def statistics_linear_time_mmd_kernel_choice():
	from shogun.Features import RealFeatures, CombinedFeatures
	from shogun.Kernel import GaussianKernel, CombinedKernel
	from shogun.Statistics import LinearTimeMMD
	from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN

	# note that the linear time statistic is designed for much larger datasets
	n=50000
	dim=5
	difference=2

	# data is standard normal distributed. only one dimension of Y has a mean
	# shift of difference
	(X,Y)=gen_data.create_mean_data(n,dim,difference)
	
	# concatenate since MMD class takes data as one feature object
	# (it is possible to give two, but then data is copied)
	Z=concatenate((X,Y), axis=1)
	print "dimension means of X", [mean(x) for x in X]
	print "dimension means of Y", [mean(x) for x in Y]

	# create kernels/features to choose from
	# here: just a bunch of Gaussian Kernels with different widths
	# real sigmas are 2^-5, ..., 2^10
	sigmas=array([pow(2,x) for x in range(-5,10)])
	
	# shogun has a different parametrization of the Gaussian kernel
	shogun_sigmas=array([x*x*2 for x in sigmas])
	
	# We will use multiple kernels
	kernel=CombinedKernel()
	
	# two separate feature objects here, could also be one with appended data
	features=CombinedFeatures()
	
	# all kernels work on same features
	for i in range(len(sigmas)):
		kernel.append_kernel(GaussianKernel(10, shogun_sigmas[i]))
		features.append_feature_obj(RealFeatures(Z))
	
	mmd=LinearTimeMMD(kernel,features, n)
	
	print "start learning kernel weights"
	mmd.set_opt_regularization_eps(10E-5)
	mmd.set_opt_low_cut(10E-5)
	mmd.set_opt_max_iterations(1000)
	mmd.set_opt_epsilon(10E-7)
	mmd.optimize_kernel_weights()
	weights=kernel.get_subkernel_weights()
	print "learned weights:", weights
	#pyplot.plot(array(range(len(sigmas))), weights)
	#pyplot.show()
	print "index of max weight", weights.argmax()
def statistics_linear_time_mmd_kernel_choice():
	from shogun.Features import RealFeatures, CombinedFeatures
	from shogun.Features import DataGenerator
	from shogun.Kernel import GaussianKernel, CombinedKernel
	from shogun.Statistics import LinearTimeMMD
	from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN

	# note that the linear time statistic is designed for much larger datasets
	n=50000
	dim=5
	difference=2

	# use data generator class to produce example data
	# in pratice, this generate data function could be replaced by a method
	# that obtains data from a stream
	data=DataGenerator.generate_mean_data(n,dim,difference)
	
	print "dimension means of X", mean(data.T[0:n].T)
	print "dimension means of Y", mean(data.T[n:2*n+1].T)

	# create kernels/features to choose from
	# here: just a bunch of Gaussian Kernels with different widths
	# real sigmas are 2^-5, ..., 2^10
	sigmas=array([pow(2,x) for x in range(-5,10)])
	
	# shogun has a different parametrization of the Gaussian kernel
	shogun_sigmas=array([x*x*2 for x in sigmas])
	
	# We will use multiple kernels
	kernel=CombinedKernel()
	
	# two separate feature objects here, could also be one with appended data
	features=CombinedFeatures()
	
	# all kernels work on same features
	for i in range(len(sigmas)):
		kernel.append_kernel(GaussianKernel(10, shogun_sigmas[i]))
		features.append_feature_obj(RealFeatures(data))
	
	mmd=LinearTimeMMD(kernel,features, n)
	
	print "start learning kernel weights"
	mmd.set_opt_regularization_eps(10E-5)
	mmd.set_opt_low_cut(10E-5)
	mmd.set_opt_max_iterations(1000)
	mmd.set_opt_epsilon(10E-7)
	mmd.optimize_kernel_weights()
	weights=kernel.get_subkernel_weights()
	print "learned weights:", weights
	#pyplot.plot(array(range(len(sigmas))), weights)
	#pyplot.show()
	print "index of max weight", weights.argmax()
Ejemplo n.º 3
0
def statistics_linear_time_mmd_kernel_choice():
    from shogun.Features import RealFeatures, CombinedFeatures
    from shogun.Features import MeanShiftRealDataGenerator
    from shogun.Kernel import GaussianKernel, CombinedKernel
    from shogun.Statistics import LinearTimeMMD
    from shogun.Statistics import BOOTSTRAP, MMD1_GAUSSIAN

    # note that the linear time statistic is designed for much larger datasets
    n = 50000
    dim = 5
    difference = 2

    # use data generator class to produce example data
    # in pratice, this generate data function could be replaced by a method
    # that obtains data from a stream
    data = DataGenerator.generate_mean_data(n, dim, difference)

    print "dimension means of X", mean(data.T[0:n].T)
    print "dimension means of Y", mean(data.T[n:2 * n + 1].T)

    # create kernels/features to choose from
    # here: just a bunch of Gaussian Kernels with different widths
    # real sigmas are 2^-5, ..., 2^10
    sigmas = array([pow(2, x) for x in range(-5, 10)])

