def create_segregation_cases(it, ise, verlist, dist_gb, gbpos=None, ise_new=None, option=None, precip_folder=None, use_init=False, precision=None): """ Written for Ti-Fe project. Allows to create segregation by substituting atoms; dist_gb - distance from gb inside which the atoms are included option = 'precip'- adding additional impurities to the already existing at gb. Please use 'precip_folder' use_init - allows to use initial structure. !Warning PBC are not used in determination of seg positions """ # hstring = ("%s #on %s"% (traceback.extract_stack(None, 2)[0][3], datetime.date.today() ) ) # try: # if hstring != header.history[-1]: header.history.append( hstring ) # except: # header.history.append( hstring ) def write_local(cl, it_new, it_new_path, el_sub, main_path): cl.version = v # it_new_path cl.name = it_new cl.des = 'Obtained from end state of ' + str( (it, ise, v) ) + ' by substitution of one atom near gb with ' + el_sub + ' impurity ' path_new_geo = it_new_path + "/" + it_new + "/" + it_new + '.imp.' + el_sub + '.' + str( cl.version) + '.' + 'geo' cl.init.name = it_new + ".init." + str(cl.version) xyzpath = it_new_path + "/" + it_new cl.path["input_geo"] = path_new_geo print(path_new_geo) cl.write_geometry("init", cl.des, override=1) write_xyz(cl.init, xyzpath) return it_new_path if 0: res_loop(it, ise, verlist, up=0) cl = header.calc[(it, ise, verlist[0])] znucl_sub = 3 #atom to be added """1. Create list of atoms near gb to substitue""" cl.gbpos = gbpos # print cl.gbpos seg_pos_list = [] # numbers of segregation positions if use_init: st = cl.init else: st = cl.end # print(st.xcart) if len(st.xcart) == 0: print( 'Warning!, xcart is empty', cl.id, ) for i, x in enumerate(st.xcart): z_cur = st.znucl[st.typat[i] - 1] print('z_cur', z_cur) if z_cur == znucl_sub: printlog('Skipping znucl_sub atom\n') continue if abs(x[0] - gbpos) < dist_gb: print('adding possible seg position') seg_pos_list.append(i) """2. Substitue""" el_sub = invert(znucl_sub) base_name = it main_path = header.struct_des[it].sfolder based_on = it + '.' + ise des_list = [] add_list = [] cl_list = [] sumr_list = [] i = 0 # print(seg_pos_list) for j, replace_atom in enumerate(seg_pos_list): # v = verlist[0] # the first version from list is used cl = calc[(it, ise, v)] cl.gbpos = gbpos new = copy.deepcopy(cl) if use_init: new.end = new.init else: new.init = new.end #replace init structure by the end structure if 1: #atom substitution !make function; see TODO if znucl_sub not in new.init.znucl: new.init.znucl.append(znucl_sub) new.init.ntypat += 1 new.init.typat[replace_atom] = new.init.ntypat else: ind = new.init.znucl.index(znucl_sub) new.init.typat[replace_atom] = ind + 1 new.init.nznucl = [] for typ in range(1, new.init.ntypat + 1): new.init.nznucl.append(new.init.typat.count(typ)) printlog("Impurity with Z=" + str(znucl_sub) + " has been substituted in " + new.name + "\n\n") it_new = base_name + el_sub + 'is' + str( i + 1) #interface substitution if option == 'precip': it_new_path = precip_folder else: it_new_path = main_path + '/' + base_name + '_segreg' #Check if configuration is unique add = 1 # for cl in cl_list: st = new.end st_replic = replic(st, (2, 2, 2)) st_replic = replic(st_replic, (2, 2, 2), -1) #replic in negative direction also sumr = local_surrounding( st.xcart[replace_atom], st_replic, n_neighbours=6) # sum of distances to surrounding atoms print("sumr", sumr) for ad_sumr in sumr_list: if abs(ad_sumr - sumr) < precision: add = 0 printlog("The void is non-equivalent; skipping\n") if add: i += 1 sumr_list.append(sumr) # cl_list.append(new) write_local(new, it_new, it_new_path, el_sub, main_path) for v in verlist[1:]: #write files; versions are scaled cl = calc[(it, ise, v)] rprimd_scaled = cl.end.rprimd new_scaled = copy.deepcopy(new) new_scaled.init.rprimd = copy.deepcopy(rprimd_scaled) new_scaled.init.xred2xcart() write_local(new_scaled, it_new, it_new_path, el_sub, main_path) #create names des_list.append( "struct_des['{0:s}'] = des('{1:s}', 'segregation configurations; made from {2:s}' )" .format(it_new, it_new_path, based_on)) add_list.append("add_loop('" + it_new + "','" + ise_new + "'," + "range(1,6)" + ", up = 'up1', it_folder = '" + it_new_path + "')") for d in des_list: print(d) for d in add_list: print(d) return
def write_xyz(st=None, path=None, filename=None, file_name=None, include_vectors=True, repeat=1, shift_2view=1.0, replications=None, full_cell=False, analysis=None, show_around=None, show_around_x=None, nnumber=6, only_elements=None, gbpos2=None, gbwidth=1, withgb=False, include_boundary=2, imp_positions=[], imp_sub_positions=None, jmol=None, specialcommand=None, jmol_args=None, sts=None, mcif=0, suf=''): """Writes st structure in xyz format in the folder xyz/path #void are visualized with Pu if repeat == 2: produces jmol script shift_2view - in rprimd[1][1] - shift of the second view gbpos2 - position of grain boundary in A gbwidth - atoms aroung gbpos2 will be colored differently imp_positions - (x1,x2,x3, element, label)- xcart and element name coordinates additionally to be added to structure; to visulaze all impurity positions: for jmol, additional key 's', 'i' can be added after element imp_sub_positions - list of atom numbers; the typat of these atoms is changed: not used now analysis - additional processing, allows to show only specifice atoms, 'imp_surrounding' - shows Ti atoms only around impurity nnumber - number of neighbours to show show_around - choose atom number around which to show, from 1 show_around_x - show atoms around point, has higher priority only_elements - see local_surrounding replications - list of replications, (2,2,2) full_cell - returns atoms to cell and replicate boundary atoms include_vectors (bool) - write primitive vectors to xyz jmol - 1,0 - use jmol to produce png picture jmol_args - see write_jmol() mcif - write magnetic cif for jmol specialcommand - any command at the end of jmol script suf - additional suffix for name sts - list of Structure - write several structures to xyz file - other options are not working in this regime """ if jmol_args == None: jmol_args = {} if st == None: st = sts[0] if replications: st = replic(st, mul=replications, inv=1) def update_var(st): if st.natom != len(st.xred) != len(st.xcart) != len(st.typat) or len( st.znucl) != max(st.typat): printlog("Error! write_xyz: check your arrays.\n\n") if st.xcart == [] or len(st.xcart) != len(st.xred): printlog( "Warining! write_xyz: len(xcart) != len(xred) making xcart from xred.\n" ) st.xcart = xred2xcart(st.xred, st.rprimd) #print xcart[1] return st.rprimd, st.xcart, st.xred, st.typat, st.znucl, len(st.xred) st = st.copy() rprimd, xcart, xred, typat, znucl, natom = update_var(st) if file_name: name = file_name elif filename: name = filename else: name = st.name + suf if sts: name += '_traj' printlog("write_xyz(): Name is", name, important='n') if name == '': name = 'noname' if path: basepath = path else: basepath = 'xyz/' suf = '' """Processing section""" if analysis == 'imp_surrounding': printlog('analysis = imp_surrounding', imp='y') if show_around == 0: printlog('Error! number of atom *show_around* should start from 1') suf = '_loc' + str(show_around) lxcart = [] ltypat = [] i = 0 if is_list_like(show_around_x): x = show_around_x x_t = local_surrounding(x, st, nnumber, control='atoms', periodic=True, only_elements=only_elements) # print('write_xyz: local_surround:', x_t) lxcart += x_t[0] ltypat += x_t[1] else: for t, x in zip(typat, xcart): condition = False # print show_around, 'show' if show_around: # print i, condition condition = (i + 1 == show_around) # print i, condition else: condition = ( t > 1 ) # compat with prev behav, to show around any impurities (all atoms with typat more than one) # print 'se', condition if condition: # print('Atom at', x, 'used as central') # lxcart.append(x) # ltypat.append(t) # print x, ' x' x_t = local_surrounding(x, st, nnumber, control='atoms', periodic=True, only_elements=only_elements) print(x_t) lxcart += x_t[0] ltypat += x_t[1] i += 1 xcart = lxcart typat = ltypat natom = len(typat) # print natom, 'nat' # print('Number of neighbours', natom ) st.xcart = xcart