = get_fit_results()

    assert np.abs(res.parvals[0]-norm_sim)/norm_sim < 0.05
    assert np.abs(res.parvals[1]-alpha_sim)/alpha_sim < 0.05

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 16
0
def test_point_source():

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    nH_sim = 0.02
    norm_sim = 1.0e-4
    alpha_sim = 0.95
    redshift = 0.02

    exp_time = (100., "ks")
    area = (3000., "cm**2")

    spec = Spectrum.from_powerlaw(alpha_sim, redshift, norm_sim, 
                                  emin=0.1, emax=11.5, nbins=2000)

    spec.apply_foreground_absorption(nH_sim, model="tbabs")

    positions = [(30.01, 45.0)]

    events = make_point_sources(area, exp_time, positions, (30.0, 45.0),
                                spec, prng=prng)

    events.write_simput_file("ptsrc", overwrite=True)

    instrument_simulator("ptsrc_simput.fits", "ptsrc_evt.fits",
                         exp_time, "sq_aciss_cy20", [30.0, 45.0],
                         overwrite=True, foreground=False, ptsrc_bkgnd=False,
                         instr_bkgnd=False,
                         prng=prng)

    write_spectrum("ptsrc_evt.fits", "point_source_evt.pi", overwrite=True)

    os.system("cp %s %s ." % (arf.filename, rmf.filename))

    load_user_model(mymodel, "tplaw")
    add_user_pars("tplaw", ["nH", "norm", "redshift", "alpha"],
                  [0.02, norm_sim*0.8, redshift, 0.9],
                  parmins=[0.0, 0.0, 0.0, 0.1],
                  parmaxs=[10.0, 1.0e9, 10.0, 10.0],
                  parfrozen=[True, False, True, False])

    load_pha("point_source_evt.pi")
    set_stat("cstat")
    set_method("simplex")
    ignore(":0.4, 9.0:")
    set_model("tplaw")
    fit()
    res = get_fit_results()

    assert np.abs(res.parvals[0]-norm_sim)/norm_sim < 0.05
    assert np.abs(res.parvals[1]-alpha_sim)/alpha_sim < 0.05

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 17
0
def test_load_multi_arfsrmfs(make_data_path, clean_astro_ui):
    """Added in #728 to ensure cache parameter is sent along by
    MultiResponseSumModel (fix #717).

    This has since been simplified to switch from xsapec to
    powlaw1d as it drops the need for XSPEC and is a simpler
    model, so is less affected by changes in the model code.

    A fit of the Sherpa powerlaw-model to 3c273.pi with a
    single response in CIAO 4.11 (background subtracted,
    0.5-7 keV) returns gamma = 1.9298, ampl = 1.73862e-4
    so doubling the response should halve the amplitude but
    leave the gamma value the same when using two responses,
    as below. This is with chi2datavar.
    """

    pha_pi = make_data_path("3c273.pi")
    ui.load_pha(1, pha_pi)
    ui.load_pha(2, pha_pi)

    arf = make_data_path("3c273.arf")
    rmf = make_data_path("3c273.rmf")

    ui.load_multi_arfs(1, [arf, arf], [1, 2])
    ui.load_multi_arfs(2, [arf, arf], [1, 2])

    ui.load_multi_rmfs(1, [rmf, rmf], [1, 2])
    ui.load_multi_rmfs(2, [rmf, rmf], [1, 2])

    ui.notice(0.5, 7)
    ui.subtract(1)
    ui.subtract(2)

    src = ui.create_model_component('powlaw1d', 'src')
    ui.set_model(1, src)
    ui.set_model(2, src)

    # ensure the test is repeatable by running with a known
    # statistic and method
    #
    ui.set_method('levmar')
    ui.set_stat('chi2datavar')

    # Really what we care about for fixing #717 is that
    # fit does not error out, but it's useful to know that
    # the fit has changed the parameter values (which were
    # both 1 before the fit).
    #
    ui.fit()
    fr = ui.get_fit_results()
    assert fr.succeeded
    assert fr.datasets == (1, 2)

    assert src.gamma.val == pytest.approx(1.9298, rel=1.0e-4)
    assert src.ampl.val == pytest.approx(1.73862e-4 / 2, rel=1.0e-4)
Ejemplo n.º 18
0
 def test_ui(self, tol=1.0e-3):
     # from shepa.astro.ui import *
     ui.load_ascii_with_errors(1, self.gro_delta_fname, delta=True)
     ui.set_stat('leastsq')
     ui.set_model('powlaw1d.p1')
     ui.fit()
     sample = ui.resample_data(1, 10, seed=123)
     self.assertEqualWithinTol(self._resample_bench_10['p1.gamma'],
                               sample['p1.gamma'])
     self.assertEqualWithinTol(self._resample_bench_10['p1.ampl'],
                               sample['p1.ampl'])
Ejemplo n.º 19
0
 def test_warning(self):
     ui.load_ascii_with_errors(1, self.gro_fname)
     data = ui.get_data(1)
     powlaw1d = PowLaw1D('p1')
     ui.set_model(powlaw1d)
     fit = Fit(data, powlaw1d)
     results = fit.fit()
     with warnings.catch_warnings(record=True) as w:
         warnings.simplefilter("always")
         ui.resample_data(1, 3)
         assert len(w) == 0
Ejemplo n.º 20
0
def test_ui(make_data_path):

    infile = make_data_path('gro_delta.txt')
    ui.load_ascii_with_errors(1, infile, delta=True)