    # shogun has a different parametrization of the Gaussian kernel
    shogun_sigmas = array([x * x * 2 for x in sigmas])

    # We will use multiple kernels
    kernel = CombinedKernel()

    # two separate feature objects here, could also be one with appended data
    features = CombinedFeatures()

    # all kernels work on same features
    for i in range(len(sigmas)):
        kernel.append_kernel(GaussianKernel(10, shogun_sigmas[i]))
        features.append_feature_obj(RealFeatures(data))

    mmd = LinearTimeMMD(kernel, features, n)

    print "start learning kernel weights"
    mmd.set_opt_regularization_eps(10E-5)
    mmd.set_opt_low_cut(10E-5)
    mmd.set_opt_max_iterations(1000)
    mmd.set_opt_epsilon(10E-7)
    mmd.optimize_kernel_weights()
    weights = kernel.get_subkernel_weights()
    print "learned weights:", weights
    #pyplot.plot(array(range(len(sigmas))), weights)
    #pyplot.show()
    print "index of max weight", weights.argmax()
gauss_kernel_2 = GaussianKernel(features_train, features_train, 1.0)

combined_kernel.append_kernel(gauss_kernel_1)
combined_kernel.append_kernel(gauss_kernel_2)
combined_kernel.init(features_train, features_train)


libsvm = LibSVM()
svm = MKLClassification(libsvm)
svm.set_interleaved_optimization_enabled(False)
svm.set_kernel(combined_kernel)
svm.set_labels(labels_train)

svm.train()

beta = combined_kernel.get_subkernel_weights()
alpha = svm.get_alphas()

combined_kernel.init(features_train, features_test)
labels_predict = svm.apply()


#
# labels_predict = svm.apply(features_test)
# train_pred = svm.apply(features_train)
# alphas = svm.get_alphas()
# b = svm.get_bias()
#
eval = AccuracyMeasure()
# train_eval = AccuracyMeasure()
# # accuracy = eval.evaluate(labels_predict.get_labels(), labels_test)
Ejemplo n.º 5
0
c2=ModelSelectionParameters("C2");
c2.build_values(-4.0, 4.0, R_EXP);
param_tree_root.append_child(c2)

splitting_strategy   = StratifiedCrossValidationSplitting(labels, 50)
evaluation_criterium = ContingencyTableEvaluation(ACCURACY)
cross_validation     = CrossValidation(classifier, feats_train, labels, splitting_strategy, evaluation_criterium)
model_selection      = GridSearchModelSelection(param_tree_root, cross_validation)
best_parameters      = model_selection.select_model(True)

print "Best parameters: ",
best_parameters.print_tree()
best_parameters.apply_to_machine(classifier)

classifier.train()
w=kernel.get_subkernel_weights()
kernel.set_subkernel_weights(w)

# Plot ROC curve
subplot(111)
ROC_evaluation=ROCEvaluation()
ROC_evaluation.evaluate(classifier.apply(feats_train),Labels(trainlab))
roc = ROC_evaluation.get_ROC()
plot(roc[0], roc[1])
fill_between(roc[0],roc[1],0,alpha=0.1)
grid(True)
xlabel('FPR')
ylabel('TPR')
title('Train ROC (Width=%.3f, C1=%.3f, C2=%.3f) ROC curve = %.3f' % (10, classifier.get_C1(), classifier.get_C2(), ROC_evaluation.get_auROC()),size=10)
savefig("data/iri/mkl.png")
"""
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # dict to save additional information for later analysis
        self.additional_information = {}

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

        # create shogun label
        lab = shogun_factory.create_labels(data.labels)

        ########################################################
        print "creating a kernel for each node:"
        ########################################################

        # assemble combined kernel

        combined_kernel = CombinedKernel()

        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)

        base_features = shogun_factory.create_features(data.examples, param)

        combined_features = CombinedFeatures()

        ##################################################
        # intra-domain blocks (dirac kernel)

        intra_block_vec = PairiiVec()

        for task_id in data.get_task_ids():
            intra_block_vec.push_back(Pairii(task_id, task_id))

        # create mask-based normalizer
        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums,
                                                       intra_block_vec)
        kernel = shogun_factory.create_empty_kernel(param)
        kernel.set_normalizer(normalizer)

        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel)

        # append features
        combined_features.append_feature_obj(base_features)

        print "------"

        ##################################################
        # all blocks (full kernel matrix)

        all_block_vec = PairiiVec()

        for task_id_1 in data.get_task_ids():
            for task_id_2 in data.get_task_ids():
                all_block_vec.push_back(Pairii(task_id_1, task_id_2))

        # create mask-based normalizer
        normalizer_all = MultitaskKernelMaskPairNormalizer(
            data.task_vector_nums, all_block_vec)
        kernel_all = shogun_factory.create_empty_kernel(param)
        kernel_all.set_normalizer(normalizer_all)

        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel_all)

        # append features
        combined_features.append_feature_obj(base_features)

        ##################################################
        # hack

        #        hack_block_vec = PairiiVec()
        #
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                hack_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #
        #        hack_block_vec.push_back(Pairii(data.name_to_id("B_2705"), data.name_to_id("B_4001")))
        #        other_group = ["B_0702", "B_1501", "B_5801"]
        #        for task_id_1 in other_group:
        #            for task_id_2 in other_group:
        #                hack_block_vec.push_back(Pairii(data.name_to_id(task_id_1), data.name_to_id(task_id_2)))
        #
        #
        #
        #        # create mask-based normalizer
        #        normalizer_hack = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, hack_block_vec)
        #        kernel_hack = shogun_factory.create_empty_kernel(param)
        #        kernel_hack.set_normalizer(normalizer_hack)
        #
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_hack)
        #
        #        # append features
        #        combined_features.append_feature_obj(base_features)

        ##################################################
        # init combined kernel

        combined_kernel.init(combined_features, combined_features)

