Ejemplo n.º 1
0
 def train(self,featurefiles,k=100,subsampling=10):
     """ Train a vocabulary from features in files listed 
         in featurefiles using k-means with k number of words. 
         Subsampling of training data can be used for speedup. """
     
     nbr_images = len(featurefiles)
     # read the features from file
     descr = []
     descr.append(sift1.read_features_from_file(featurefiles[0])[1])
     descriptors = descr[0] #stack all features for k-means
     for i in arange(1,nbr_images):
         descr.append(sift1.read_features_from_file(featurefiles[i])[1])
         descriptors = vstack((descriptors,descr[i]))
         
     # k-means: last number determines number of runs
     self.voc,distortion = kmeans(descriptors[::subsampling,:],k,1)
     self.nbr_words = self.voc.shape[0]
     
     # go through all training images and project on vocabulary
     imwords = zeros((nbr_images,self.nbr_words))
     for i in range( nbr_images ):
         imwords[i] = self.project(descr[i])
     
     nbr_occurences = sum( (imwords > 0)*1 ,axis=0)
     
     self.idf = log( (1.0*nbr_images) / (1.0*nbr_occurences+1) )
     self.trainingdata = featurefiles
Ejemplo n.º 2
0
# index of query image and number of results to return

q_ind=0
nbr_results=8


# regular query

res_reg = [w[1] for w in src.query(newimlist[q_ind])[:nbr_results]]
print 'top matches (regular):',res_reg

print newimlist[1]
# load image features from query image

q_locs,q_descr=sift1.read_features_from_file(featlist[q_ind])

fp=homography.make_homog(q_locs[:,:2].T)

# RANSAC model for homography fitting

model = homography.RansacModel()

rank={}

# load image features for result

for ndx in res_reg[1:]:
	print ndx
	locs,descr = sift1.read_features_from_file(featlist[ndx])
Ejemplo n.º 3
0
imlist=get_imlist('img')
nbr_images = len(imlist)
featlist = [ imlist[i][:-3]+'sift' for i in range(nbr_images) ]

newimlist=[]
for i in imlist:
	newimlist.append(i[4:])



# load vocabulary

with open('vocabulary.pkl','rb') as f:
	voc=pickle.load(f)


# create indexer

indx = new_imagesearch.Indexer('test.db',voc)
"""Uncomment when you need to recreate the database"""

#indx.create_tables()  

""" End"""

# Add images  to database
for i in range(nbr_images):
	locs,descr=sift1.read_features_from_file(featlist[i])
	indx.add_to_index(newimlist[i],descr)

indx.db_commit()