    ui.set_stat('leastsq')
    ui.set_model('powlaw1d.p1')
    ui.fit()
    sample = ui.resample_data(1, 10, seed=123)
    for p in ['p1.gamma', 'p1.ampl']:
        assert sample[p] == pytest.approx(RESAMPLE_BENCH_10[p], rel=1e-4)
Ejemplo n.º 21
0
def test_warning(make_data_path):

    infile = make_data_path('gro.txt')
    ui.load_ascii_with_errors(1, infile)
    powlaw1d = PowLaw1D('p1')
    ui.set_model(powlaw1d)
    ui.fit()
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        ui.resample_data(1, 3)
        assert len(w) == 0
Ejemplo n.º 22
0
def fit_adjuster_set(coeffs, adj_idxs, method='simplex'):
    """
    Find best fit parameters for an arbitrary subset of adjustors
    specified by the array ``adj_idxs``.  The input ``coeffs`` are
    the best-fit adjustor coefficients for the last iteration.
    """
    import sherpa.astro.ui as ui

    dummy_data = np.zeros(100)
    dummy_times = np.arange(100)
    ui.load_arrays(1, dummy_times, dummy_data)

    ui.set_method(method)
    ui.get_method().config.update(SHERPA_CONFIGS.get(method, {}))

    calc_model = CalcModel()
    ui.load_user_model(calc_model, 'axo_mod')  # sets global axo_mod

    parnames = []
    for adj_idx in adj_idxs:
        parnames.append('adj_{}'.format(adj_idx))
    ui.add_user_pars('axo_mod', parnames)
    ui.set_model(1, 'axo_mod')

    coeffs = coeffs.copy()  # Don't modify input coeffs
    coeffs[coeffs < 0] = 0  # Don't allow negative coeffs

    # Set frozen, min, and max attributes for each axo_mod parameter
    for adj_idx, par in zip(adj_idxs, axo_mod.pars):
        par.min = -1000
        par.max = 1000
        par.val = coeffs[adj_idx]
        print 'Setting {} to {}'.format(adj_idx, par.val)

    # Compute base adjusted displacements assuming all the fitted actuators
    # have zero drive level.
    coeffs[adj_idxs] = 0
    base_adj_displ = M_2d.dot(coeffs)

    m_2d = M_2d[:, adj_idxs].copy()
    print m_2d.shape
    calc_stat = CalcStat(base_adj_displ, m_2d, DISPL_X)
    ui.load_user_stat('axo_stat', calc_stat, lambda x: np.ones_like(x))
    ui.set_stat(axo_stat)
    calc_model.set_calc_stat(calc_stat)

    ui.fit(1)

    # Update coeffs with the values determined in fitting
    for adj_idx, par in zip(adj_idxs, axo_mod.pars):
        coeffs[adj_idx] = abs(par.val)

    return coeffs, ui.get_fit_results()
Ejemplo n.º 23
0
def test_bug_276(make_data_path):
    ui.load_pha(make_data_path('3c273.pi'))
    ui.set_model('polynom1d.p1')
    ui.fit()
    ui.covar()
    scal = ui.get_covar_results().parmaxes
    ui.sample_flux(ui.get_model_component('p1'),
                   0.5,
                   1,
                   num=5,
                   correlated=False,
                   scales=scal)
Ejemplo n.º 24
0
def test_missmatch_arf(make_data_path):
    ui.load_pha(1, make_data_path("source1.pi"))
    ui.load_bkg(1, make_data_path("back1.pi"))
    ui.load_arf(1, make_data_path("arf_1024.fits"))
    ui.load_rmf(1, make_data_path("rmf_1024.fits"))
    ui.set_method('levmar')
    ui.set_model(ui.powlaw1d.p1 * ui.xswabs.abs1)
    ui.set_par('p1.ampl', 0.0001)
    ui.set_stat('cash')
    ui.fit()
    parvals = ui.get_fit_results().parvals
    assert parvals[0] == approx(1.47969, rel=1.0e-3)
    assert parvals[1] == approx(0.0019491, rel=1.0e-3)
    assert parvals[2] == approx(2.35452, rel=1.0e-3)
Ejemplo n.º 25
0
def test_ui_regrid1d_non_overlapping_not_allowed():
    """Integrated data space must not overlap"""

    ui.dataspace1d(1, 100, 2, dstype=Data1DInt)
    b1 = Box1D()
    ui.set_model(b1)
    b1.xlow = 10
    b1.xhi = 80
    b1.ampl.max = 100
    grid_hi = np.linspace(2, 101, 600)
    grid_lo = np.linspace(1, 100, 600)
    with pytest.raises(ModelErr) as excinfo:
        rb1 = b1.regrid(grid_lo, grid_hi)

    assert ModelErr.dict['needsint'] in str(excinfo.value)
Ejemplo n.º 26
0
def test_sherpa_fit(tmpdir):
    # this is to make sure that the written PHA files work with sherpa
    pha1 = gammapy_extra.filename("datasets/hess-crab4_pha/pha_obs23592.fits")

    import sherpa.astro.ui as sau
    from sherpa.models import PowLaw1D
    sau.load_pha(pha1)
    sau.set_stat('wstat')
    model = PowLaw1D('powlaw1d.default')
    model.ref = 1e9
    model.ampl = 1
    model.gamma = 2
    sau.set_model(model * 1e-20)
    sau.fit()
    assert_allclose(model.pars[0].val, 2.0281484215403616, atol=1e-4)
    assert_allclose(model.pars[2].val, 2.3528406790143097, atol=1e-4)
Ejemplo n.º 27
0
def test_sherpa_fit(tmpdir):
    # this is to make sure that the written PHA files work with sherpa
    pha1 = gammapy_extra.filename("datasets/hess-crab4_pha/pha_obs23592.fits")