        #combined_kernel.precompute_subkernels()
        self.additional_information[
            "mkl weights before"] = combined_kernel.get_subkernel_weights()

        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None

        print "using MKL:", (param.flags["mkl_q"] >= 1.0)

        if param.flags["mkl_q"] >= 1.0:

            svm = MKLClassification()

            svm.set_mkl_norm(param.flags["mkl_q"])
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)

        else:

            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)
            svm = SVMLight(param.cost, combined_kernel, lab)

        num_threads = 8
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_INFO)

        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        svm.set_epsilon(0.03)

        # set cost
        if param.flags["normalize_cost"]:

            norm_c_pos = param.cost / float(
                len([l for l in data.labels if l == 1]))
            norm_c_neg = param.cost / float(
                len([l for l in data.labels if l == -1]))
            svm.set_C(norm_c_neg, norm_c_pos)

        else:

            svm.set_C(param.cost, param.cost)

        svm.train()

        print "subkernel weights (after):", combined_kernel.get_subkernel_weights(
        )

        ########################################################
        print "svm objective:"
        print svm.get_objective()

        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information[
            "svm num sv"] = svm.get_num_support_vectors()
        self.additional_information[
            "mkl weights post-training"] = combined_kernel.get_subkernel_weights(
            )

        ########################################################

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel,
                               svm, param)

        return svms
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
        # dict to save additional information for later analysis
        self.additional_information = {}
        
          
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

                
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)
        


        ########################################################
        print "creating a kernel for each node:"
        ########################################################


        # assemble combined kernel
        
        combined_kernel = CombinedKernel()
        
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)
        
        
        base_features = shogun_factory.create_features(data.examples, param)
        
        combined_features = CombinedFeatures()
        
        
        
        
        ##################################################
        # intra-domain blocks (dirac kernel)
        
        
        intra_block_vec = PairiiVec()
        
        for task_id in data.get_task_ids():
            intra_block_vec.push_back(Pairii(task_id, task_id))
        
        
        
        # create mask-based normalizer
        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, intra_block_vec)        
        kernel = shogun_factory.create_empty_kernel(param)
        kernel.set_normalizer(normalizer)
        
        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel)
    
        # append features
        combined_features.append_feature_obj(base_features)

        print "------"
        
        ##################################################
        # all blocks (full kernel matrix)
        
        
        all_block_vec = PairiiVec()
        
        for task_id_1 in data.get_task_ids():
            for task_id_2 in data.get_task_ids():
                all_block_vec.push_back(Pairii(task_id_1, task_id_2))
                
        
        # create mask-based normalizer
        normalizer_all = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, all_block_vec)        
        kernel_all = shogun_factory.create_empty_kernel(param)
        kernel_all.set_normalizer(normalizer_all)
                
        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel_all)
    
        # append features
        combined_features.append_feature_obj(base_features)

        
        ##################################################
        # hack
        
        
        #        hack_block_vec = PairiiVec()
        #        
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                hack_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #        
        #        hack_block_vec.push_back(Pairii(data.name_to_id("B_2705"), data.name_to_id("B_4001")))
        #        other_group = ["B_0702", "B_1501", "B_5801"]
        #        for task_id_1 in other_group:
        #            for task_id_2 in other_group:
        #                hack_block_vec.push_back(Pairii(data.name_to_id(task_id_1), data.name_to_id(task_id_2)))
        #        
        #        
        #        
        #        # create mask-based normalizer
        #        normalizer_hack = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, hack_block_vec)        
        #        kernel_hack = shogun_factory.create_empty_kernel(param)
        #        kernel_hack.set_normalizer(normalizer_hack)
        #                
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_hack)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)
        
        
        
            
        ##################################################
        # init combined kernel
        
        combined_kernel.init(combined_features, combined_features)    
        
            
        #combined_kernel.precompute_subkernels()
        self.additional_information["mkl weights before"] = combined_kernel.get_subkernel_weights()
        
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.flags["mkl_q"] >= 1.0)
        
        if param.flags["mkl_q"] >= 1.0:
            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.flags["mkl_q"])
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
        
        else:
            
            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)
            svm = SVMLight(param.cost, combined_kernel, lab)


        num_threads = 8
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
        
        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
    
        svm.set_epsilon(0.03)
        
        # set cost
        if param.flags["normalize_cost"]:
            
            norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
            norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
            svm.set_C(norm_c_neg, norm_c_pos)
            
        else:

            svm.set_C(param.cost, param.cost)
        
        svm.train()
    
    
        print "subkernel weights (after):", combined_kernel.get_subkernel_weights()

        ########################################################
        print "svm objective:"
        print svm.get_objective()
        
        
        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information["svm num sv"] = svm.get_num_support_vectors()
        self.additional_information["mkl weights post-training"] = combined_kernel.get_subkernel_weights()
         
        ########################################################
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel, svm, param)

        
        return svms
Ejemplo n.º 8
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
                
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)

                
        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        kernel_matrix = base_wdk.get_kernel_matrix()
        lab = shogun_factory.create_labels(data.labels)
        

        # fetch taxonomy from parameter object
        taxonomy = param.taxonomy.data

        # create name to leaf map
        nodes = taxonomy.get_all_nodes()


        ########################################################
        print "creating a kernel for each node:"
        ########################################################


        # assemble combined kernel
        from shogun.Kernel import CombinedKernel, CustomKernel
        
        combined_kernel = CombinedKernel()
        