st.typat = typat st.natom = natom st.update_xred() """Include atoms on the edge of cell""" if full_cell: # print xred # print natom # st = return_atoms_to_cell(st) # print xred st = replic(st, mul=(1, 1, 2), inv=0, cut_one_cell=1, include_boundary=include_boundary) # print natom, st.natom # print st.xred rprimd, xcart, xred, typat, znucl, natom = update_var(st) # asdegf # printlog("Writing xyz: "+xyzfile, imp = 'y') #analyze imp_positions if imp_sub_positions == None: imp_sub_positions = [] nsub = 0 for pos in imp_positions: # if len(pos) > 4: # if 's' not in pos[4]: continue # skip interstitial positions xs = np.asarray([pos[0], pos[1], pos[2]]) nsub += 1 # print xs for i, x in enumerate(xcart): # print np.linalg.norm( x-xs) if np.linalg.norm(x - xs) < 1: imp_sub_positions.append(i) if imp_sub_positions: printlog(imp_sub_positions, ': numbers of found atoms to be changed ') # for i in sorted(indices, reverse=True): # del somelist[i] if include_vectors: nvect = 3 else: nvect = 0 """Writing section""" name += suf xyzfile = os.path.join(basepath, name + ".xyz") makedir(xyzfile) def write(st): rprimd, xcart, xred, typat, znucl, natom = update_var(st) f.write(str(natom + len(imp_positions) - nsub + nvect) + "\n") #+3 vectors f.write(name + "\n") if imp_positions: for i, el in enumerate(imp_positions): # if len(el) != 4: continue f.write("%s %.5f %.5f %.5f \n" % (el[3], el[0], el[1], el[2])) # print 'composite -pointsize 60 label:{0:d} -geometry +{1:d}+{2:d} 1.png 2.png'.format(i, el[0], el[1]) for i in range(natom): typ = typat[i] - 1 z = int(znucl[typ]) if i in imp_sub_positions: # f.write( "Be " ) continue else: el = element_name_inv(z) if el == 'void': el = 'Pu' f.write(el + " ") f.write("%.5f %.5f %.5f \n" % (xcart[i][0], xcart[i][1], xcart[i][2])) if include_vectors: for r in st.rprimd: f.write('Tv {:.10f} {:.10f} {:.10f}\n'.format(*r)) with open(xyzfile, 'w') as f: if sts: for st in sts: write(st) else: for i in range(repeat): write(st) # os._exit(1) printlog('File', xyzfile, 'was written', imp='y') pngfile = None if jmol: """ script mode for jmol. Create script file as well for elobarate visualization """ """Choose gb atoms to change their color""" printlog('position of boundary 2', gbpos2) atomselection = '' #create consistent xcart_new list like it will be in Jmol xcart_new = [] for i, x in enumerate(xcart): if i in imp_sub_positions: continue xcart_new.append(x) if gbpos2: gbpos1 = gbpos2 - rprimd[0][0] / 2. gbatoms = [] for i, x in enumerate(xcart_new): # print i # if x[0] > gbpos1 - gbwidth/2. and x[0] < gbpos1 + gbwidth/2.: if abs(x[0] - gbpos1) < gbwidth / 2.: gbatoms.append(i) # print i, x[0], abs(x[0] - gbpos1) if abs(x[0] - gbpos2) < gbwidth / 2.: # if x[0] > gbpos2 - gbwidth/2. and x[0] < gbpos2 + gbwidth/2.: # print i, x[0], abs(x[0] - gbpos2) gbatoms.append(i) printlog('Atoms at GB:', gbatoms) atomselection = '' for i in gbatoms: atomselection += 'Ti' + str(i + 1 + len(imp_positions)) + ',' atomselection = atomselection[:-1] # elif withgb: # color half of cell # else: # color half of cell # # pass # atomselection = 'atomno>'+str(0+len(imp_positions) )+' and atomno<'+str(( natom + len(imp_positions) )/2-1) # xyzfile = os.getcwd()+'/'+xyzfile if mcif: xyzfile = st.write_cif(mcif=1) else: xyzfile = st.write_poscar() scriptfile = basepath + name + ".jmol" bn = (basepath + name).replace('.', '_') pngfile = os.getcwd() + '/' + bn + ".png" printlog('imp_positions = ', imp_positions) write_jmol(xyzfile, pngfile, scriptfile, atomselection, rprimd=rprimd, shift=shift_2view, label=[(pos[3], pos[4]) for pos in imp_positions], specialcommand=specialcommand, **jmol_args) return xyzfile, pngfile
def add_neb(starting_calc=None, st=None, st_end=None, it_new=None, ise_new=None, i_atom_to_move=None, up='up2', search_type='vacancy_creation', images=None, r_impurity=None, calc_method=['neb'], inherit_option=None, mag_config=None, i_void_start=None, i_void_final=None, atom_to_insert=None, atom_to_move=None, rep_moving_atom=None, end_pos_types_z=None, replicate=None, it_new_folder=None, it_folder=None, inherit_magmom=False, x_start=None, xr_start=None, x_final=None, xr_final=None, upload_vts=False, center_on_moving=True, run=False, add_loop_dic=None, old_behaviour=None, params=None): """ Prepare needed files for NEB Provides several regimes controlled by *search_type* flag: - existing_voids - search for voids around atom and use them as a final position - vacancy_creation - search for neighbors of the same type and make a vacancy as a start position - interstitial_insertion - search for two neighboring voids; use them as start and final positions by inserting atom *atom_to_insert* - None - just use st and st2 as initial and final ###INPUT: - starting_calc (Calculation) - Calculation object with structure - st (Structure) - structure, can be used instead of Calculation - it_new (str) - name for calculation - st_end (Structure) - final structure - i_atom_to_move (int) - number of atom for moving starting from 0; - *mag_config* (int ) - choose magnetic configuration - allows to obtain different localizations of electron - *replicate* (tuple 3*int) - replicate cell along rprimd - i_void_start, i_void_final (int) - position numbers of voids (or atoms) from the suggested lists - atom_to_insert (str) - element name of atom to insert - atom_to_move (str) - element name of atom to move - it_new_folder or it_folder (str) - section folder - inherit_option (str) - passed only to add_loop - inherit_magmom (bool) - if True than magmom from starting_calc is used, else from set - end_pos_types_z (list of int) - list of Z - type of atoms, which could be considered as final positions in vacancy creation mode - calc_method (list) - 'neb' - 'only_neb' - run only footer - x_start, x_final (array) - explicit xcart coordinates of moving atom for starting and final positions, combined with atom_to_insert - xr_start, xr_final (array) - explicit xred - rep_moving_atom (str)- replace moving atom by needed atom - can be useful than completly different atom is needed. - upload_vts (bool) - if True upload Vasp.pm and nebmake.pl to server - run (bool) - run on server - old_behaviour (str) - choose naming behavior before some date in the past for compatibility with your projects '020917' '261018' - after this moment new namig convention applied if end_pos_types_z is used - add_loop_dic - standart parameters of add() - params (dic) - provide additional parameters to add() # should be removed ###RETURN: None ###DEPENDS: ###TODO 1. Take care of manually provided i_atom_to_move in case of replicate flag using init_numbers 2. For search_type == None x_m and x_del should be determined for magnetic searching and for saving their coordinates to struct_des; now their just (0,0,0) """ naming_conventions209 = True # set False to reproduce old behavior before 2.09.2017 if old_behaviour == '020917': naming_conventions209 = False # # print('atom_to_insert', atom_to_insert) # sys.exit() calc = header.calc struct_des = header.struct_des varset = header.varset if not add_loop_dic: add_loop_dic = {} if not end_pos_types_z: end_pos_types_z = [] end_pos_types_z = sorted(end_pos_types_z) if not hasattr(calc_method, '__iter__'): calc_method = [calc_method] if starting_calc and st: printlog( 'Warning! both *starting_calc* and *st* are provided. I use *starting_calc*' ) st = copy.deepcopy(starting_calc.end) elif starting_calc: st = copy.deepcopy(starting_calc.end) printlog('I use *starting_calc*') elif st: '' printlog('I use *st*') else: printlog( 'Error! no input structure. Use either *starting_calc* or *st*') corenum = add_loop_dic.get('corenum') # print(corenum) # sys.exit() if corenum == None: if images == 3: corenum = 15 elif images == 5: corenum = 15 elif images == 7: corenum = 14 else: printlog('add_neb(): Error! number of images', images, 'is unknown to me; please provide corenum!') # print(corenum) # sys.exit() # print(atom_to_insert) # sys.exit() if corenum: # header.corenum = corenum '' else: corenum = header.CORENUM if corenum % images > 0: print_and_log( 'Error! Number of cores should be dividable by number of IMAGES', images, corenum) if not ise_new: ise_new = starting_calc.id[1] printlog('I