    import sherpa.astro.ui as sau
    from sherpa.models import PowLaw1D
    sau.load_pha(pha1)
    sau.set_stat('wstat')
    model = PowLaw1D('powlaw1d.default')
    model.ref = 1e9
    model.ampl = 1
    model.gamma = 2
    sau.set_model(model * 1e-20)
    sau.fit()
    assert_allclose(model.pars[0].val, 2.0281484215403616, atol=1e-4)
    assert_allclose(model.pars[2].val, 2.3528406790143097, atol=1e-4)
Ejemplo n.º 28
0
    def test_sherpa_fit(self, tmpdir):
        # this is to make sure that the written PHA files work with sherpa
        import sherpa.astro.ui as sau
        from sherpa.models import PowLaw1D

        self.obs_list.write(tmpdir, use_sherpa=True)
        filename = tmpdir / 'pha_obs23523.fits'
        sau.load_pha(str(filename))
        sau.set_stat('wstat')
        model = PowLaw1D('powlaw1d.default')
        model.ref = 1e9
        model.ampl = 1
        model.gamma = 2
        sau.set_model(model * 1e-20)
        sau.fit()
        assert_allclose(model.pars[0].val, 2.0881699260935838)
        assert_allclose(model.pars[2].val, 1.6234222129479836)
Ejemplo n.º 29
0
def test_sherpa_fit(tmpdir):
    # this is to make sure that the written PHA files work with sherpa
    import sherpa.astro.ui as sau
    from sherpa.models import PowLaw1D

    filename = gammapy_extra.filename(
        "datasets/hess-crab4_pha/pha_obs23592.fits")
    sau.load_pha(filename)
    sau.set_stat('wstat')
    model = PowLaw1D('powlaw1d.default')
    model.ref = 1e9
    model.ampl = 1
    model.gamma = 2
    sau.set_model(model * 1e-20)
    sau.fit()
    assert_allclose(model.pars[0].val, 2.0033101181778026)
    assert_allclose(model.pars[2].val, 2.2991681244938498)
Ejemplo n.º 30
0
    def test_sherpa_fit(self, tmpdir):
        # this is to make sure that the written PHA files work with sherpa
        import sherpa.astro.ui as sau
        from sherpa.models import PowLaw1D

        self.obs_list.write(tmpdir, use_sherpa=True)
        filename = tmpdir / 'pha_obs23523.fits'
        sau.load_pha(str(filename))
        sau.set_stat('wstat')
        model = PowLaw1D('powlaw1d.default')
        model.ref = 1e9
        model.ampl = 1
        model.gamma = 2
        sau.set_model(model * 1e-20)
        sau.fit()
        assert_allclose(model.pars[0].val, 2.0881699, rtol=1e-3)
        assert_allclose(model.pars[2].val, 1.6234222, rtol=1e-3)
Ejemplo n.º 31
0
def test_user_model_stat_docs():
    """
    This test reproduces the documentation shown at:
    http://cxc.harvard.edu/sherpa4.4/statistics/#userstat

    and:
    http://cxc.harvard.edu/sherpa/threads/user_model/

    I tried to be as faithful as possible to the original, although the examples in thedocs
    are not completely self-contained, so some changes were necessary. I changed the numpy
    reference, as it is imported as `np` here, and added a clean up of the environment
    before doing anything.

    For the model, the difference is that I am not importing the function from an
    external module, plus the dataset is different.

    Also, the stats docs do not perform a fit.
    """
    def my_stat_func(data, model, staterror, syserror=None, weight=None):
        # A simple function to replicate χ2
        fvec = ((data - model) / staterror)**2
        stat = fvec.sum()
        return (stat, fvec)

    def my_staterr_func(data):
        # A simple staterror function
        return np.sqrt(data)

    def myline(pars, x):
        return pars[0]*x + pars[1]

    x = [1, 2, 3]
    y = [4, 5, 6.01]

    ui.clean()
    ui.load_arrays(1, x, y)
    ui.load_user_stat("mystat", my_stat_func, my_staterr_func)
    ui.set_stat(eval('mystat'))
    ui.load_user_model(myline, "myl")
    ui.add_user_pars("myl", ["m", "b"])
    ui.set_model(eval('myl'))

    ui.fit()

    assert ui.get_par("myl.m").val == approx(1, abs=0.01)
    assert ui.get_par("myl.b").val == approx(3, abs=0.01)
Ejemplo n.º 32
0
 def test_rsp(self):
     fname = self.make_path("qso.pi")
     ui.load_pha(fname)
     ui.set_stat("chi2xspecvar")
     ui.set_method("neldermead")
     ui.group_counts(10)
     ui.notice(0.3, 8)
     ui.set_model("xsphabs.abs1*xspowerlaw.p1")
     ui.set_model("abs1*(p1+gauss1d.g1)")
     g1.pos = 3.
     ui.freeze(g1.pos)
     g1.fwhm = 0.1
     ui.freeze(g1.fwhm)
     ui.set_stat('cstat')
     ui.fit()
     ui.plot_pvalue(p1, p1 + g1, num=100)
     tmp = ui.get_pvalue_results()
     expected = [210.34566845619273, 207.66618095925094, 2.679487496941789]
     self.compare_results(expected, [tmp.null, tmp.alt, tmp.lr])
Ejemplo n.º 33
0
def test_eqwith_err(make_data_path, restore_xspec_settings):