        # indicator to which task each example belongs
        task_vector = data.task_vector_names
        
        for node in nodes:
            
            print "creating kernel for ", node.name
            
            # fetch sub-tree
            leaf_names = [leaf.name for leaf in node.get_leaves()]
            
            print "masking all entries other than:", leaf_names
            
            # init matrix
            kernel_matrix_node = numpy.zeros(kernel_matrix.shape)
            
            # fill matrix for node
            for (i, task_lhs) in enumerate(task_vector):
                for (j, task_rhs) in enumerate(task_vector):
                    
                    # only copy values, if both tasks are present in subtree
                    if task_lhs in leaf_names and task_rhs in leaf_names:
                        kernel_matrix_node[i,j] = kernel_matrix[i,j]
                    
            # create custom kernel
            kernel_node = CustomKernel()
            kernel_node.set_full_kernel_matrix_from_full(kernel_matrix_node)
            
            
            # append custom kernel to CombinedKernel
            combined_kernel.append_kernel(kernel_node)                
            
            print "------"
        

        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.transform >= 1.0)
        
        if param.transform >= 1.0:
        
        
            num_threads = 4

            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.transform)
            svm.set_solver_type(ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX)
        
            svm.set_C(param.cost, param.cost)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
            svm.parallel.set_num_threads(num_threads)
            #svm.set_linadd_enabled(False)
            #svm.set_batch_computation_enabled(False)
            
            svm.train()
        
            print "subkernel weights (after):", combined_kernel.get_subkernel_weights()    
            
        else:
            
            # create SVM (disable unsupported optimizations)
            svm = SVMLight(param.cost, combined_kernel, lab)
            svm.set_linadd_enabled(False)
            svm.set_batch_computation_enabled(False)
            
            svm.train()


        ########################################################
        print "svm objective:"
        print svm.get_objective()
        ########################################################
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_id in train_data.keys():
            svms[task_id] = svm


        return svms
Ejemplo n.º 9
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        import numpy
        numpy.random.seed(666)

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

        # create shogun label
        lab = shogun_factory.create_labels(data.labels)

        # assemble combined kernel
        combined_kernel = CombinedKernel()
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_DEBUG)
        # set kernel cache
        if param.flags.has_key("cache_size"):
            combined_kernel.set_cache_size(param.flags["cache_size"])

        # create features
        base_features = shogun_factory.create_features(data.examples, param)

        combined_features = CombinedFeatures()

        ########################################################
        print "creating a masked kernel for possible subset:"
        ########################################################

        power_set_tasks = power_set(data.get_task_ids())

        for active_task_ids in power_set_tasks:

            print "masking all entries other than:", active_task_ids

            # create mask-based normalizer
            normalizer = MultitaskKernelMaskNormalizer(data.task_vector_nums,
                                                       data.task_vector_nums,
                                                       active_task_ids)

            # normalize trace
            if param.flags.has_key(
                    "normalize_trace") and param.flags["normalize_trace"]:
                norm_factor = len(data.get_task_ids()) / len(active_task_ids)
                normalizer.set_normalization_constant(norm_factor)

            kernel = shogun_factory.create_empty_kernel(param)
            kernel.set_normalizer(normalizer)

            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel)

            # append features
            combined_features.append_feature_obj(base_features)

            print "------"

        combined_kernel.init(combined_features, combined_features)

        #combined_kernel.precompute_subkernels()

        self.additional_information[
            "weights before trainng"] = combined_kernel.get_subkernel_weights(
            )
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None

        print "using MKL:", (param.flags["mkl_q"] >= 1.0)

        if param.flags["mkl_q"] >= 1.0:

            svm = MKLClassification()

            svm.set_mkl_norm(param.flags["mkl_q"])

            # set interleaved optimization
            if param.flags.has_key("interleaved"):
                svm.set_interleaved_optimization_enabled(
                    param.flags["interleaved"])

            # set solver type
            if param.flags.has_key(
                    "solver_type") and param.flags["solver_type"]:
                if param.flags["solver_type"] == "ST_CPLEX":
                    svm.set_solver_type(ST_CPLEX)
                if param.flags["solver_type"] == "ST_DIRECT":
                    svm.set_solver_type(ST_DIRECT)
                if param.flags["solver_type"] == "ST_NEWTON":
                    svm.set_solver_type(ST_NEWTON)
                if param.flags["solver_type"] == "ST_GLPK":
                    svm.set_solver_type(ST_GLPK)

            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)

        else:

            svm = SVMLight(param.cost, combined_kernel, lab)

        # optimization settings
        num_threads = 4
        svm.parallel.set_num_threads(num_threads)

        if param.flags.has_key("epsilon"):
            svm.set_epsilon(param.flags["epsilon"])

        # enable output
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)

        # disable unsupported optimizations (due to special normalizer)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        # set cost
        if param.flags["normalize_cost"]:

            norm_c_pos = param.cost / float(
                len([l for l in data.labels if l == 1]))
            norm_c_neg = param.cost / float(
                len([l for l in data.labels if l == -1]))
            svm.set_C(norm_c_neg, norm_c_pos)

        else:

            svm.set_C(param.cost, param.cost)

        svm.train()

        # prepare mapping
        weight_map = {}
        weights = combined_kernel.get_subkernel_weights()
        for (i, pset) in enumerate(power_set_tasks):
            print pset
            subset_str = str([data.id_to_name(task_idx) for task_idx in pset])
            weight_map[subset_str] = weights[i]

        # store additional info
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["weight_map"] = weight_map

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name),
                               len(power_set_tasks), combined_kernel, svm,
                               param)

        return svms
Ejemplo n.º 10
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
          
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)
        
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)
        


