Ejemplo n.º 1
0
def test_stats_calc_stat_wstat_nobg(usestat, usesys):
    """wstat statistic fails with no background"""

    statobj = WStat()
    data, model = setup_single(usestat, usesys)
    with pytest.raises(StatErr):
        statobj.calc_stat(data, model)
Ejemplo n.º 2
0
def test_stats_calc_stat_wstat_pha_nobg():
    """wstat statistic fails with no background: PHA dataset"""

    statobj = WStat()
    data, model = setup_single_pha(False, False, background=False)
    with pytest.raises(StatErr):
        statobj.calc_stat(data, model)
Ejemplo n.º 3
0
def test_stats_calc_stat_wstat_diffbins():
    """wstat statistic fails when src/bg bin sizes do not match"""

    statobj = WStat()

    data, model = setup_single_pha(True, False, background=True)

    # Tweak data to have one-less bin than the background. This
    # used to be easy but with data validation we need to
    # create a new object.
    #
    data2 = DataPHA("faked",
                    channel=data.channel[:-1],
                    counts=data.counts[:-1],
                    staterror=data.staterror[:-1],
                    grouping=data.grouping[:-1],
                    exposure=data.exposure,
                    backscal=data.backscal,
                    areascal=data.areascal)

    # We might expect the ARF/RMF calls to fail if we add validation
    # (to check the ARF/RMF is valid for the PHA dataset).
    #
    data2.set_arf(data.get_arf())
    data2.set_rmf(data.get_rmf())
    data2.set_background(data.get_background())

    # There is no Sherpa error for this, which seems surprising
    with pytest.raises(TypeError) as err:
        statobj.calc_stat(data2, model)

    assert str(
        err.value) == "input array sizes do not match, data: 5 vs group: 4"
Ejemplo n.º 4
0
def test_stats_calc_stat_wstat_diffbins():
    """wstat statistic fails when src/bg bin sizes do not match"""

    statobj = WStat()

    data, model = setup_single_pha(True, False, background=True)

    # Tweak data to have one-less bin than the background
    data.channel = data.channel[:-1]
    data.counts = data.channel[:-1]
    for attr in ['staterror', 'syserror', 'grouping', 'quality', 'backscal']:
        val = getattr(data, attr)
        if val is not None:
            try:
                setattr(data, attr, val[:-1])
            except TypeError:
                # assume a scalar, so leave be
                pass

    # There is no Sherpa error for this, which seems surprising
    with pytest.raises(TypeError):
        statobj.calc_stat(data, model)