    def check(a0, a1, a2):
        assert a0 == pytest.approx(0.16443033244310976, rel=1e-3)
        assert a1 == pytest.approx(0.09205564216156815, rel=1e-3)
        assert a2 == pytest.approx(0.23933118287470895, rel=1e-3)

    ui.set_method('neldermead')
    ui.set_stat('cstat')
    ui.set_xsabund('angr')
    ui.set_xsxsect('bcmc')

    ui.load_data(make_data_path('12845.pi'))
    ui.notice(0.5, 7)

    ui.set_model("xsphabs.gal*xszphabs.zabs*(powlaw1d.p1+xszgauss.g1)")
    ui.set_par(gal.nh, 0.08)
    ui.freeze(gal)

    ui.set_par(zabs.redshift, 0.518)
    ui.set_par(g1.redshift, 0.518)
    ui.set_par(g1.Sigma, 0.01)
    ui.freeze(g1.Sigma)
    ui.set_par(g1.LineE, min=6.0, max=7.0)

    ui.fit()

    np.random.seed(12345)
    result = ui.eqwidth(p1, p1 + g1, error=True, niter=100)
    check(result[0], result[1], result[2])
    params = result[3]

    np.random.seed(12345)
    result = ui.eqwidth(p1, p1 + g1, error=True, params=params, niter=100)
    check(result[0], result[1], result[2])

    parvals = ui.get_fit_results().parvals
    assert parvals[0] == pytest.approx(0.6111340686157877, rel=1.0e-3)
    assert parvals[1] == pytest.approx(1.6409785803466297, rel=1.0e-3)
    assert parvals[2] == pytest.approx(8.960926761312153e-05, rel=1.0e-3)
    assert parvals[3] == pytest.approx(6.620017726014523, rel=1.0e-3)
    assert parvals[4] == pytest.approx(1.9279114810359657e-06, rel=1.0e-3)
Ejemplo n.º 34
0
def test_eqwith_err(make_data_path, restore_xspec_settings):

    def check(a0, a1, a2):
        assert a0 == approx(0.16443033244310976, rel=1e-3)
        assert a1 == approx(0.09205564216156815, rel=1e-3)
        assert a2 == approx(0.23933118287470895, rel=1e-3)

    ui.set_method('neldermead')
    ui.set_stat('cstat')
    ui.set_xsabund('angr')
    ui.set_xsxsect('bcmc')

    ui.load_data(make_data_path('12845.pi'))
    ui.notice(0.5, 7)

    ui.set_model("xsphabs.gal*xszphabs.zabs*(powlaw1d.p1+xszgauss.g1)")
    ui.set_par(gal.nh, 0.08)
    ui.freeze(gal)

    ui.set_par(zabs.redshift, 0.518)
    ui.set_par(g1.redshift, 0.518)
    ui.set_par(g1.Sigma, 0.01)
    ui.freeze(g1.Sigma)
    ui.set_par(g1.LineE, min=6.0, max=7.0)

    ui.fit()

    numpy.random.seed(12345)
    result = ui.eqwidth(p1, p1 + g1, error=True, niter=100)
    check(result[0], result[1], result[2])
    params = result[3]

    numpy.random.seed(12345)
    result = ui.eqwidth(p1, p1 + g1, error=True, params=params, niter=100)
    check(result[0], result[1], result[2])

    parvals = ui.get_fit_results().parvals
    assert parvals[0] == approx(0.6111340686157877, rel=1.0e-3)
    assert parvals[1] == approx(1.6409785803466297, rel=1.0e-3)
    assert parvals[2] == approx(8.960926761312153e-05, rel=1.0e-3)
    assert parvals[3] == approx(6.620017726014523, rel=1.0e-3)
    assert parvals[4] == approx(1.9279114810359657e-06, rel=1.0e-3)
Ejemplo n.º 35
0
    def test_set_analysis_wave_fabrizio(self):
        rmf = self.datadir + '/ciao4.3/fabrizio/Data/3c273.rmf'
        arf = self.datadir + '/ciao4.3/fabrizio/Data/3c273.arf'

        ui.set_model("fabrizio", "xspowerlaw.p1")
        ui.fake_pha("fabrizio", arf, rmf, 10000)

        model = ui.get_model("fabrizio")
        bare_model, _ = ui._session._get_model_status("fabrizio")
        y = bare_model.calc([1, 1], model.xlo, model.xhi)
        y_m = numpy.mean(y)

        ui.set_analysis("fabrizio", "wave")

        model2 = ui.get_model("fabrizio")
        bare_model2, _ = ui._session._get_model_status("fabrizio")
        y2 = bare_model2.calc([1, 1], model2.xlo, model2.xhi)
        y2_m = numpy.mean(y2)

        self.assertAlmostEqual(y_m, y2_m)
Ejemplo n.º 36
0
    def test_set_analysis_wave_fabrizio(self):
        rmf = self.datadir + '/ciao4.3/fabrizio/Data/3c273.rmf'
        arf = self.datadir + '/ciao4.3/fabrizio/Data/3c273.arf'

        ui.set_model("fabrizio", "xspowerlaw.p1")
        ui.fake_pha("fabrizio", arf, rmf, 10000)

        model = ui.get_model("fabrizio")
        bare_model, _ = ui._session._get_model_status("fabrizio")
        y = bare_model.calc([1,1], model.xlo, model.xhi)
        y_m = numpy.mean(y)