        ##################################################
        # define pockets
        ##################################################
        
        pockets = [0]*9
        
        pockets[0] = [1, 5, 6, 7, 8, 31, 32, 33, 34]
        pockets[1] = [1, 2, 3, 4, 6, 7, 8, 9, 11, 21, 31]
        pockets[2] = [11, 20, 21, 22, 29, 31]
        pockets[3] = [8, 30, 31, 32]
        pockets[4] = [10, 11, 30]
        pockets[5] = [10, 11, 12, 13, 20, 29]
        pockets[6] = [10, 12, 20, 22, 26, 27, 28, 29]
        pockets[7] = [12, 14, 15, 26]
        pockets[8] = [13, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26]
        

        #new_pockets = []
        
        # merge neighboring pockets
        #for i in range(8):
        #    new_pockets.append(list(set(pockets[i]).union(set(pockets[i+1]))))
            
        #pockets = new_pockets
        
        
        ########################################################
        print "creating a kernel:"
        ########################################################


        # assemble combined kernel
        
        combined_kernel = CombinedKernel()
        
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)
        
        
        base_features = shogun_factory.create_features(data.examples)
        
        combined_features = CombinedFeatures()
        
        
        
        ##################################################
        # intra-domain blocks
        
        
        #        intra_block_vec = PairiiVec()
        #        
        #        for task_id in data.get_task_ids():
        #            intra_block_vec.push_back(Pairii(task_id, task_id))
        #        
        #        
        #        
        #        # create mask-based normalizer
        #        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, intra_block_vec)        
        #        kernel = shogun_factory.create_empty_kernel(param)
        #        kernel.set_normalizer(normalizer)
        #        
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)
        #
        #        print "------"
        #        
        #        ##################################################
        #        # all blocks
        #        
        #        
        #        all_block_vec = PairiiVec()
        #        
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                all_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #                
        #        
        #        # create mask-based normalizer
        #        normalizer_all = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, all_block_vec)        
        #        kernel_all = shogun_factory.create_empty_kernel(param)
        #        kernel_all.set_normalizer(normalizer_all)
        #                
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_all)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)

        
        ##################################################
        # add one kernel per similarity position
        
        
        # init seq handler 
        pseudoseqs = SequencesHandler()



        for pocket in pockets:

            print "creating normalizer"
            #import pdb
            #pdb.set_trace()
            
            normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
            
            print "processing pocket", pocket


            # set similarity
            for task_name_lhs in data.get_task_names():
                for task_name_rhs in data.get_task_names():
                    
                    similarity = 0.0
                    
                    for pseudo_seq_pos in pocket:
                        similarity += float(pseudoseqs.get_similarity(task_name_lhs, task_name_rhs, pseudo_seq_pos-1))
                    
                    # normalize
                    similarity = similarity / float(len(pocket))
                    
                    print "pocket %s (%s, %s) = %f" % (str(pocket), task_name_lhs, task_name_rhs, similarity)
                    
                    normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
               

            print "creating empty kernel"
            kernel_pos = shogun_factory.create_empty_kernel(param)
            
            print "setting normalizer"
            kernel_pos.set_normalizer(normalizer)
                
            print "appending kernel"
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel_pos)
    
            print "appending features"
            # append features
            combined_features.append_feature_obj(base_features)

        
        
        print "done constructing combined kernel"
        
        ##################################################
        # init combined kernel

        
        # init weights
        # combined_kernel.set_subkernel_weights([1.0/2.85]*combined_kernel.get_num_subkernels())
        
        
        combined_kernel.init(combined_features, combined_features)    
        
        

                
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.transform >= 1.0)
        
        if param.transform >= 1.0:
            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX) #auto
        
            svm.set_C(param.cost, param.cost)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
                
        else:
            
            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)
            
            svm = SVMLight(param.cost, combined_kernel, lab)


        # set up SVM
        num_threads = 8
        svm.io.enable_progress()
        #svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)
        
        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        #print "WARNING: custom epsilon set"
        #svm.set_epsilon(0.05)    
        
        # normalize cost
        norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
        norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
        
        svm.set_C(norm_c_neg, norm_c_pos)
        
        
        # start training
        svm.train()
    
        
        # save additional info
        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information["svm num sv"] = svm.get_num_support_vectors()
        self.additional_information["post_weights"] = combined_kernel.get_subkernel_weights()
        
        print self.additional_information 
        
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel, svm)

        
        return svms
Ejemplo n.º 11
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
          
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)
        
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)
        


        ########################################################
        print "creating a kernel for each node:"
        ########################################################


        # assemble combined kernel
        
        combined_kernel = CombinedKernel()
        
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)
        
        
        base_features = shogun_factory.create_features(data.examples)
        
        combined_features = CombinedFeatures()
        
        
        
        
        ##################################################
        # intra-domain blocks
        
        
        #        intra_block_vec = PairiiVec()
        #        
        #        for task_id in data.get_task_ids():
        #            intra_block_vec.push_back(Pairii(task_id, task_id))
        #        
        #        
        #        
        #        # create mask-based normalizer
        #        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, intra_block_vec)        
        #        kernel = shogun_factory.create_empty_kernel(param)
        #        kernel.set_normalizer(normalizer)
        #        
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)
        #
        #        print "------"
        #        
        #        ##################################################
        #        # all blocks
        #        
        #        
        #        all_block_vec = PairiiVec()
        #        
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                all_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #                
        #        
        #        # create mask-based normalizer
        #        normalizer_all = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, all_block_vec)        
        #        kernel_all = shogun_factory.create_empty_kernel(param)
        #        kernel_all.set_normalizer(normalizer_all)
        #                
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_all)
        #    
        #        # append features
        #        combined_features.append_feature_obj(base_features)

