Ejemplo n.º 1
0
def find_period(a, N):
    """WIP: Quantum subroutine for shor's algorithm.
    Finds the period of a function of the form:
    f(x) = a^x % N

    This uses the quantum fourier transform.
    """

    circuit = Circuit()

    # circuit.add(Qubits(5))
    # circuit.add(QFT(0, 1, 2, 3))
    # circuit.add(X(4))
    # circuit.add(quantum_amod_15(a))
    # circuit.add(QFT(0, 1, 2, 3))

    circuit.add(Qubits(5))
    circuit.add(H(0)).add(H(1)).add(H(2)).add(H(3))
    circuit.add(X(4))
    circuit.add(quantum_amod_15(a))
    circuit.add(QFT(3, 2, 1, 0))  # Inverse Quantum Fourier transform

    job = circuit.run(1024)
    result = job.result

    # TODO: This is still broken, likely due to differences between Qiskit and our library
    # See: https://github.com/shor-team/shor/issues/39
    # from shor.utils.visual import plot_results
    # plot_results(result)

    most_common = result.counts.most_common()
    if len(most_common) > 1:
        return gcd(most_common[0][0], most_common[1][0])
    return 1
Ejemplo n.º 2
0
Archivo: shor.py Proyecto: jywyq/shor
def qft(qubits: List[int]) -> Circuit:
    qc = Circuit()
    for i in range(len(qubits)):
        for k in range(i):
            qc.add(Rx(qubits[i], qubits[k], angle=math.pi/float(2**(i-k))))
        qc.add(H(qubits[i]))
    return qc
Ejemplo n.º 3
0
def test_pauliy_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(PauliY(0))  # Can also use H()
    circuit.add(Measure([0]))
    job = circuit.run(1024)
    result = job.result
    # Accounting for random noise, results won't be exact
    assert result["0"] == 0
    assert result["1"] == 1024
Ejemplo n.º 4
0
def test_inity_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(1))
    circuit_1.add(Init_y(0))
    circuit_1.add(Measure([0]))

    result_1 = circuit_1.run(1024).result

    assert result_1["0"] > 450
    assert result_1["1"] > 450
Ejemplo n.º 5
0
def test_circuit_add_circuit():
    circuit = Circuit().add(_BaseLayer()).add(_BaseLayer())

    circuit_to_add = Circuit()
    circuit_to_add.add(_BaseLayer()).add(_BaseLayer()).add(_BaseLayer())

    assert len(circuit.layers) == 2
    circuit.add(circuit_to_add)

    assert len(circuit.layers) == 5
Ejemplo n.º 6
0
def test_mult_gate_inputs1():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(2))
    circuit_1.add(H([0, 1]))
    circuit_1.add(Measure(0, 1))

    result_1 = circuit_1.run(1024).result

    assert result_1["00"] > 215
    assert result_1["11"] > 215
    assert result_1["10"] > 215
    assert result_1["01"] > 215
Ejemplo n.º 7
0
def test_pauliy_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(PauliY(0))  # Can also use H()
    circuit.add(Measure())

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    # Accounting for random noise, results won't be exact
    assert result['0'] == 0
    assert result['1'] == 1024
Ejemplo n.º 8
0
def test_crz_integration():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(CRZ(0, 1, angle=math.pi / 3))

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    assert result['11'] == 0
    assert result['00'] == 1024
    assert result['10'] == 0
    assert result['01'] == 0
Ejemplo n.º 9
0
def test_ch_integration():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(PauliX(0))
    circuit.add(CH(0, 1))

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    assert result['11'] > 450
    assert result['00'] == 0
    assert result['10'] > 450
    assert result['01'] == 0
Ejemplo n.º 10
0
def test_multi_entangle():
    circuit = Circuit()
    circuit.add(Qubits(4))
    circuit.add(Hadamard(0))
    circuit.add(CNOT(0, 1))
    circuit.add(CNOT(0, 2))
    circuit.add(CNOT(0, 3))
    circuit.add(Measure([0, 1, 2, 3]))
    job = circuit.run(1024)
    result = job.result
    assert result["0001"] == 0
    assert result["1000"] == 0
    assert result["0000"] > 450
    assert result["1111"] > 450
Ejemplo n.º 11
0
def test_multi_entangle():
    circuit = Circuit()
    circuit.add(Qubits(4))
    circuit.add(Hadamard(0))
    circuit.add(CNOT(0, 1))
    circuit.add(CNOT(0, 2))
    circuit.add(CNOT(0, 3))
    circuit.add(Measure(0, 1, 2, 3))