        ui.set_analysis("fabrizio","wave")

        model2 = ui.get_model("fabrizio")
        bare_model2, _ = ui._session._get_model_status("fabrizio")
        y2 = bare_model2.calc([1,1], model2.xlo, model2.xhi)
        y2_m = numpy.mean(y2)

        self.assertAlmostEqual(y_m, y2_m)
Ejemplo n.º 37
0
def test_load_multi_arfsrmfs(make_data_path):
    pha_pi = make_data_path("3c273.pi")
    ui.load_pha(1, pha_pi)
    ui.load_pha(2, pha_pi)
    bkg_pi = make_data_path("3c273_bg.pi")
    ui.load_bkg(1, bkg_pi)
    ui.load_bkg(2, bkg_pi)

    arf = make_data_path("3c273.arf")
    ui.load_multi_arfs(1, [arf, arf], [1, 2])
    ui.load_multi_arfs(2, [arf, arf], [1, 2])

    rmf = make_data_path("3c273.rmf")
    ui.load_multi_rmfs(1, [rmf, rmf], [1, 2])
    ui.load_multi_rmfs(2, [rmf, rmf], [1, 2])
    ui.set_model(1, ui.xsapec.src)
    ui.set_model(2, ui.xsapec.src)
    ui.fit()
    parvals = ui.get_fit_results().parvals
    assert (parvals[0] == pytest.approx(1.03364, rel=1.0e-3))
    assert (parvals[1] == pytest.approx(4.56712e-05, rel=1.03e-3))
Ejemplo n.º 38
0
    def test_set_analysis_wave_fabrizio(self):
        rmf = self.make_path('3c273.rmf')
        arf = self.make_path('3c273.arf')

        ui.set_model("fabrizio", "xspowerlaw.p1")
        ui.fake_pha("fabrizio", arf, rmf, 10000)

        parvals = [1, 1]

        model = ui.get_model("fabrizio")
        bare_model, _ = ui._session._get_model_status("fabrizio")
        y = bare_model.calc(parvals, model.xlo, model.xhi)
        y_m = numpy.mean(y)

        ui.set_analysis("fabrizio", "wave")

        model2 = ui.get_model("fabrizio")
        bare_model2, _ = ui._session._get_model_status("fabrizio")
        y2 = bare_model2.calc(parvals, model2.xlo, model2.xhi)
        y2_m = numpy.mean(y2)

        self.assertAlmostEqual(y_m, y2_m)
Ejemplo n.º 39
0
def test_set_analysis_wave_fabrizio(clean_astro_ui, make_data_path):
    rmf = make_data_path('3c273.rmf')
    arf = make_data_path('3c273.arf')

    ui.set_model("fabrizio", "xspowerlaw.p1")
    ui.fake_pha("fabrizio", arf, rmf, 10000)

    parvals = [1, 1]

    model = ui.get_model("fabrizio")
    bare_model, _ = ui._session._get_model_status("fabrizio")
    y = bare_model.calc(parvals, model.xlo, model.xhi)
    y_m = numpy.mean(y)

    ui.set_analysis("fabrizio", "wave")

    model2 = ui.get_model("fabrizio")
    bare_model2, _ = ui._session._get_model_status("fabrizio")
    y2 = bare_model2.calc(parvals, model2.xlo, model2.xhi)
    y2_m = numpy.mean(y2)

    assert y2_m == pytest.approx(y_m)
Ejemplo n.º 40
0
    def test_set_analysis_wave_fabrizio(self):
        rmf = self.make_path('3c273.rmf')
        arf = self.make_path('3c273.arf')

        ui.set_model("fabrizio", "xspowerlaw.p1")
        ui.fake_pha("fabrizio", arf, rmf, 10000)

        parvals = [1, 1]

        model = ui.get_model("fabrizio")
        bare_model, _ = ui._session._get_model_status("fabrizio")
        y = bare_model.calc(parvals, model.xlo, model.xhi)
        y_m = numpy.mean(y)

        ui.set_analysis("fabrizio", "wave")

        model2 = ui.get_model("fabrizio")
        bare_model2, _ = ui._session._get_model_status("fabrizio")
        y2 = bare_model2.calc(parvals, model2.xlo, model2.xhi)
        y2_m = numpy.mean(y2)

        self.assertAlmostEqual(y_m, y2_m)
Ejemplo n.º 41
0
    def test_sherpa_fit(self, tmpdir):
        # this is to make sure that the written PHA files work with sherpa
        import sherpa.astro.ui as sau
        from sherpa.models import PowLaw1D

        # TODO: this works a little bit, but some info and warnings
        # from Sherpa remain. Not sure what to do, OK as-is for now.
        import logging

        logging.getLogger("sherpa").setLevel("ERROR")

        self.obs_list.write(tmpdir, use_sherpa=True)
        filename = tmpdir / "pha_obs23523.fits"
        sau.load_pha(str(filename))
        sau.set_stat("wstat")
        model = PowLaw1D("powlaw1d.default")
        model.ref = 1e9
        model.ampl = 1
        model.gamma = 2
        sau.set_model(model * 1e-20)
        sau.fit()
        assert_allclose(model.pars[0].val, 2.732, rtol=1e-3)
        assert_allclose(model.pars[2].val, 4.647, rtol=1e-3)
Ejemplo n.º 42
0
def do_beta_model(source, v_field, em_field):

