def test_sample_without_replacement():
    array = np.ones(100)
    node_single = DataNode()
    node_single.set_private_data(name="array", data=array)
    sample_size = 50

    def u(x, r):
        output = np.zeros(len(r))
        for i in range(len(r)):
            output[i] = r[i] * sum(np.greater_equal(x, r[i]))
        return output

    r = np.arange(0, 3.5, 0.001)
    delta_u = r.max()
    epsilon = 5
    exponential_mechanism = ExponentialMechanism(u,
                                                 r,
                                                 delta_u,
                                                 epsilon,
                                                 size=sample_size)

    access_modes = [LaplaceMechanism(1, 1)]
    access_modes.append(GaussianMechanism(1, (0.5, 0.5)))
    access_modes.append(RandomizedResponseBinary(0.5, 0.5, 1))
    access_modes.append(RandomizedResponseCoins())
    access_modes.append(exponential_mechanism)

    for a in access_modes:
        sampling_method = SampleWithoutReplacement(a, sample_size, array.shape)
        node_single.configure_data_access("array", sampling_method)
        result = node_single.query("array")
        assert result.shape[0] == sample_size
Ejemplo n.º 2
0
def test_randomize_binary_mechanism_no_binary_coins():
    data_size = 100
    array = np.random.rand(data_size)
    federated_array = shfl.private.federated_operation.federate_array(
        array, data_size)

    federated_array.configure_data_access(RandomizedResponseCoins())

    with pytest.raises(ValueError):
        federated_array.query()
Ejemplo n.º 3
0
def test_randomize_binary_mechanism_scalar_coins():
    scalar = 1
    node_single = DataNode()
    node_single.set_private_data(name="scalar", data=scalar)

    node_single.configure_data_access("scalar", RandomizedResponseCoins())

    result = node_single.query(private_property="scalar")

    assert np.isscalar(result)
    assert result == 0 or result == 1
Ejemplo n.º 4
0
def test_randomize_binary_mechanism_array_almost_always_true_values_coins():
    array = np.ones(1000)
    node_single = DataNode()
    node_single.set_private_data(name="array", data=array)

    # Very low heads probability in the first attempt, mean should be near true value
    data_access_definition = RandomizedResponseCoins(prob_head_first=0.01,
                                                     prob_head_second=0.9)
    node_single.configure_data_access("array", data_access_definition)

    result = node_single.query("array")

    assert 1 - np.mean(result) < 0.05
Ejemplo n.º 5
0
def test_randomize_binary_mechanism_array_coins():
    array = np.ones(100)
    node_single = DataNode()
    node_single.set_private_data(name="array", data=array)

    node_single.configure_data_access("array", RandomizedResponseCoins())

    result = node_single.query("array")
    differences = 0
    for i in range(100):
        if result[i] != array[i]:
            differences = differences + 1

    assert not np.isscalar(result)
    assert 0 < differences < 100
    assert np.mean(result) < 1
Ejemplo n.º 6
0
def test_randomize_binary_mechanism_coins():
    data_size = 100
    array = np.ones(data_size)
    federated_array = shfl.private.federated_operation.federate_array(
        array, data_size)

    federated_array.configure_data_access(RandomizedResponseCoins())

    result = federated_array.query()
    differences = 0
    for i in range(data_size):
        if result[i] != array[i]:
            differences = differences + 1

    assert 0 < differences < data_size
    assert np.mean(result) < 1
Ejemplo n.º 7
0
def test_randomized_response_coins_epsilon_delta():
    randomized_response_coins = RandomizedResponseCoins()

    assert randomized_response_coins.epsilon_delta is not None