        
        ##################################################
        # add one kernel per similarity position
        
        
        # init seq handler 
        pseudoseqs = SequencesHandler()
        pseudoseq_length = pseudoseqs.seq_length


        for pos in range(pseudoseq_length):
            
            print "appending kernel for pos %i" % (pos)
        
            print "nums", data.task_vector_nums

    
            pos_block_vec = PairiiVec()
    
            # set similarity
            for task_name_lhs in data.get_task_names():
                for task_name_rhs in data.get_task_names():
                    
                    similarity = pseudoseqs.get_similarity(task_name_lhs, task_name_rhs, pos)
                    #print "computing similarity for tasks (%s, %s) = %i" % (task_name_lhs, task_name_rhs, similarity)
                    
                    if similarity == 1:                    
                        tmp_pair = Pairii(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs))
                        pos_block_vec.push_back(tmp_pair)

            print "creating normalizer"
            normalizer_pos = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, pos_block_vec)   

            print "creating empty kernel"
            kernel_pos = shogun_factory.create_empty_kernel(param)
            
            print "setting normalizer"
            kernel_pos.set_normalizer(normalizer_pos)
                
            print "appending kernel"
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel_pos)
    
            print "appending features"
            # append features
            combined_features.append_feature_obj(base_features)
        
        
        print "done constructing combined kernel"
        
        ##################################################
        # init combined kernel
        
        combined_kernel.init(combined_features, combined_features)    
        
            

                
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                
        
        print "using MKL:", (param.transform >= 1.0)
        
        if param.transform >= 1.0:
            
            svm = MKLClassification()
            
            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX) #auto
        
            svm.set_C(param.cost, param.cost)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
                
        else:
            
            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)
            
            svm = SVMLight(param.cost, combined_kernel, lab)


        # set up SVM
        num_threads = 8
        svm.io.enable_progress()
        #svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)
        
        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        print "WARNING: custom epsilon set"
        svm.set_epsilon(0.05)    
        
        # normalize cost
        norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
        norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
        
        svm.set_C(norm_c_neg, norm_c_pos)
        
        
        # start training
        svm.train()
    
        
        # save additional info
        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information["svm num sv"] = svm.get_num_support_vectors()
        self.additional_information["mkl weights post-training"] = combined_kernel.get_subkernel_weights()
        
        print self.additional_information 
        
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel, svm)

        
        return svms
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        

        #numpy.random.seed(1337)
        numpy.random.seed(666)

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

                
        # create shogun label
        lab = shogun_factory.create_labels(data.labels)


        # assemble combined kernel
        combined_kernel = CombinedKernel()
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_DEBUG)    
        # set kernel cache
        if param.flags.has_key("cache_size"):
            combined_kernel.set_cache_size(param.flags["cache_size"])
        

        # create features
        base_features = shogun_factory.create_features(data.examples)
        
        combined_features = CombinedFeatures()
        


        ########################################################
        print "creating a masked kernel for each node:"
        ########################################################
        

        # fetch taxonomy from parameter object
        taxonomy = param.taxonomy.data

        # create name to leaf map
        nodes = taxonomy.get_all_nodes()

        
        for node in nodes:
            
            print "creating kernel for ", node.name
            
            # fetch sub-tree
            active_task_ids = [data.name_to_id(leaf.name) for leaf in node.get_leaves()]
            
            print "masking all entries other than:", active_task_ids
            
        
            # create mask-based normalizer
            normalizer = MultitaskKernelMaskNormalizer(data.task_vector_nums, data.task_vector_nums, active_task_ids)
            
            # normalize trace
            if param.flags.has_key("normalize_trace") and param.flags["normalize_trace"]:
                norm_factor = len(node.get_leaves()) / len(active_task_ids)
                normalizer.set_normalization_constant(norm_factor)
            
            # create kernel
            kernel = shogun_factory.create_empty_kernel(param)
            kernel.set_normalizer(normalizer)
            
            
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel)
        
            # append features
            combined_features.append_feature_obj(base_features)

            print "------"
        

        combined_kernel.init(combined_features, combined_features)                
        #combined_kernel.precompute_subkernels()
                
        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None
                        
        print "using MKL:", (param.flags["mkl_q"] >= 1.0)

        
        if param.flags["mkl_q"] >= 1.0:
            
            # set up MKL    
            svm = MKLClassification()

            # set the "q" in q-norm MKL
            svm.set_mkl_norm(param.flags["mkl_q"])
            
            # set interleaved optimization
            if param.flags.has_key("interleaved"):
                svm.set_interleaved_optimization_enabled(param.flags["interleaved"])
            
            # set solver type
            if param.flags.has_key("solver_type") and param.flags["solver_type"]:
                if param.flags["solver_type"] == "ST_CPLEX":
                    svm.set_solver_type(ST_CPLEX)
                if param.flags["solver_type"] == "ST_DIRECT":
                    svm.set_solver_type(ST_DIRECT)
                if param.flags["solver_type"] == "ST_NEWTON":
                    svm.set_solver_type(ST_NEWTON)
                if param.flags["solver_type"] == "ST_GLPK":
                    svm.set_solver_type(ST_GLPK)
            
            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)
            
        else:
            # create vanilla SVM 
            svm = SVMLight(param.cost, combined_kernel, lab)