use', ise_new, 'as ise_new', imp='y') name_suffix = '' st_pores = [] name_suffix += 'n' + str(images) """Replicate cell """ if replicate: print_and_log('You have chosen to replicate the structure by', replicate) st = replic(st, mul=replicate) name_suffix += str(replicate[0]) + str(replicate[1]) + str( replicate[2]) printlog('Search type is ', search_type) if search_type == None: if st_end == None: printlog( 'Error! You have provided search_type == None, st_end should be provided!' ) st1 = st st2 = st_end x_m = (0, 0, 0) x_del = (0, 0, 0) else: """1. Choose atom (or insert) for moving """ if is_list_like(xr_start): x_start = xred2xcart([xr_start], st.rprimd)[0] # print('atom_to_insert', atom_to_insert) # sys.exit() st1, i_m = st.add_atoms([x_start], atom_to_insert, return_ins=1) x_m = x_start # i_m = st1.find_atom_num_by_xcart(x_start) # print(st1.get_elements()[i_m]) # sys.exit() if i_atom_to_move: nn = str(i_atom_to_move + 1) else: nn = str(i_void_start) name_suffix += atom_to_insert + nn write_xyz(st1, file_name=st.name + '_manually_start') printlog('Start position is created manually by adding xr_start', xr_start, x_start) type_atom_to_move = atom_to_insert el_num_suffix = '' else: atoms_to_move = [] atoms_to_move_types = [] # print('d', i_atom_to_move) # sys.exit() if i_atom_to_move: typ = st.get_elements()[i_atom_to_move] printlog('add_neb(): atom', typ, 'will be moved', imp='y') atoms_to_move.append( [i_atom_to_move, typ, st.xcart[i_atom_to_move]]) atoms_to_move_types.append(typ) if naming_conventions209: name_suffix += typ + str(i_atom_to_move + 1) else: #try to find automatically among alkali - special case for batteries for i, typ, x in zip(range(st.natom), st.get_elements(), st.xcart): if typ in ['Li', 'Na', 'K', 'Rb', 'Mg']: atoms_to_move.append([i, typ, x]) if typ not in atoms_to_move_types: atoms_to_move_types.append(typ) if atoms_to_move: # print(atom_to_move) # sys.exit() if not atom_to_move: atom_to_move = atoms_to_move_types[ 0] # taking first found element if len(atoms_to_move_types) > 1: printlog( 'Error! More than one type of atoms available for moving detected', atoms_to_move_types, 'please specify needed atom with *atom_to_move*') type_atom_to_move = atom_to_move #atoms_to_move[0][1] # printlog('atom ', type_atom_to_move, 'will be moved', imp ='y') if i_atom_to_move: printlog('add_neb(): *i_atom_to_move* = ', i_atom_to_move, 'is used', imp='y') numbers = [[i_atom_to_move]] i_void_start = 1 else: printlog('add_neb(): determine_symmetry_positions ...', imp='y') numbers = determine_symmetry_positions(st, atom_to_move) # print(numbers) # sys.exit() if len(numbers) > 0: printlog('Please choose position using *i_void_start* :', [i + 1 for i in range(len(numbers))], imp='y') printlog('*i_void_start* = ', i_void_start) i_m = numbers[i_void_start - 1][0] printlog('Position', i_void_start, 'chosen, atom:', i_m + 1, type_atom_to_move, imp='y') else: i_m = numbers[0][0] x_m = st.xcart[i_m] el_num_suffix = type_atom_to_move + str(i_m + 1) atom_to_insert = atom_to_move st1 = st # elif atom_to_replace: # num = st.get_specific_elements(atom_to_replace) # if len(n)>0: # printlog('Please choose position using *i_void_start* :', [i+1 for i in range(len(num))],imp = 'y' ) # printlog('*i_void_start* = ', i_void_start) # i_m = num[i_void_start-1] # printlog('Position',i_void_start,'chosen, atom to replace:', i_m+1, atom_to_replace, imp = 'y' ) # sys.exit() else: print_and_log( 'No atoms to move found, you probably gave me deintercalated structure', important='y') st_pores, sums, avds = determine_voids(st, r_impurity, step_dec=0.1, fine=2) insert_positions = determine_unique_voids(st_pores, sums, avds) print_and_log( 'Please use *i_void_start* to choose the void for atom insertion from the Table above:', end='\n', imp='Y') if i_void_start == None: sys.exit() if atom_to_insert == None: printlog('Error! atom_to_insert = None') st = st.add_atoms([ insert_positions[i_void_start], ], atom_to_insert) name_suffix += 'i' + str(i_void_start) i_m = st.natom - 1 x_m = st.xcart[i_m] search_type = 'existing_voids' type_atom_to_move = atom_to_insert el_num_suffix = '' st1 = st """2. Choose final position""" if is_list_like(xr_final): x_final = xred2xcart([xr_final], st.rprimd)[0] #old #check if i_atom_to_move should be removed # st2 = st1.del_atom(i_m) # st2 = st2.add_atoms([x_final], atom_to_insert) #new st2 = st1.mov_atoms(i_m, x_final) # st1.printme() # st2.printme() # sys.exit() x_del = x_final search_type = 'manual_insertion' name_suffix += 'v' + str(i_void_final) write_xyz(st2, file_name=st.name + '_manually_final') printlog('Final position is created manually by adding xr_final', xr_final, x_del) elif search_type == 'existing_voids': #Search for voids around choosen atoms if not st_pores: st_pores, sums, avds = determine_voids(st, r_impurity) sur = determine_unique_final(st_pores, sums, avds, x_m) print_and_log('Please choose *i_void_final* from the Table above:', end='\n', imp='Y') if i_void_final == None: sys.exit() x_final = sur[0][i_void_final] # printlog('You chose:', np.array(x_final).round(2), end='\n', imp='Y') x_del = x_final #please compare with vacancy creation mode write_xyz(st.add_atoms([x_final], 'H'), replications=(2, 2, 2), file_name=st.name + '_possible_positions2_replicated') print_and_log('Choosing the closest position as end', important='n') st1 = st st2 = st.mov_atoms(i_m, x_final) name_suffix += el_num_suffix + 'e' + str( i_void_final) + atom_to_insert st1 = return_atoms_to_cell(st1) st2 = return_atoms_to_cell(st2) write_xyz(st1, file_name=st1.name + name_suffix + '_start') write_xyz(st2, file_name=st2.name + name_suffix + '_final') elif search_type == 'vacancy_creation': #Create vacancy by removing some neibouring atom of the same type print_and_log( 'You have chosen vacancy_creation mode of add_neb tool', imp='Y') print_and_log('Type of atom to move = ', type_atom_to_move, imp='y') # print 'List of left atoms = ', np.array(st.leave_only(type_atom_to_move).xcart) final_pos_z = end_pos_types_z or [ invert(type_atom_to_move) ] # by default only moving atom is considered end_pos_types_el = [invert(z) for z in end_pos_types_z] sur = local_surrounding(x_m, st, n_neighbours=14, control='atoms', only_elements=final_pos_z, periodic=True) #exclude the atom itself # print(x_m) # print(sur) # st.nn() end_pos_n = sur[2][1:] print_and_log( 'I can suggest you ' + str(len(end_pos_n)) + ' end positions. The distances to them are : ', np.round(sur[3][1:], 2), ' A\n ', 'They are ', [invert(z) for z in final_pos_z], 'atoms, use *i_void_final* to choose required: 1, 2, 3 ..', imp='y') i_sym_final_l = [] for j in end_pos_n: for i, l in enumerate(numbers): if j in l: i_sym_final_l.append(i + 1) printlog('Their symmetry positions are ', i_sym_final_l, imp='y') # sys.exit() if not i_void_final: printlog('Changing i_void_final: None -> 1', imp='y') i_void_final = 1 #since zero is itself chosen_dist = sur[3][i_void_final] print_and_log('Choosing position ', i_void_final, 'with distance', round(chosen_dist, 2), 'A', imp='y') # print(end_pos_n) i_sym_final = 0 n_final = sur[2][i_void_final] for i, l in enumerate(numbers): if n_final in l: i_sym_final = i + 1 printlog('It is symmetrically non-equiv position #', i_sym_final, imp='y') # sys.exit() header.temp_chosen_dist = chosen_dist if old_behaviour == '261018': name_suffix += el_num_suffix + 'v' + str(i_void_final) else: name_suffix += el_num_suffix + 'v' + str( i_void_final) + list2string(end_pos_types_el, joiner='') # print(name_suffix) # sys.exit() x_del = sur[0][i_void_final] printlog('xcart of atom to delete', x_del) i_del = st.find_atom_num_by_xcart(x_del) # print(x_del) # print(st.xcart) # for x in st.xcart: # if x[0] > 10: # print(x) print_and_log('number of atom to delete = ', i_del, imp='y') if i_del == None: printlog('add_neb(): Error! I could find atom to delete!') # print st.magmom # print st1.magmom # try: if is_list_like(xr_start): st2 = st1.mov_atoms( i_m, x_del) # i_m and sur[0][neb_config] should coincide # i_del = st1.find_atom_num_by_xcart(x_del) st1 = st1.del_atom(i_del) else: print_and_log( 'Making vacancy at end position for starting configuration', imp='y') st1 = st.del_atom(i_del) print_and_log( 'Making vacancy at start position for final configuration', important='n') st2 = st.mov_atoms( i_m, x_del) # i_m and sur[0][neb_config] should coincide # except: # st2 = st st2 = st2.del_atom(i_del) # these two steps provide the same order """Checking correctness of path""" #if start and final positions are used, collisions with existing atoms are possible if is_list_like(xr_start) and is_list_like(xr_final): printlog('Checking correctness') st1, _, _ = st1.remove_close_lying() stt = st1.add_atoms([ x_final, ], 'Pu') stt, x, _ = stt.remove_close_lying( rm_both=True ) # now the final position is empty for sure; however the order can be spoiled # print(st._removed) if stt._removed: st1 = stt # only if overlapping was found we assign new structure st2, _, _ = st2.remove_close_lying(rm_first=stt._removed) stt = st2.add_atoms([ x_start, ], 'Pu') stt, x, _ = stt.remove_close_lying( rm_both=True) # now the start position is empty for sure if stt._removed: st2 = stt print(st2.get_elements()) # sys.exit() elif is_list_like(xr_final) and not is_list_like(xr_start) or is_list_like( xr_start) and not is_list_like(xr_final): printlog( 'Attention! only start or final position is provided, please check that everything is ok with start and final states!!!' ) """ Determining magnetic moments """ vp = varset[ise_new].vasp_params if 'ISPIN' in vp and vp['ISPIN'] == 2: print_and_log( 'Magnetic calculation detected. Preparing spin modifications ...', imp='y') cl_test = CalculationVasp(varset[ise_new]) cl_test.init = st1 # print 'asdfsdfasdfsadfsadf', st1.magmom if inherit_magmom and hasattr(st, 'magmom') and st.magmom and any( st.magmom): print_and_log( 'inherit_magmom=True: You have chosen MAGMOM from provided structure', imp='y') name_suffix += 'mp' #Magmom from Previous else: cl_test.init.magmom = None print_and_log( 'inherit_magmom=False or no magmom in input structure : MAGMOM will be determined from set', imp='y') name_suffix += 'ms' #Magmom from Set cl_test.actualize_set() #find magmom for current structure st1.magmom = copy.deepcopy(cl_test.init.magmom) st2.magmom = copy.deepcopy(cl_test.init.magmom) # sys.exit() # print_and_log('The magnetic moments from set:') # print cl_test.init.magmom if search_type != None: # for None not implemented; x_m should be determined first for this #checking for closest atoms now only for Fe, Mn, Ni, Co sur = local_surrounding(x_m, st1, n_neighbours=3, control='atoms', periodic=True, only_elements=header.TRANSITION_ELEMENTS) dist = np.array(sur[3]).round(2) numb = np.array(sur[2]) a = zip(numb, dist) # a= np.array(a) # print a[1] # a = np.apply_along_axis(np.unique, 1, a) # print a def unique_by_key(elements, key=None): if key is None: # no key: the whole element must be unique key = lambda e: e return list({key(el): el for el in elements}.values()) # print a mag_atoms_dists = unique_by_key(a, key=itemgetter(1)) # print (mag_atoms_dists) # a = unique_by_key(a, key=itemgetter(1)) print_and_log( 'I change spin for the following atoms:\ni atom dist\n', np.round(mag_atoms_dists, 2), imp='y') # print 'I have found closest Fe atoms' muls = [(1.2, 0.6), (0.6, 1.2)] mag_moments_variants = [] for mm in muls: mags = copy.deepcopy(cl_test.init.magmom) # print mags for a, m in zip(mag_atoms_dists, mm): # print t[1] mags[a[0]] = mags[a[0]] * m mag_moments_variants.append(mags) print_and_log('The list of possible mag_moments:', imp='y') for i, mag in enumerate(mag_moments_variants): print_and_log(i, mag) print_and_log( 'Please use *mag_config* arg to choose desired config', imp='y') if mag_config != None: st1.magmom = copy.deepcopy(mag_moments_variants[mag_config]) st2.magmom = copy.deepcopy(mag_moments_variants[mag_config]) name_suffix += 'm' + str(mag_config) print_and_log('You have chosen mag configuration #', mag_config, imp='y') else: print_and_log('Non-magnetic calculation continue ...') """3. Add to struct_des, create geo files, check set, add_loop """ if starting_calc: it = starting_calc.id[0] it_new = it + 'v' + str(starting_calc.id[2]) + '.' + name_suffix if not it_new_folder: it_new_folder = struct_des[it].sfolder + '/neb/' obtained_from = str(starting_calc.id) if not ise_new: print_and_log('I will run add_loop() using the same set', important='Y') ise_new = cl.id[1] elif st: if not it_new: printlog( 'Error! please provide *it_new* - name for your calculation', important='Y') it = None it_new += '.' + name_suffix obtained_from = st.name if not ise_new: printlog('Error! please provide *ise_new*', important='Y') if not it_new_folder and not it_folder: printlog( 'Error! please provide *it_new_folder* - folder for your new calculation', important='Y') if it_folder: it_new_folder = it_folder if rep_moving_atom: it_new += 'r' + rep_moving_atom if it_new not in struct_des: add_des(struct_des, it_new, it_new_folder, 'Automatically created and added from ' + obtained_from) print_and_log( 'Creating geo files for starting and final configurations (versions 1 and 2) ', important='y') # if starting_calc: # cl = copy.deepcopy(starting_calc) # else: cl = CalculationVasp() #write start position if search_type is not None: struct_des[it_new].x_m_ion_start = x_m struct_des[it_new].xr_m_ion_start = xcart2xred([x_m], st1.rprimd)[0] # st1, _, _ = st1.remove_close_lying() # st2, _, _ = st2.remove_close_lying() print('Trying to find x_m', x_m) i1 = st1.find_atom_num_by_xcart( x_m, prec=0.45, ) # sys.exit() print('Trying to find x_del', x_del) i2 = st2.find_atom_num_by_xcart( x_del, prec=0.45, ) if rep_moving_atom: #replace the moving atom by required st1 = st1.replace_atoms([i1], rep_moving_atom) st2 = st2.replace_atoms([i2], rep_moving_atom) else: #allows to make correct order for nebmake.pl st1 = st1.replace_atoms([i1], type_atom_to_move) st2 = st2.replace_atoms([i2], type_atom_to_move) i1 = st1.find_atom_num_by_xcart( x_m, prec=0.45) # the positions were changed # check if this is correct i2 = st2.find_atom_num_by_xcart(x_del, prec=0.45) cl.end = st1 ver_new = 1 cl.version = ver_new cl.path["input_geo"] = header.geo_folder + struct_des[it_new].sfolder + '/' + \ it_new+"/"+it_new+'.auto_created_starting_position_for_neb_'+str(search_type)+'.'+str(ver_new)+'.'+'geo' cl.write_siman_geo(geotype='end', description='Starting conf. for neb from ' + obtained_from, override=True) #write final position struct_des[it_new].x_m_ion_final = x_del struct_des[it_new].xr_m_ion_final = xcart2xred([x_del], st2.rprimd)[0] cl.end = st2 ver_new = 2 cl.version = ver_new cl.path["input_geo"] = header.geo_folder + struct_des[it_new].sfolder + '/' + \ it_new+"/"+it_new+'.auto_created_final_position_for_neb_'+str(search_type)+'.'+str(ver_new)+'.'+'geo' cl.write_siman_geo(geotype='end', description='Final conf. for neb from ' + obtained_from, override=True) if not rep_moving_atom and search_type is not None: st1s = st1.replace_atoms([i1], 'Pu') st2s = st2.replace_atoms([i2], 'Pu') else: st1s = copy.deepcopy(st1) st2s = copy.deepcopy(st2) if center_on_moving and search_type is not None: vec = st1.center_on(i1) st1s = st1s.shift_atoms(vec) st2s = st2s.shift_atoms(vec) write_xyz(st1s, file_name=it_new + '_start') write_xyz(st2s, file_name=it_new + '_end') st1s.write_poscar('xyz/POSCAR1') st2s.write_poscar('xyz/POSCAR2') # print(a) # runBash('cd xyz; mkdir '+it_new+'_all;'+"""for i in {00..04}; do cp $i/POSCAR """+ it_new+'_all/POSCAR$i; done; rm -r 00 01 02 03 04') with cd('xyz'): a = runBash(header.PATH2NEBMAKE + ' POSCAR1 POSCAR2 3') print(a) dst = it_new + '_all' makedir(dst + '/any') for f in ['00', '01', '02', '03', '04']: shutil.move(f + '/POSCAR', dst + '/POSCAR' + f) shutil.rmtree(f) #prepare calculations # sys.exit() #Check if nebmake is avail # if int(runBash('ssh '+cluster_address+' test -e '+project_path_cluster+'/tools/vts/nebmake.pl; echo $?') ): # '' # print_and_log('Please upload vtsttools to ',cluster_address, project_path_cluster+'/tools/vts/') # raise RuntimeError # copy_to_server(path_to_wrapper+'/vtstscripts/nebmake.pl', to = project_path_cluster+'/tools/', addr = cluster_address) # if int(runBash('ssh '+cluster_address+' test -e '+project_path_cluster+'/tools/Vasp.pm; echo $?') ): # copy_to_server(path_to_wrapper+'/vtstscripts/Vasp.pm', to = project_path_cluster+'/tools/', addr = cluster_address) inherit_ngkpt(it_new, it, varset[ise_new]) if run: add_loop_dic['run'] = run add_loop_dic['corenum'] = corenum # print(add_loop_dic) add_loop( it_new, ise_new, verlist=[1, 2], up=up, calc_method=calc_method, savefile='oc', inherit_option=inherit_option, n_neb_images=images, # params=params, **add_loop_dic) if upload_vts: siman_dir = os.path.dirname(__file__) # print(upload_vts) push_to_server([ siman_dir + '/cluster_tools/nebmake.pl', siman_dir + '/cluster_tools/Vasp.pm' ], to=header.cluster_home + '/tools/vts', addr=header.cluster_address) else: print_and_log('Please be sure that vtsttools are at', header.cluster_address, header.cluster_home + '/tools/vts/', imp='Y') printlog('add_neb finished') return it_new