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    ds = source.ds

    A = 3000.
    exp_time = 1.0e5
    redshift = 0.05
    nH_sim = 0.02

    apec_model = TableApecModel(0.1, 11.5, 20000, thermal_broad=False)
    abs_model = TBabsModel(nH_sim)

    sphere = ds.sphere("c", (0.5, "Mpc"))

    kT_sim = source.kT
    Z_sim = source.Z

    thermal_model = ThermalSourceModel(apec_model,
                                       Zmet=Z_sim,
                                       prng=source.prng)
    photons = PhotonList.from_data_source(sphere, redshift, A, exp_time,
                                          thermal_model)

    D_A = photons.parameters["FiducialAngularDiameterDistance"]

    norm_sim = sphere.quantities.total_quantity(em_field)
    norm_sim *= 1.0e-14 / (4 * np.pi * D_A * D_A * (1. + redshift) *
                           (1. + redshift))
    norm_sim = float(norm_sim.in_cgs())

    v1, v2 = sphere.quantities.weighted_variance(v_field, em_field)
    sigma_sim = float(v1.in_units("km/s"))
    mu_sim = -float(v2.in_units("km/s"))

    events = photons.project_photons("z",
                                     absorb_model=abs_model,
                                     prng=source.prng)
    events = ACIS_I(events, rebin=False, convolve_psf=False, prng=source.prng)

    events.write_spectrum("beta_model_evt.pi", clobber=True)

    os.system("cp %s ." % events.parameters["ARF"])
    os.system("cp %s ." % events.parameters["RMF"])

    load_user_model(mymodel, "tbapec")
    add_user_pars("tbapec", ["nH", "kT", "metallicity", "redshift", "norm"],
                  [0.01, 4.0, 0.2, redshift, norm_sim * 0.8],
                  parmins=[0.0, 0.1, 0.0, -20.0, 0.0],
                  parmaxs=[10.0, 20.0, 10.0, 20.0, 1.0e9],
                  parfrozen=[False, False, False, True, False])

    load_pha("beta_model_evt.pi")
    set_stat("cstat")
    set_method("simplex")
    ignore(":0.5, 8.0:")
    set_model("tbapec")
    fit()
    set_covar_opt("sigma", 1.645)
    covar()
    res = get_covar_results()

    assert np.abs(res.parvals[0] - nH_sim) < res.parmaxes[0]
    assert np.abs(res.parvals[1] - kT_sim) < res.parmaxes[1]
    assert np.abs(res.parvals[2] - Z_sim) < res.parmaxes[2]
    assert np.abs(res.parvals[3] - norm_sim) < res.parmaxes[3]

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 43
0
def test_341():
    """
    The original reporter of bug #341 had a special implementation that should be captured
    by this test. The implementation has a proxy model that takes care of updating the actual
    model when it is evaluated. During a recent refactoring of the Stat and Fit code
    (PR #287) a regression was introduced by short-circuiting the evaluation of the model.

    """
    class ExampleModel(object):
        """ Class to define model
        """
        def __init__(self, x, y):
            self.x = np.array(x)
            self.y = np.array(y)
            self.parvals = [1, 2]
            self.parnames = ("m", "b")

        def calc_stat(self):
            return float(np.sum(np.abs(self.y - self.model())))

        def model(self):
            return self.parvals[0] * self.x + self.parvals[1]

    class CalcModel(object):
        """ Class to update model parameters
        """
        def __init__(self, model):
            self.model = model

        def __call__(self, pars, x):
            self.model.parvals = pars
            return np.ones_like(x)

    class CalcStat(object):
        """ Class to determine fit statistic
        """
        def __init__(self, model):
            self.model = model

        def __call__(self, _data, _model, *args, **kwargs):
            fit_stat = self.model.calc_stat()

            return fit_stat, np.ones(1)

    xdata = [1, 2, 3]
    ydata = [4, 5, 6]
    newmodel = ExampleModel(xdata, ydata)

    dummy_data = np.zeros(1)
    dummy_times = np.arange(1)
    ui.load_arrays(1, dummy_times, dummy_data)

    method = 'simplex'
    ui.set_method(method)

    ui.load_user_model(CalcModel(newmodel), 'simplemodel')
    ui.add_user_pars('simplemodel', newmodel.parnames)
    ui.set_model(1, 'simplemodel')

    calc_stat = CalcStat(newmodel)
    ui.load_user_stat('customstat', calc_stat, lambda x: np.ones_like(x))
    ui.set_stat(eval('customstat'))

    ui.fit(1)

    assert ui.get_par("simplemodel.m").val == approx(1, abs=0.00001)
    assert ui.get_par("simplemodel.b").val == approx(3, abs=0.00001)
Ejemplo n.º 44
0
def test_vapec_beta_model():

    bms = BetaModelSource()

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    prng = 45

    ds = bms.ds

    A = 30000.
    exp_time = 1.0e4
    redshift = 0.05
    nH_sim = 0.02

    sphere = ds.sphere("c", (0.5, "Mpc"))

    kT_sim = bms.kT
    Z_sim = bms.Z
    O_sim = bms.O
    Ca_sim = bms.Ca

    var_elem = {"O": ("stream", "oxygen"),
                "Ca": ("stream", "calcium")}

    thermal_model = ThermalSourceModel("apec", 0.1, 11.5, 20000,
                                       var_elem=var_elem,
                                       Zmet=("gas","metallicity"), 
                                       prng=prng)

    photons = PhotonList.from_data_source(sphere, redshift, A, exp_time,
                                          thermal_model)