        # optimization settings
        num_threads = 4
        svm.parallel.set_num_threads(num_threads)
        
        if param.flags.has_key("epsilon"):
            svm.set_epsilon(param.flags["epsilon"])
        
        
        # enable output        
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)
        
        
        # disable unsupported optimizations (due to special normalizer)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        
        # set cost
        if param.flags["normalize_cost"]:
            
            norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
            norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
            svm.set_C(norm_c_neg, norm_c_pos)
            
        else:
            
            svm.set_C(param.cost, param.cost)
        
        
        # start training
        svm.train()


        ########################################################
        print "svm objective:"
        print svm.get_objective()
        ########################################################
        
        # store additional info
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["weights"] = combined_kernel.get_subkernel_weights()
        
        
        # wrap up predictors
        svms = {}
            
        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), len(nodes), combined_kernel, svm)

        
        return svms
Ejemplo n.º 13
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)

        # create shogun data objects
        base_wdk = shogun_factory.create_empty_kernel(param)
        lab = shogun_factory.create_labels(data.labels)

        combined_kernel = CombinedKernel()
        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)
        base_features = shogun_factory.create_features(data.examples)
        combined_features = CombinedFeatures()

        # set normalizer
        normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

        # load data
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_pearson.txt")
        f = file(
            "/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/All_PseudoSeq_Hamming.txt"
        )
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_euklid.txt")
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_RAxML.txt")

        num_lines = int(f.readline().strip())
        task_distances = numpy.zeros((num_lines, num_lines))
        name_to_id = {}
        for (i, line) in enumerate(f):
            tokens = line.strip().split("\t")
            name = str(tokens[0])
            name_to_id[name] = i
            entry = numpy.array([v for (j, v) in enumerate(tokens) if j != 0])
            assert len(entry) == num_lines, "len_entry %i, num_lines %i" % (
                len(entry), num_lines)
            task_distances[i, :] = entry

        # cut relevant submatrix
        active_ids = [name_to_id[name] for name in data.get_task_names()]
        tmp_distances = task_distances[active_ids, :]
        tmp_distances = tmp_distances[:, active_ids]
        print "distances ", tmp_distances.shape

        # normalize distances
        task_distances = task_distances / numpy.max(tmp_distances)

        similarities = numpy.zeros(
            (data.get_num_tasks(), data.get_num_tasks()))

        # convert distance to similarity
        for task_name_lhs in data.get_task_names():
            for task_name_rhs in data.get_task_names():

                # convert similarity with simple transformation
                similarity = param.base_similarity - task_distances[
                    name_to_id[task_name_lhs], name_to_id[task_name_rhs]]
                normalizer.set_task_similarity(data.name_to_id(task_name_lhs),
                                               data.name_to_id(task_name_rhs),
                                               similarity)

                # save for later
                similarities[data.name_to_id(task_name_lhs),
                             data.name_to_id(task_name_rhs)] = similarity

        # set normalizer
        base_wdk.set_normalizer(normalizer)
        #base_wdk.init_normalizer()

        combined_features.append_feature_obj(base_features)
        combined_kernel.append_kernel(base_wdk)

        ##################################################
        # intra-domain blocks

        intra_block_vec = PairiiVec()

        for task_id in data.get_task_ids():
            intra_block_vec.push_back(Pairii(task_id, task_id))

        # create mask-based normalizer
        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums,
                                                       intra_block_vec)
        kernel = shogun_factory.create_empty_kernel(param)
        kernel.set_normalizer(normalizer)

        # append current kernel to CombinedKernel
        combined_kernel.append_kernel(kernel)

        # append features
        combined_features.append_feature_obj(base_features)

        # set mixing factor (used if MKL is OFF)
        assert (param.base_similarity <= 1)
        assert (param.base_similarity >= 0)
        combined_kernel.set_subkernel_weights(
            [param.base_similarity, 1 - param.base_similarity])

        combined_kernel.init(combined_features, combined_features)

        svm = None

        print "using MKL:", (param.transform >= 1.0)

        if param.transform >= 1.0:

            svm = MKLClassification()

            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX) #auto

            svm.set_C(param.cost, param.cost)

            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)

        else:

            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)

            svm = SVMLight(param.cost, combined_kernel, lab)

        # set up SVM
        num_threads = 8
        svm.io.enable_progress()
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)

        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        print "WARNING: custom epsilon set"
        svm.set_epsilon(0.05)

        # normalize cost
        norm_c_pos = param.cost / float(len([l
                                             for l in data.labels if l == 1]))
        norm_c_neg = param.cost / float(
            len([l for l in data.labels if l == -1]))

        svm.set_C(norm_c_neg, norm_c_pos)

        # start training
        svm.train()

        # save additional information
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["num sv"] = svm.get_num_support_vectors()
        self.additional_information["similarities"] = similarities
        self.additional_information[
            "post_weights"] = combined_kernel.get_subkernel_weights()

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in data.get_task_names():

            task_num = data.name_to_id(task_name)

            # save svm and task_num
            svms[task_name] = (task_num, combined_kernel, svm)

        return svms
Ejemplo n.º 14
0
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """

        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=True)

        # create shogun label
        lab = shogun_factory.create_labels(data.labels)

        ##################################################
        # define pockets
        ##################################################

        pockets = [0] * 9

        pockets[0] = [1, 5, 6, 7, 8, 31, 32, 33, 34]
        pockets[1] = [1, 2, 3, 4, 6, 7, 8, 9, 11, 21, 31]
        pockets[2] = [11, 20, 21, 22, 29, 31]
        pockets[3] = [8, 30, 31, 32]
        pockets[4] = [10, 11, 30]
        pockets[5] = [10, 11, 12, 13, 20, 29]
        pockets[6] = [10, 12, 20, 22, 26, 27, 28, 29]
        pockets[7] = [12, 14, 15, 26]
        pockets[8] = [13, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26]