def find_pairs(base_name, segtyp, in_calc, central_atoms=[], xcart1imp=None, input_dlist_coseg=None, prec=2, gvolume_config_num=None, gbpos=None, take_final_rprimd_from=None, main_path=None, based_on=None, target_znucl=[22, 6, 8], max_dist_between_atoms=4.8, add_typat=[2, 3]): """ Find uniq pairs of atoms and analyse them Input: segtyp - three regimes for cells with grain boundaries: 'segreg' assumes that in_calc contains carbon atom in grain volume, and creates all cases; 'coseg' assumes pure cell and creates only coseg cases. cosegregation cases of course should be the same for two regimes, however co-segregation configuations after 'coseg' is more easy to relax. 'grainvol' - searching for pairs in grain volume two regimes for bulk cells: 'bulk_triple' - used for bulk cells without grain boundaries; first step is searching for pairs, second step for triples. 'bulk_pairs' - used for bulk cells without grain boundaries; searching for pairs. new_name - name of created structures; at first should be added to struct_des[] in_calc - Calculation() type or path to geo file region - list of numbers which determine region central_atoms - list of atoms for which pairs are constructed (Warinig! numbers in new array xcart_pores!); - parameter to change mode; xcart1imp - coordinates of first interstitial in the grain interior input_dlist_coseg - list of configurations with cosegregation cases. Needed to construct corresponding segregation cases. the format is quiet tricky prec - precision of lengths used to determine unique positions. gvolume_config_num - number of configuration with two atoms in grain volume choosen by user (usually should be the most favourable) gbpos - position of grain boundary take_final_rprimd_from - path to geo file from which rprimd will be used target_znucl - numbers of target atoms max_dist_between_atoms - now at least used for 'bulk_pairs' and 'bulk_triple'; maximum length of found pairs. add_typat - mannualy set please update """ def write_geometry_files(dlist, in_calc, xcart_pores, segtyp, take_final_rprimd_from=None, add_name_before='', tlist=[], configver=False, add_typat=None): """Creating files dlist - list of pairs with distances and numbers in_calc - base calculation without pores tlist - list of additional atoms in the case of triples; list of structures configver - if True each configuration saved as a new version add_typat - manually determined; please automatize! """ print(("Warning! add_typat", add_typat)) if tlist == []: #convert dlist to tlist - to do earlier for el in dlist: config = Structure() config.name = el[2] config.length = el[0] config.typat = add_typat config.xcart = [el[7], el[8]] tlist.append(config) for i, el in enumerate(tlist): #by all found structures print(("el name is ", el.name)) stn = copy.deepcopy(in_calc.init) calc = copy.deepcopy(in_calc) stn.typat.extend(el.typat) stn.xcart.extend(el.xcart) stn.xred = xcart2xred(stn.xcart, stn.rprimd) xcart_check = xred2xcart(stn.xred, stn.rprimd) assert len(xcart_check) == len(stn.xcart) #test assert all( [ all(np.around(v1, 8) == np.around(v2, 8)) for (v1, v2) in zip(stn.xcart, xcart_check) ] ) #check if xcart2xred(stn.xcart,r) and xred2xcart(stn.xred,r) are working correctly up to the eight digits after stn.natom = len(stn.xcart) """Adapt new rprimd""" print("take final rprimd is ", take_final_rprimd_from) if take_final_rprimd_from: #read final rprimd and version print("Start to read rprimd and version from " + take_final_rprimd_from) in_calc_rprimd = CalculationVasp() in_calc_rprimd.name = 'temp' in_calc_rprimd.read_geometry(take_final_rprimd_from) stn.rprimd = in_calc_rprimd.init.rprimd stn.xcart = xred2xcart(stn.xred, stn.rprimd) calc.version = in_calc_rprimd.version elif configver: calc.version = i + 1 calc.init = stn des = ' was obtained by the insertion of C-O pair into ' + in_calc_name + '; final vectors taken from corresponding ver' calc.build.ipairlen = el.length # Initial length of pair if not hasattr(calc.build, 'nadded') or calc.build.nadded == None: calc.build.nadded = 2 else: calc.build.nadded += 2 if not hasattr(calc.build, 'listadded') or calc.build.listadded == [None]: calc.build.listadded = list(range( stn.natom - 2, stn.natom)) #list of atoms which were added else: calc.build.listadded.extend( list(range(stn.natom - 2, stn.natom))) structure_name = calc.name + el.name.split('.')[0] #calc.name = add_name_before+calc.name+ '.' +el[2]+'.'+str(calc.version) print('Structure_name', structure_name) if structure_name in struct_des: if configver: fname = structure_name # calc.name+'C2O2' calc.path["input_geo"] = geo_folder + struct_des[ fname].sfolder + '/' + fname + '/' + structure_name + '.' + segtyp + '.' + str( calc.version) + '.geo' else: calc.path["input_geo"] = geo_folder + struct_des[ structure_name].sfolder + '/' + structure_name + '/' + structure_name + '.' + segtyp + '.' + str( calc.version) + '.geo' print("write geo to ", calc.path["input_geo"]) calc.write_geometry('init', des) print("write_geometry_files(): name ", el.name) stn.name = add_name_before + calc.name + '' + str( el.name) + '.' + str(calc.version) #stn = replic(stn, (1,2,2)) write_xyz(stn) print("__________________________\n\n\n") return def min_diff(f, list, diffprec): """ calculates difference between one number and list of other numbers. return the index of number with smallest difference. if difference is smaller than diffprec returns true as the second argument. """ #print list if list == []: return 0, False mind = min([abs(f - l) for l in list]) with_i = np.asarray([abs(f - l) for l in list]).argmin() return with_i, (mind < diffprec) def pairs(in_calc, xcart_pores, central_atoms, prec=2, max_dist=20, max_dist_from_gb=4, pairtyp='gvol'): """ Searhing for pairs and make list of distances and numbers of atoms prec - precision, allows to control which distances can be related to the same configurations max_dist - maximum distance between atoms in pair max_dist_from_gb - pairtyp - 'gvol' assumes that central_atoms are in the grain volume, 'gb' assumes that central_atoms are in the grain boundary region """ st = in_calc.init st_replic = replic(st, (2, 2, 2)) st_replic = replic(st_replic, (2, 2, 2), -1) #replic in negative direction also r1x = in_calc.rprimd[0][0] r3z = in_calc.rprimd[2][2] print("Half length of r1x is", r1x / 2) if segtyp in ['segreg', 'coseg', 'grainvol']: gbpos2 = in_calc.gbpos gbpos1 = gbpos2 - r1x / 2. print("\n\nPositions of boundaries gb1 and gb2", gbpos1, gbpos2) print("Maximum possible distance between boundary and impurity", r1x / 4) else: gbpos2 = 0 gbpos1 = 0 dlist = [] d1list = [] d2list = [] dgb2list = [] n_neighbours = 8 # number of atoms to calculate sums sumrulist = [] #list of sums (sumr1 or sumr2) of unique pores unique_pores = [] #the same list but also with coordinates of pores sumrlist = [] #list of sumr1+sumr2 k = 1 d2diff = 0 d1diff = 0 #z1 = 6 #charge of added impurity #z2 = 8 diffprec = 0.02 # print xcart_pores for i, x1 in enumerate(xcart_pores): if i not in central_atoms: continue #iz = z1 for j, x2 in enumerate(xcart_pores): if all(x1 == x2): continue d = abs(x2[0] - in_calc.gbpos) if pairtyp == 'gb' and d > max_dist_from_gb: continue #second atom is too far from grain boundary d1, d2 = image_distance( x1, x2, st.rprimd, 2) # the minimum distance and the next minimum dist if d1 > max_dist: continue