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    assert result['0001'] == 0
    assert result['1000'] == 0
    assert result['0000'] > 450
    assert result['1111'] > 450
Ejemplo n.º 12
0
def test_entanglement():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(Hadamard(0))
    circuit.add(CNOT(0, 1))
    circuit.add(Measure([0, 1]))
    job = circuit.run(1024)
    result = job.result
    assert result["01"] == 0
    assert result["10"] == 0
    assert result["00"] > 450
    assert result["11"] > 450
Ejemplo n.º 13
0
def test_cz_int():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(Hadamard(0))
    circuit.add(Hadamard(1))
    circuit.add(Cz(0, 1))
    circuit.add(Measure([0, 1]))
    job = circuit.run(1000)
    result = job.result
    assert result["00"] > 210
    assert result["01"] > 210
    assert result["10"] > 210
    assert result["11"] > 210
Ejemplo n.º 14
0
def test_multi_hadamard():
    circuit = Circuit()
    circuit.add(Qubits(4))
    circuit.add(Hadamard(0))
    circuit.add(Hadamard(1))
    circuit.add(Hadamard(2))
    circuit.add(Hadamard(3))
    circuit.add(Measure([0, 1, 2, 3]))
    job = circuit.run(1024)
    result = job.result
    # All 16 states should be relatively equal probability
    assert len(result.counts) == 16
    assert max(result.counts.values()) - min(result.counts.values()) < 50
Ejemplo n.º 15
0
def test_ch_integration():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(PauliX(0))
    circuit.add(PauliX(1))
    circuit.add(CH(0, 1))
    circuit.add(Measure(0, 1))

    job = circuit.run(1024)
    result = job.result
    assert result["11"] > 450
    assert result["00"] == 0
    assert result["10"] == 0
    assert result["01"] > 450
Ejemplo n.º 16
0
def test_multi_gate_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(2))
    circuit_1.add(PauliX(0))
    circuit_1.add(CNOT(0, 1))
    circuit_1.add(CH(0, 1))
    circuit_1.add(Measure(0, 1))

    result_1 = circuit_1.run(1024).result

    assert result_1["00"] == 0
    assert result_1["11"] > 450
    assert result_1["01"] > 450
    assert result_1["10"] == 0
Ejemplo n.º 17
0
def test_Cz_int():
    circuit = Circuit()
    circuit.add(Qubits(2))
    circuit.add(Hadamard(0))
    circuit.add(Hadamard(1))
    circuit.add(Cz(0, 1))
    circuit.add(Measure(0, 1))

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1000)

    assert result['00'] > 210
    assert result['01'] > 210
    assert result['10'] > 210
    assert result['11'] > 210
Ejemplo n.º 18
0
def test_multi_hadamard():
    circuit = Circuit()
    circuit.add(Qubits(4))
    circuit.add(Hadamard(0))
    circuit.add(Hadamard(1))
    circuit.add(Hadamard(2))
    circuit.add(Hadamard(3))
    circuit.add(Measure(0, 1, 2, 3))

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    # All 16 states should be relatively equal probability
    assert len(result.counts) == 16
    assert max(result.counts.values()) - min(result.counts.values()) < 50
Ejemplo n.º 19
0
def test_t_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(T(0))  # Can also use H()
    circuit.add(Measure([0]))
    job = circuit.run(1024)
    result = job.result
    assert result["0"] == 1024
    assert result["1"] == 0
Ejemplo n.º 20
0
def test_u2_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(1))
    circuit_1.add(U2(0, phi=-np.pi / 2, alpha=np.pi / 2))
    circuit_1.add(Measure([0]))
    result_1 = circuit_1.run(1024).result

    assert result_1["0"] > 450
    assert result_1["1"] > 450
Ejemplo n.º 21
0
def test_ry_int():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(Ry(0, angle=np.pi / 2))
    circuit.add(Measure([0]))
    job = circuit.run(1000)
    result = job.result
    assert result["0"] > 450
    assert result["1"] > 450
Ejemplo n.º 22
0
def test_modulus_circuit():
    circuit = Circuit()
    circuit.add(Qbits(5))
    circuit.add(quantum_amod_15(4))
    circuit.add(Measure([0, 1]))