        #new_pockets = []

        # merge neighboring pockets
        #for i in range(8):
        #    new_pockets.append(list(set(pockets[i]).union(set(pockets[i+1]))))

        #pockets = new_pockets

        ########################################################
        print "creating a kernel:"
        ########################################################

        # assemble combined kernel

        combined_kernel = CombinedKernel()

        combined_kernel.io.set_loglevel(shogun.Kernel.MSG_INFO)

        base_features = shogun_factory.create_features(data.examples)

        combined_features = CombinedFeatures()

        ##################################################
        # intra-domain blocks

        #        intra_block_vec = PairiiVec()
        #
        #        for task_id in data.get_task_ids():
        #            intra_block_vec.push_back(Pairii(task_id, task_id))
        #
        #
        #
        #        # create mask-based normalizer
        #        normalizer = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, intra_block_vec)
        #        kernel = shogun_factory.create_empty_kernel(param)
        #        kernel.set_normalizer(normalizer)
        #
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel)
        #
        #        # append features
        #        combined_features.append_feature_obj(base_features)
        #
        #        print "------"
        #
        #        ##################################################
        #        # all blocks
        #
        #
        #        all_block_vec = PairiiVec()
        #
        #        for task_id_1 in data.get_task_ids():
        #            for task_id_2 in data.get_task_ids():
        #                all_block_vec.push_back(Pairii(task_id_1, task_id_2))
        #
        #
        #        # create mask-based normalizer
        #        normalizer_all = MultitaskKernelMaskPairNormalizer(data.task_vector_nums, all_block_vec)
        #        kernel_all = shogun_factory.create_empty_kernel(param)
        #        kernel_all.set_normalizer(normalizer_all)
        #
        #        # append current kernel to CombinedKernel
        #        combined_kernel.append_kernel(kernel_all)
        #
        #        # append features
        #        combined_features.append_feature_obj(base_features)

        ##################################################
        # add one kernel per similarity position

        # init seq handler
        pseudoseqs = SequencesHandler()

        for pocket in pockets:

            print "creating normalizer"
            #import pdb
            #pdb.set_trace()

            normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

            print "processing pocket", pocket

            # set similarity
            for task_name_lhs in data.get_task_names():
                for task_name_rhs in data.get_task_names():

                    similarity = 0.0

                    for pseudo_seq_pos in pocket:
                        similarity += float(
                            pseudoseqs.get_similarity(task_name_lhs,
                                                      task_name_rhs,
                                                      pseudo_seq_pos - 1))

                    # normalize
                    similarity = similarity / float(len(pocket))

                    print "pocket %s (%s, %s) = %f" % (
                        str(pocket), task_name_lhs, task_name_rhs, similarity)

                    normalizer.set_task_similarity(
                        data.name_to_id(task_name_lhs),
                        data.name_to_id(task_name_rhs), similarity)

            print "creating empty kernel"
            kernel_pos = shogun_factory.create_empty_kernel(param)

            print "setting normalizer"
            kernel_pos.set_normalizer(normalizer)

            print "appending kernel"
            # append current kernel to CombinedKernel
            combined_kernel.append_kernel(kernel_pos)

            print "appending features"
            # append features
            combined_features.append_feature_obj(base_features)

        print "done constructing combined kernel"

        ##################################################
        # init combined kernel

        # init weights
        # combined_kernel.set_subkernel_weights([1.0/2.85]*combined_kernel.get_num_subkernels())

        combined_kernel.init(combined_features, combined_features)

        print "subkernel weights:", combined_kernel.get_subkernel_weights()

        svm = None

        print "using MKL:", (param.transform >= 1.0)

        if param.transform >= 1.0:

            svm = MKLClassification()

            svm.set_mkl_norm(param.transform)
            #svm.set_solver_type(ST_CPLEX) #ST_GLPK) #DIRECT) #NEWTON)#ST_CPLEX) #auto

            svm.set_C(param.cost, param.cost)

            svm.set_kernel(combined_kernel)
            svm.set_labels(lab)

        else:

            # create SVM (disable unsupported optimizations)
            combined_kernel.set_cache_size(500)

            svm = SVMLight(param.cost, combined_kernel, lab)

        # set up SVM
        num_threads = 8
        svm.io.enable_progress()
        #svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
        svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)

        svm.parallel.set_num_threads(num_threads)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)

        #print "WARNING: custom epsilon set"
        #svm.set_epsilon(0.05)

        # normalize cost
        norm_c_pos = param.cost / float(len([l
                                             for l in data.labels if l == 1]))
        norm_c_neg = param.cost / float(
            len([l for l in data.labels if l == -1]))

        svm.set_C(norm_c_neg, norm_c_pos)

        # start training
        svm.train()

        # save additional info
        self.additional_information["svm_objective"] = svm.get_objective()
        self.additional_information[
            "svm num sv"] = svm.get_num_support_vectors()
        self.additional_information[
            "post_weights"] = combined_kernel.get_subkernel_weights()

        print self.additional_information

        # wrap up predictors
        svms = {}

        # use a reference to the same svm several times
        for task_name in train_data.keys():
            svms[task_name] = (data.name_to_id(task_name), combined_kernel,
                               svm)

        return svms