if (d1, d2) != image_distance(x1, x2, st.rprimd, 3): raise RuntimeError #test, searching in father images #d1 = round(d1,prec) #d2 = round(d2,prec) dgb1 = round(x2[0] - gbpos1, prec) dgb2 = round(gbpos2 - x2[0], prec) sumr1 = local_surrounding( x1, st_replic, n_neighbours) # sum of distances to surrounding atoms sumr2 = local_surrounding(x2, st_replic, n_neighbours) sumr = sumr2 + sumr1 if sumr1 not in sumrulist: sumrulist.append(sumr1) unique_pores.append((sumr1, x1)) #determine unique pores if sumr2 not in sumrulist: sumrulist.append(sumr2) unique_pores.append((sumr2, x2)) #determine unique pores #if d1 in d1list: continue if sumr in sumrlist: # new condition based on sumr ind = sumrlist.index(sumr) i_min, smaller = min_diff(d1, d1list, diffprec) if smaller: continue # if 0:#d1list: # i_min, smaller = min_diff(d1, d1list, diffprec)# d1 has the smallest difference with di # #print "exist" # d2diff = abs(d2list[i_min]-d2) # #print abs(d2list[i_min]-d2) # #print central_atoms # if smaller and abs(d2list[i_min]-d2) < diffprec*2 : continue #and abs(dgb2list[i_min]-dgb2) < diffprec # i_min, smaller = min_diff(d2, d2list, diffprec)# d1 has the smallest difference with di # d1diff = abs(d1list[i_min]-d1) # if smaller and abs(d1list[i_min]-d1) < diffprec*2 : continue #print "skiped" #di, smaller = min_diff(d2, d2list, diffprec) #if di != None and smaller: continue #if min_diff(d2, d2list, diffprec): continue # be carefull here. this condition can pass some unique configrations; should make additional check like below #if d2 in d2list and dgb2list[d2list.index(d2)] == dgb2: continue #jz = z2 sumrlist.append(sumr) d1list.append(d1) # d2list.append(d2) # dgb2list.append(dgb2) sym = '' if 0: #mannualy switched off if abs(x1[1] - x2[1]) < diffprec: #Find symmetry if abs(x1[2] - x2[2]) < diffprec: sym = 'ms' # if y and z are the same, than mirror symmetry elif abs(x1[2] - x2[2]) - r3z < diffprec: sym = 'is' # inverse symmtry elif abs( x1[2] + x2[2] ) - 0.5 * r3z < diffprec: # only for t111g; should be extended for general case of existing periods along y or z sym = 'is' dlist.append([ round(d1, prec), round(d2, prec), sym, sumr1, sumr2, dgb1, dgb2, x1, x2, sumr1, sumr2 ]) #the first sumr1, sumr2 below replaced by their types k += 1 dlist.sort(key=itemgetter(0)) unique_pores.sort(key=itemgetter(0)) sumrulist.sort() print('Number of unique pores is', len(unique_pores)) print('Pores have the following sums: ', unique_pores) print("Searching for similar pairs but with different distances ...") print( "number, d1, d2, name, sumr1, sumr2, dgb1, dgb2; parallel pair with larger distances" ) bname = element_name_inv(target_znucl[1]) + element_name_inv( target_znucl[2]) for i, el1 in enumerate(dlist): typ1 = sumrulist.index(el1[3]) + 1 #typ of pore of the first atom typ2 = sumrulist.index(el1[4]) + 1 el1[3] = typ1 el1[4] = typ2 if pairtyp == 'gb': dlist[i][2] = bname + 'i' + str(i + 1) + '.' + str( el1[3]) + '-' + str(el1[4]) + dlist[i][2] elif pairtyp == 'gvol': dlist[i][2] = bname + '.v' + str(i + 1) + dlist[i][2] print(i + 1, el1[:3], el1[-2:], el1[-6], el1[-5], end=' ') #number, d1, d2, name, sumr1, sumr2, dgb1, dgb2 for el2 in dlist: #this loop looks for pairs which are parallel to the same direction as el1 but have larger interdistances if el1 == el2: continue mod = el2[0] / el1[0] % 1 if (mod < 0.005 or mod > 0.995 ) and abs(el1[0] - el2[0]) > dlist[0][ 0]: #only multiple distances and if difference is larger than smallest distance #if round(el1[2],prec-1) != round(el2[2],prec-1): continue #In either case the sum the distances should be the same for the same direction if el1[0] == el2[1]: continue print( el2[0] / el1[0], end=' ' ) # el2, this pair of atoms is analogus to el1 but have larger interdistance print() print('Total number of structures is', len(dlist)) if 0: print( "\n\nSearching for pairs with equal distances by periodic boundary conditions:" ) for el1 in dlist: if el1[0] == el1[1]: print(el1) print( "\nSearching for pairs with not equal distances by periodic boundary conditions:" ) for el1 in dlist: if el1[0] != el1[1]: print(el1) print("\nSearching for pairs with d2/d1>2:") for el1 in dlist: if el1[1] / el1[0] > 2: print(el1) dlist[0].append( unique_pores ) # last element of dlist[0] is sum and coordinates of unique pores return dlist """0. BEGIN-------------------------------------------------------------------------------""" hstring = ("%s #on %s" % (traceback.extract_stack(None, 2)[0][3], datetime.date.today())) if hstring != header.history[-1]: header.history.append(hstring) print_and_log("\n\n------Starting find_pairs()-----------...\n") if type(central_atoms) == int: #not in [tuple, list]: central_atoms = [central_atoms] #transform to list if type(in_calc) == str: in_calc_name = in_calc in_calc = CalculationVasp() #in_calc.name = str(in_calc_name) in_calc.name = base_name print("in_calc name is ", in_calc.name) in_calc.read_geometry(in_calc_name) if gbpos: in_calc.gbpos = gbpos #rewrite gbpos st = in_calc.init else: """End relaxed structure is used!!!""" st = copy.deepcopy(in_calc.end) in_calc_name = str(in_calc.id) """1. Create separate list of pores and remove them from xcart--------------------------------------------------------""" if "hcp_octa_xred": in_calc.init.name = segtyp + '_all_pores' rep = replic(in_calc.init, (2, 2, 2), -1) write_xyz(rep) #just to check """Coordinates of octapores provided in xcart; znucl = 200;""" xcart = st.xcart typat = st.typat st.typat = [] st.xcart = [] xcart_pores = [] #clean structure from pores with z == 200 and construct xcart_pores for i, x in enumerate(xcart): z = st.znucl[typat[i] - 1] if z == 200: xcart_pores.append(x) #print "Found pore" else: st.xcart.append(x) st.typat.append(typat[i]) st.natom = len(st.xcart) print('Number of found pores with znucl = 200 is ', len(xcart_pores)) for n in central_atoms: if n >= len(xcart_pores): raise RuntimeError """2. Preprocess segreg and grainvol cases--------------------------------------------------------""" # in_calc can be of two types: pure and with C in grain volume; using pure we construct co-segregation cases; using carbon in volume we can construct segregation cases if segtyp in ('segreg', 'grainvol'): if 2 in st.typat: # impurity in grain volume; (now assume that Carbon) iimp = st.typat.index(2) xcart1imp = st.xcart[iimp] #save coordinates of carbon atom del st.xcart[iimp] del st.typat[iimp] st.natom -= 1 #and remove it #del st.xred[iimp] st.ntypat -= 1 del st.znucl[1] print("Impurity atom was removed from cell") if xcart1imp: #for compatibility with previous cases; better not to use imp1 = len(xcart_pores) xcart_pores.append(xcart1imp) xcart2imp = xcart1imp - 0.5 * st.rprimd[ 0] #determine coordinates of second impurity assuming that we have mirror symmetry if xcart2imp[0] < 0: xcart2imp = xcart1imp + 0.5 * st.rprimd[0] imp2 = imp1 + 1 xcart_pores.append(xcart2imp) else: #new version; both central pores are found in the pure cell!!! #We have pure cell here; Find central pore in 1st grain and 2nd grain: xcen1 = in_calc.gbpos - 0.25 * st.rprimd[0][ 0] #x center of the first grain xcen2 = in_calc.gbpos - 0.75 * st.rprimd[0][ 0] #z center of the second grain # print "xcen", xcen1, xcen2 d1l = [] d2l = [] rpxx05 = st.rprimd[0][0] * 0.5 for x in xcart_pores: d1 = xcen1 - x[0] d2 = xcen2 - x[0] if d2 < -rpxx05: d2 += st.rprimd[0][ 0] # assuming that periodic boundary conditions needed only here d1l.append(abs(d1)) d2l.append(abs(d2)) # print d1,d2 imp1 = np.argmin(d1l) #needed numbers of pores imp2 = np.argmin(d2l) # print imp1, imp2 xcart1imp = xcart_pores[imp1] xcart2imp = xcart_pores[imp2] # print "xcartimp", xcart1imp, xcart2imp """3. Define central atoms for segregation and co-segregation cases--------------------------------------------------------""" max_dist_from_gb = 100 if segtyp in ('segreg', 'coseg'): # central_atoms = [] max_dist_between_atoms = 4.8 max_dist_from_gb = 3 #main controls for i, x in enumerate(xcart_pores): #generate central atoms d = abs(x[0] - in_calc.gbpos) if d < max_dist_from_gb: central_atoms.append(i) """4. Assume that we always have target_znucl, but only three !!!