    D_A = photons.parameters["fid_d_a"]

    norm_sim = sphere.quantities.total_quantity("emission_measure")
    norm_sim *= 1.0e-14/(4*np.pi*D_A*D_A*(1.+redshift)*(1.+redshift))
    norm_sim = float(norm_sim.in_cgs())

    events = photons.project_photons("z", [30.0, 45.0], absorb_model="tbabs",
                                     nH=nH_sim, prng=prng, no_shifting=True)

    new_events = Lynx_Calorimeter(events, prng=prng)

    os.system("cp %s %s ." % (arf.filename, rmf.filename))

    new_events.write_channel_spectrum("var_abund_beta_model_evt.pha", overwrite=True)

    load_user_model(mymodel_var, "tbapec")
    add_user_pars("tbapec", ["nH", "kT", "abund", "redshift", "norm", "O", "Ca"],
                  [nH_sim, 4.0, Z_sim, redshift, norm_sim*0.8, 0.3, 0.5],
                  parmins=[0.0, 0.1, 0.0, -20.0, 0.0, 0.0, 0.0],
                  parmaxs=[10.0, 20.0, 10.0, 20.0, 1.0e9, 10.0, 10.0],
                  parfrozen=[True, False, True, True, False, False, False])

    load_pha("var_abund_beta_model_evt.pha")
    set_stat("cstat")
    set_method("levmar")
    ignore(":0.6, 8.0:")
    set_model("tbapec")
    fit()
    res = get_fit_results()

    assert np.abs(res.parvals[0]-kT_sim)/kT_sim < 0.05
    assert np.abs(res.parvals[1]-norm_sim)/norm_sim < 0.05
    assert np.abs(res.parvals[2]-O_sim)/O_sim < 0.05
    assert np.abs(res.parvals[3]-Ca_sim)/Ca_sim < 0.15

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 45
0
def do_beta_model(source, v_field, em_field, axis="z", 
                  prng=None):

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    if prng is None:
        prng = source.prng

    ds = source.ds

    A = 30000.
    exp_time = 1.0e4
    redshift = 0.05
    nH_sim = 0.02

    sphere = ds.sphere("c", (0.5, "Mpc"))

    kT_sim = source.kT
    Z_sim = source.Z

    thermal_model = ThermalSourceModel("apec", 0.1, 11.5, 20000,
                                       Zmet=Z_sim, prng=prng)
    photons = PhotonList.from_data_source(sphere, redshift, A, exp_time,
                                          thermal_model)

    D_A = photons.parameters["fid_d_a"]

    norm_sim = sphere.quantities.total_quantity(em_field)
    norm_sim *= 1.0e-14/(4*np.pi*D_A*D_A*(1.+redshift)*(1.+redshift))
    norm_sim = float(norm_sim.in_cgs())

    v1, v2 = sphere.quantities.weighted_variance(v_field, em_field)

    if isinstance(axis, string_types):
        if axis == "z":
            fac = 1.0
        else:
            fac = 0.0
    else:
        axis /= np.sqrt(np.dot(axis, axis))
        fac = np.dot(axis, [0.0, 0.0, 1.0])

    sigma_sim = fac*float(v1.in_units("km/s"))
    mu_sim = -fac*float(v2.in_units("km/s"))

    events = photons.project_photons(axis, [30.0, 45.0], absorb_model="tbabs",
                                     nH=nH_sim, prng=prng)

    events.write_simput_file("beta_model", overwrite=True)

    instrument_simulator("beta_model_simput.fits", "beta_model_evt.fits",
                         exp_time, "mucal", [30.0, 45.0],
                         overwrite=True, foreground=False, ptsrc_bkgnd=False,
                         instr_bkgnd=False, 
                         prng=prng)

    write_spectrum("beta_model_evt.fits", "beta_model_evt.pi", overwrite=True)

    os.system("cp %s %s ." % (arf.filename, rmf.filename))

    load_user_model(mymodel, "tbapec")
    add_user_pars("tbapec", ["nH", "kT", "metallicity", "redshift", "norm", "velocity"],
                  [0.02, 4.0, 0.2, 0.04, norm_sim*0.8, 300.0],
                  parmins=[0.0, 0.1, 0.0, -200.0, 0.0, 0.0],
                  parmaxs=[10.0, 20.0, 10.0, 200.0, 1.0e9, 20000.0],
                  parfrozen=[True, False, False, False, False, False])

    load_pha("beta_model_evt.pi")
    set_stat("cstat")
    set_method("levmar")
    ignore(":0.6, 8.0:")
    set_model("tbapec")
    fit()
    res = get_fit_results()

    redshift_sim = (1.0+mu_sim/ckms)*(1.0+redshift) - 1.0

    assert np.abs(res.parvals[0]-kT_sim)/kT_sim < 0.05
    assert np.abs(res.parvals[1]-Z_sim)/Z_sim < 0.05
    assert np.abs(res.parvals[2]-redshift_sim)/redshift_sim < 0.05
    assert np.abs(res.parvals[3]-norm_sim) < 0.05
    assert np.abs(res.parvals[4]-sigma_sim) < 30.0

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 46
0
from bb import BoxBOD, report_results

# Load data
ui.load_arrays(1, BoxBOD.x, BoxBOD.y, np.ones_like(BoxBOD.x))
# @todo: It is possible to give no staterror, but I'm not sure
# what Sherpa does then. fr.statval is no longer the correct chi2.