    job = circuit.run(1024)
    result = job.result

    print(result)
Ejemplo n.º 23
0
def test_id_qubit():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(ID(0))
    circuit.add(Measure([0]))
    job = circuit.run(1024)
    result = job.result
    # Accounting for random noise, results won't be exact
    assert result["1"] == 0
    assert result["0"] == 1024
Ejemplo n.º 24
0
def test_u1_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(PauliX(0))
    circuit.add(U1(0))
    circuit.add(Measure([0]))
    job = circuit.run(1024)
    result = job.result
    assert result["0"] == 0
    assert result["1"] == 1024
Ejemplo n.º 25
0
def test_QFT():
    qbits = Qbits(4)
    X = Circuit()
    X.add(qbits)
    X.add(H(0)).add(H(1)).add(H(2)).add(H(3))
    X.add(QFT(0, 1, 2, 3))
    X.add(Measure([0, 1, 2, 3]))
    #
    # qc2 = QuantumCircuit() + H(qbits[0]) + X(qbits[1])
    #
    # qbits = Qbits(4)
    # qc = H(qbits) * QFT(qbits)
    #
    # qc += QFT(qbits[0:3])
    # qc += qc2
    #
    # qc.add(H())
    #
    # qc = H(qc[0:3])
    # qc = Z(qc[1])
    #
    # qbits = Qbits(4)
    # cbits = Cbits(4)
    #
    # qc = QuantumCircuit(qbits=qbits, cbits=cbits)
    # -> err
    # qc += Hadamard(qbits[0]) + Z(qbits[1])
    #
    # qc.add(Measure([qbits[0]]))
    # qc += Measure(qbits[0])
    #
    # qc.add(Measure(qbits), name='Output')

    # X = Circuit(qbits)
    # X = H(X)
    # Y = Z(X)
    # A = H(X)
    #
    # qbits = Qbits(4)
    # X = Circuit() + qbits + H(qbits) + QFT(qbits) + Measure(qbits)
    #
    # Y = X.run(QuantumSimulator, times=100)
    job = X.run(1024)
    result = job.result
    assert result
Ejemplo n.º 26
0
def test_ccnot_integration():
    circuit = Circuit()
    circuit.add(Qubits(3))
    circuit.add(PauliX(0))
    circuit.add(PauliX(1))
    circuit.add(CCNOT(0, 1, 2))
    circuit.add(Measure([0, 1, 2]))
    job = circuit.run(1024)
    result = job.result

    assert result["000"] == 0
    assert result["001"] == 0
    assert result["010"] == 0
    assert result["100"] == 0
    assert result["110"] == 0
    assert result["101"] == 0
    assert result["011"] == 0
    assert result["111"] == 1024
Ejemplo n.º 27
0
def test_rz_int():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(Rz(0, angle=np.pi / 2))
    circuit.add(Measure(0))

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1000)

    assert result['0'] == 1000
    assert result['1'] == 0
Ejemplo n.º 28
0
def test_s_integration():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(S(0))  # Can also use H()
    circuit.add(Measure())

    sess = QSession(backend=QuantumSimulator())
    result = sess.run(circuit, num_shots=1024)

    assert result['0'] == 1024
    assert result['1'] == 0
Ejemplo n.º 29
0
def test_U2_int():
    circuit_1 = Circuit()
    circuit_1.add(Qubits(1))
    circuit_1.add(U2(0, phi=-np.pi / 2, alpha=np.pi / 2))
    circuit_1.add(Measure(0))

    sess = QSession(backend=QuantumSimulator())
    result_1 = sess.run(circuit_1, num_shots=1024)

    assert result_1['0'] > 450
    assert result_1['1'] > 450
Ejemplo n.º 30
0
def test_single_qubit():
    circuit = Circuit()
    circuit.add(Qubits(1))
    circuit.add(Hadamard(0))
    circuit.add(Measure([0]))

    job = circuit.run(1024, provider=QiskitProvider())
    result = job.result
    # Accounting for random noise, results won't be exact
    assert result[bin(0)] > 450
    assert result[bin(1)] > 450