--------------------------------------------------------""" st.znucl = target_znucl #Please make this part more general st.ntypat = len(set(st.znucl)) print('Warning! Found only ', st.ntypat, 'of unique atoms in target_znucl') st.xred = xcart2xred(st.xcart, st.rprimd) """5. Find segreg and co-segreg cases--------------------------------------------------------""" in_calc.init = st dlist_coseg = [] if segtyp == 'coseg': print("\nStart searching pairs in gb") # main_path = 'T2/CO/' #! please make more general dlist_coseg = pairs(in_calc, xcart_pores, central_atoms, prec, max_dist_between_atoms, max_dist_from_gb, pairtyp='gb') dlist_coseg_exc = [] for el in copy.deepcopy( dlist_coseg): #Exchange C and O only for unsymmetrical cases if 's' in el[2]: continue # not needed for symmetrical cases el[2] = el[2].replace('C', 'x') el[2] = el[2].replace('O', 'C') el[2] = el[2].replace('x', 'O') el[7], el[8] = el[8], el[7] el[3], el[4] = el[4], el[3] dlist_coseg_exc.append(el) for el in dlist_coseg + dlist_coseg_exc: # Helper stname = base_name + el[2] path = main_path + base_name + '_coseg' print((( "struct_des['{0:s}'] = des('{1:s}', 'co-segregation configurations; made from " + based_on + "' )").format(stname, path))) for el in dlist_coseg + dlist_coseg_exc: # Helper stname = base_name + el[2] path = main_path + base_name + '_coseg' print( "add_loop('" + stname + "','" + based_on.split('.')[1] + "',range(1,5),calc,conv,varset, 'up1', inherit_option = 'inherit_xred')" ) write_geometry_files(dlist_coseg + dlist_coseg_exc, in_calc, xcart_pores, segtyp, take_final_rprimd_from, add_typat=add_typat) elif segtyp == 'segreg': """Produce segregation cases only in the case of segreg""" print("\nStart producing segragation cases") dlist_segreg = [] # dlist_segreg1 = copy.deepcopy(input_dlist_coseg) #in this case we use input_dlist with co-segragation cases from pure cell. # dlist_segreg2 = copy.deepcopy(input_dlist_coseg) #There is small error, because positions of pores at grain boundary # #differs in pure cell and cell with impurity in grain volume # for i, el in enumerate(input_dlist_coseg): # sym = '' # if 'is' in el[2]: sym = 'is' # elif 'ms' in el[2]: sym = 'ms' # dlist_segreg1[i][7] = xcart1imp # dlist_segreg1[i][2] = 'CvOi'+str(i+1)+sym # dlist_segreg2[i][8] = xcart1imp # dlist_segreg2[i][2] = 'CiOv'+str(i+1)+sym """new determination based on input_dlist_coseg[0][-1]""" el = copy.deepcopy(input_dlist_coseg[0]) unique = el[-1] #sums and coordinates of unique pores print("unique", unique) for i, sx in enumerate(unique): el[2] = 'Ci' + str(i + 1) + 'Ov' el[7] = sx[1] d1, dnext = image_distance(sx[1], xcart1imp, st.rprimd, 2) d2, dnext = image_distance(sx[1], xcart2imp, st.rprimd, 2) if d1 > d2: el[8] = xcart1imp else: el[8] = xcart2imp # the farthest impurity in grain volume is used dlist_segreg.append(copy.deepcopy(el)) #dlist_segreg = dlist_segreg1 + dlist_segreg2 #Segregation of the first impurity and of the second dlist_segreg_exc = [] for el in copy.deepcopy( dlist_segreg): #Exchange C and O only for unsymmetrical cases if 's' in el[2]: continue # not needed for symmetrical cases el[2] = el[2].replace('C', 'x') el[2] = el[2].replace('O', 'C') el[2] = el[2].replace('x', 'O') el[7], el[8] = el[8], el[7] el[3], el[4] = el[4], el[3] dlist_segreg_exc.append(el) #helper for el in dlist_segreg + dlist_segreg_exc: stname = base_name + el[2] path = main_path + base_name + '_segreg' print((( "struct_des['{0:s}'] = des('{1:s}', 'co-segregation configurations; made from " + based_on + "' )").format(stname, path))) for el in dlist_segreg + dlist_segreg_exc: stname = base_name + el[2] path = main_path + base_name + '_segreg' print( "add_loop('" + stname + "','" + based_on.split('.')[1] + "',range(1,5),calc,conv,varset, 'up1', inherit_option = 'inherit_xred')" ) write_geometry_files(dlist_segreg + dlist_segreg_exc, in_calc, xcart_pores, segtyp, take_final_rprimd_from, add_typat=add_typat) """6. Find volume cases--------------------------------------------------------""" # this part for construction volume cases if segtyp == "grainvol": #take care that you have only one carbon atom in the grain print("\nStart searching pairs in the volume") central_atoms = [imp1] max_dist_between_atoms = 4. #gvolume_config_num = 0 #please choose manually dlist = pairs(in_calc, xcart_pores, central_atoms, prec, max_dist_between_atoms, max_dist_from_gb, pairtyp='gvol') #dlist = [dlist[0], copy.deepcopy(dlist[gvolume_config_num-1]) ] #dlist[0][4] = imp2 #no matter wht was dlist[0]; used for vv case dlist.append(copy.deepcopy(dlist[0])) dlist[-1][8] = xcart2imp #last element for both atoms in grain volumes dlist[-1][2] = 'CvOvms' #helper for el in dlist: stname = base_name + el[2] path = main_path + base_name + '_gvol' #grain volume print( "add_loop('" + stname + "','" + based_on.split('.')[1] + "',range(1,5),calc,conv,varset, 'up1', inherit_option = 'inherit_xred')" ) for el in dlist: stname = base_name + el[2] path = main_path + base_name + '_gvol' #grain volume print((( "struct_des['{0:s}'] = des('{1:s}', 'co-segregation configurations; made from " + based_on + "' )").format(stname, path))) write_geometry_files(dlist, in_calc, xcart_pores, segtyp, take_final_rprimd_from, add_typat=add_typat) """. Triple cases--------------------------------------------------------""" def triples(addatom=('O', 3), dlist=[], tlist=[], in_calc=None, xcart_pores=[], max_dist_to_next_atom=3): """ Add addatom to all configurations in tlist; addatom[1] - type of atom in typat dlist - list of configurations with two impurity atoms; Used if tlist == []; the format of dlist is quiet special tlist - list of configurations with arbirtary number of atoms; RETURN: tlist - list of configurations with add atoms """ st = in_calc.init if dlist and tlist == []: for el in dlist: par = el print('pair 1', par, end=' ') x1 = par[7] x2 = par[8] print('x1 = ', x1) print('x2 = ', x2) config = Structure() config.xcart = [x1, x2] config.typat = [2, 3] config.name = el[2] tlist.append(config) tlist_new = [] for config in tlist: xcart = config.xcart typat = config.typat name = config.name print('\n\n\nStart to adding atom to ', name) i = 1 dlistlist = [] diffprec = 0.001 [dlistlist.append([]) for x in xcart] print(len(dlistlist)) for xpor in xcart_pores: skip = True for j, x in enumerate( xcart ): # list of 2 or 3 initial atoms to which additional atom will be added if all(np.around(xpor, 5) == np.around(x, 5)): skip = True break d1, d2 = image_distance( x, xpor, st.rprimd, 2) # the minimum distance and the next minimum dist if d1 > max_dist_to_next_atom: skip = True break #if only one pore is larger from atom than limit, the pore is skiped # suml = d11+d21+par[0] # for dl in dlistlist: # print 'j is ', j i_min, smaller = min_diff( d1, dlistlist[j], diffprec ) #old condition - bad - removes unique configurations #if smaller: skip = True; continue # symmetrical pores deleted dlistlist[j].append(d1) skip = False # all conditions are fullfilled - this configuration is unique # else: # print 'List of distances to atoms' if skip: continue # #print "Pore can be used", xpor #sum of distances for triple new = Structure() new.name = name + addatom[0] + str(i) new.xcart = copy.deepcopy(xcart) new.xcart.append(xpor) new.typat = copy.deepcopy(typat) new.typat.append(addatom[1]) # print 'new.typat =', new.typat #calculate sum of lengths new.length = 0 new.lengthCO = 0 new.lengthCC = 0 new.lengthOO = 0 new.xcartC = [] new.xcartO = [] for m, x1 in enumerate(new.xcart): if new.typat[m] == 2: new.xcartC.append(x1) if new.typat[m] == 3: new.xcartO.append(x1) for x2 in new.xcart: d1, d2 = image_distance(x1, x2, st.rprimd, 2) new.length += d1 for xC in new.xcartC: for xO in new.xcartO: d1, d2 = image_distance(xC, xO, st.rprimd, 2) new.lengthCO += d1 for xC1 in new.xcartC: for xC2 in new.xcartC: d1, d2 = image_distance(xC1, xC2, st.rprimd, 2) new.lengthCC += d1 for xO1 in new.xcartO: for xO2 in new.xcartO: d1, d2 = image_distance(xO1, xO2, st.rprimd, 2) new.lengthOO += d1 skip = False n = len(new.xcart) """additional conditions to leave only unique configurations""" for config in tlist_new: if 1: nr = 0 for (v1, t1) in zip(new.xcart, new.typat): for (v2, t2) in