# Set up the model and load it as a Sherpa model
def boxbod_func(pars, x):
    b1, b2 = pars
    return BoxBOD.model(x, b1, b2)

ui.load_user_model(boxbod_func, "boxbod")
ui.add_user_pars("boxbod", ["b1", "b2"])
bb = boxbod
ui.set_model(bb)
bb.b1, bb.b2 = BoxBOD.p0[0], BoxBOD.p0[1]

# Perform fit
ui.set_stat('chi2datavar')
#ui.set_method('levmar') #  ['levmar', 'moncar', 'neldermead', 'simplex']
ui.set_method_opt('xtol', 1e-10)
ui.fit() # Compute best-fit parameters
ui.set_covar_opt('eps', 1e-5) # @todo: Why does this parameter have no effect
ui.covariance() # Compute covariance matrix (i.e. errors)
#ui.conf() # Compute profile errors
#ui.show_all() # Print a very nice summary of your session to less

# Report results
fr = ui.get_fit_results()
cr = ui.get_covar_results()
Ejemplo n.º 47
0
dummy_data = np.zeros(100)
dummy_times = np.arange(100)
ui.load_arrays(1, dummy_times, dummy_data)

ui.set_method(method)
ui.get_method().config.update(SHERPA_CONFIGS.get(method, {}))

calc_model = CalcModel()
ui.load_user_model(calc_model, "axo_mod")  # sets global axo_mod

parnames = []
for row in range(N_ROWS):
    for col in range(N_COLS):
        parnames.append("adj_{}_{}".format(row, col))
ui.add_user_pars("axo_mod", parnames)
ui.set_model(1, "axo_mod")

calc_stat = CalcStat(axo_mod, M_2d, displ_x)
ui.load_user_stat("axo_stat", calc_stat, lambda x: np.ones_like(x))
ui.set_stat(axo_stat)
calc_model.set_calc_stat(calc_stat)

# Set frozen, min, and max attributes for each axo_mod parameter
for par in axo_mod.pars:
    par.val = 0.0
    # par.frozen = par.frozen
    par.min = -5
    par.max = 5

ui.fit(1)
Ejemplo n.º 48
0
def test_point_source():

    tmpdir = tempfile.mkdtemp()
    curdir = os.getcwd()
    os.chdir(tmpdir)

    nH_sim = 0.02
    norm_sim = 1.0e-4
    alpha_sim = 0.95
    redshift = 0.02

    exp_time = (100., "ks")
    area = (3000., "cm**2")

    wcs = create_dummy_wcs()

    ebins = np.linspace(0.1, 11.5, 2001)
    emid = 0.5*(ebins[1:]+ebins[:-1])
    spec = norm_sim*(emid*(1.0+redshift))**(-alpha_sim)
    de = np.diff(ebins)[0]

    abs_model = TBabsModel(nH_sim)

    events = EventList.create_empty_list(exp_time, area, wcs)

    positions = [(30.01, 45.0)]

    new_events = events.add_point_sources(positions, ebins, spec, prng=prng,
                                          absorb_model=abs_model)

    new_events = ACIS_S(new_events, prng=prng)

    scalex = float(np.std(new_events['xpix'])*sigma_to_fwhm*new_events.parameters["dtheta"])
    scaley = float(np.std(new_events['ypix'])*sigma_to_fwhm*new_events.parameters["dtheta"])

    psf_scale = ACIS_S.psf_scale

    assert (scalex - psf_scale)/psf_scale < 0.01
    assert (scaley - psf_scale)/psf_scale < 0.01

    new_events.write_spectrum("point_source_evt.pi", clobber=True)

    os.system("cp %s ." % new_events.parameters["ARF"])
    os.system("cp %s ." % new_events.parameters["RMF"])

    load_user_model(mymodel, "tplaw")
    add_user_pars("tplaw", ["nH", "norm", "redshift", "alpha"],
                  [0.01, norm_sim*0.8, redshift, 0.9],
                  parmins=[0.0, 0.0, 0.0, 0.1],
                  parmaxs=[10.0, 1.0e9, 10.0, 10.0],
                  parfrozen=[False, False, True, False])

    load_pha("point_source_evt.pi")
    set_stat("cstat")
    set_method("simplex")
    ignore(":0.5, 9.0:")
    set_model("tplaw")
    fit()
    set_covar_opt("sigma", 1.6)
    covar()
    res = get_covar_results()

    assert np.abs(res.parvals[0]-nH_sim) < res.parmaxes[0]
    assert np.abs(res.parvals[1]-norm_sim/de) < res.parmaxes[1]
    assert np.abs(res.parvals[2]-alpha_sim) < res.parmaxes[2]

    os.chdir(curdir)
    shutil.rmtree(tmpdir)
Ejemplo n.º 49
0
import sherpa.astro.ui as ui
from spec import load_data, report_results

# Load data
x, y, y_err = load_data()
ui.load_arrays(1, x, y, y_err)

# Set up the model
ui.set_model(ui.powlaw1d.pl)
pl.gamma, pl.ampl = 2, 1e-12

# Perform fit
ui.fit()  # Compute best-fit parameters
ui.covar()  # Compute covariance matrix (i.e. errors)
# ui.conf() # Compute profile errors
# ui.show_all() # Print a very nice summary of your session to less

# Report results
fr = ui.get_fit_results()
cr = ui.get_covar_results()

package = "sherpa"
gamma, norm = fr.parvals
chi2 = fr.statval
gamma_err, norm_err = cr.parmaxes
cov = cr.extra_output[1, 0]
corr = cov / (norm_err * gamma_err)
report_results(package, norm, norm_err, gamma, gamma_err, chi2, cov, corr)