zip(config.xcart, config.typat): if all(np.around(v1, 8) == np.around( v2, 8)) and t1 == t2: nr += 1 if nr == n: print("The configurations", new.name, 'and', config.name, 'consist of the same atoms, continue') skip = True break # print all([ all( np.around(v1, 8) == np.around(v2, 8) ) for (v1, v2) in zip(new.xcart, config.xcart) ]) #check identity using sum of distances # i_min, smaller = min_diff(config.length, [new.length], diffprec) # if smaller: # print "Configuration ", new.name, "has the same sum of lengths as", config.name i_min, smaller1 = min_diff(config.lengthCO, [new.lengthCO], diffprec) i_min, smaller2 = min_diff(config.lengthCC, [new.lengthCC], diffprec) i_min, smaller3 = min_diff(config.lengthOO, [new.lengthOO], diffprec) # print 'Compare', new.name, config.name, smaller1, smaller2, smaller3 if smaller1 and smaller2 and smaller3: print( "\nConfiguration ", new.name, "has the same sum of C-O, C-C and O-O lengths as", config.name) print() skip = True break if skip: continue print('\nSum of CO lengths in :', new.name, new.lengthCC, new.lengthOO, new.lengthCO) tlist_new.append(new) i += 1 return tlist_new if segtyp == "bulk_triple" or segtyp == "bulk_pairs": # max_dist_between_atoms = 4.8 print("\nSearching pairs ...") dlist = pairs(in_calc, xcart_pores, central_atoms, prec, max_dist_between_atoms, pairtyp='gvol') if segtyp == "bulk_pairs": write_geometry_files(dlist, in_calc, xcart_pores, segtyp, take_final_rprimd_from, configver=True, add_typat=add_typat) if segtyp == "bulk_triple": max_dist_to_next_atom = 5.5 print("\nSearching triples ...") #, tlist tlist = [] tlist = triples(('O', 3), dlist, tlist, in_calc, xcart_pores, max_dist_to_next_atom) tlist = triples(('C', 2), dlist, tlist, in_calc, xcart_pores, max_dist_to_next_atom) write_geometry_files(dlist, in_calc, xcart_pores, segtyp, take_final_rprimd_from, tlist=tlist, configver=True, add_typat=add_typat) return dlist_coseg, xcart_pores
def pairs(in_calc, xcart_pores, central_atoms, prec=2, max_dist=20, max_dist_from_gb=4, pairtyp='gvol'): """ Searhing for pairs and make list of distances and numbers of atoms prec - precision, allows to control which distances can be related to the same configurations max_dist - maximum distance between atoms in pair max_dist_from_gb - pairtyp - 'gvol' assumes that central_atoms are in the grain volume, 'gb' assumes that central_atoms are in the grain boundary region """ st = in_calc.init st_replic = replic(st, (2, 2, 2)) st_replic = replic(st_replic, (2, 2, 2), -1) #replic in negative direction also r1x = in_calc.rprimd[0][0] r3z = in_calc.rprimd[2][2] print("Half length of r1x is", r1x / 2) if segtyp in ['segreg', 'coseg', 'grainvol']: gbpos2 = in_calc.gbpos gbpos1 = gbpos2 - r1x / 2. print("\n\nPositions of boundaries gb1 and gb2", gbpos1, gbpos2) print("Maximum possible distance between boundary and impurity", r1x / 4) else: gbpos2 = 0 gbpos1 = 0 dlist = [] d1list = [] d2list = [] dgb2list = [] n_neighbours = 8 # number of atoms to calculate sums sumrulist = [] #list of sums (sumr1 or sumr2) of unique pores unique_pores = [] #the same list but also with coordinates of pores sumrlist = [] #list of sumr1+sumr2 k = 1 d2diff = 0 d1diff = 0 #z1 = 6 #charge of added impurity #z2 = 8 diffprec = 0.02 # print xcart_pores for i, x1 in enumerate(xcart_pores): if i not in central_atoms: continue #iz = z1 for j, x2 in enumerate(xcart_pores): if all(x1 == x2): continue d = abs(x2[0] - in_calc.gbpos) if pairtyp == 'gb' and d > max_dist_from_gb: continue #second atom is too far from grain boundary d1, d2 = image_distance( x1, x2, st.rprimd, 2) # the minimum distance and the next minimum dist if d1 > max_dist: continue if (d1, d2) != image_distance(x1, x2, st.rprimd, 3): raise RuntimeError #test, searching in father images #d1 = round(d1,prec) #d2 = round(d2,prec) dgb1 = round(x2[0] - gbpos1, prec) dgb2 = round(gbpos2 - x2[0], prec) sumr1 = local_surrounding( x1, st_replic, n_neighbours) # sum of distances to surrounding atoms sumr2 = local_surrounding(x2, st_replic, n_neighbours) sumr = sumr2 + sumr1 if sumr1 not in sumrulist: sumrulist.append(sumr1) unique_pores.append((sumr1, x1)) #determine unique pores if sumr2 not in sumrulist: sumrulist.append(sumr2) unique_pores.append((sumr2, x2)) #determine unique pores #if d1 in d1list: continue if sumr in sumrlist: # new condition based on sumr ind = sumrlist.index(sumr) i_min, smaller = min_diff(d1, d1list, diffprec) if smaller: continue # if 0:#d1list: # i_min, smaller = min_diff(d1, d1list, diffprec)# d1 has the smallest difference with di # #print "exist" # d2diff = abs(d2list[i_min]-d2) # #print abs(d2list[i_min]-d2) # #print central_atoms # if smaller and abs(d2list[i_min]-d2) < diffprec*2 : continue #and abs(dgb2list[i_min]-dgb2) < diffprec # i_min, smaller = min_diff(d2, d2list, diffprec)# d1 has the smallest difference with di # d1diff = abs(d1list[i_min]-d1) # if smaller and abs(d1list[i_min]-d1) < diffprec*2 : continue #print "skiped" #di, smaller = min_diff(d2, d2list, diffprec) #if di != None and smaller: continue #if min_diff(d2, d2list, diffprec): continue # be carefull here. this condition can pass some unique configrations; should make additional check like below #if d2 in d2list and dgb2list[d2list.index(d2)] == dgb2: continue #jz = z2 sumrlist.append(sumr) d1list.append(d1) # d2list.append(d2) # dgb2list.append(dgb2) sym = '' if 0: #mannualy switched off if abs(x1[1] - x2[1]) < diffprec: #Find symmetry if abs(x1[2] - x2[2]) < diffprec: sym = 'ms' # if y and z are the same, than mirror symmetry elif abs(x1[2] - x2[2]) - r3z < diffprec: sym = 'is' # inverse symmtry elif abs( x1[2] + x2[2] ) - 0.5 * r3z < diffprec: # only for t111g; should be extended for general case of existing periods along y or z sym = 'is' dlist.append([ round(d1, prec), round(d2, prec), sym, sumr1, sumr2, dgb1, dgb2, x1, x2, sumr1, sumr2 ]) #the first sumr1, sumr2 below replaced by their types k += 1 dlist.sort(key=itemgetter(0)) unique_pores.sort(key=itemgetter(0)) sumrulist.sort() print('Number of unique pores is', len(unique_pores)) print('Pores have the following sums: ', unique_pores) print("Searching for similar pairs but with different distances ...") print( "number, d1, d2, name, sumr1, sumr2, dgb1, dgb2; parallel pair with larger distances" ) bname = element_name_inv(target_znucl[1]) + element_name_inv( target_znucl[2]) for i, el1 in enumerate(dlist): typ1 = sumrulist.index(el1[3]) + 1 #typ of pore of the first atom typ2 = sumrulist.index(el1[4]) + 1 el1[3] = typ1 el1[4] = typ2 if pairtyp == 'gb': dlist[i][2] = bname + 'i' + str(i + 1) + '.' + str( el1[3]) + '-' + str(el1[4]) + dlist[i][2] elif pairtyp == 'gvol': dlist[i][2] = bname + '.v' + str(i + 1) + dlist[i][2] print(i + 1, el1[:3], el1[-2:], el1[-6], el1[-5], end=' ') #number, d1, d2, name, sumr1, sumr2, dgb1, dgb2 for el2 in dlist: #this loop looks for pairs which are parallel to the same direction as el1 but have larger interdistances if el1 == el2: continue mod = el2[0] / el1[0] % 1 if (mod < 0.005 or mod > 0.995 ) and abs(el1[0] - el2[0]) > dlist[0][ 0]: #only multiple distances and if difference is larger than smallest distance #if round(el1[2],prec-1) != round(el2[2],prec-1): continue #In either case the sum the distances should be the same for the same direction if el1[0] == el2[1]: continue print( el2[0] / el1[0], end=' ' ) # el2, this pair of atoms is analogus to el1 but have larger interdistance print() print('Total number of structures is', len(dlist)) if 0: print( "\n\nSearching for pairs with equal distances by periodic boundary conditions:" ) for el1 in dlist: if el1[0] == el1[1]: print(el1) print( "\nSearching for pairs with not equal distances by periodic boundary conditions:" ) for el1 in dlist: if el1[0] != el1[1]: print(el1) print("\nSearching for pairs with d2/d1>2:") for el1 in dlist: if el1[1] / el1[0] > 2: print(el1) dlist[0].append( unique_pores ) # last element of dlist[0] is sum and coordinates of unique pores return dlist
''' # around fourth oxigen # db['HPES_O4'] = PES_scan(cl=LFPO3min, submit=0, a=0.91, b=1.1, readfiles = 1) dmulist, xlist, st_ref = calc_solution_energies( db['HPES_O4'], inum_of_H=3, num_of_H=4, cl_ref=LFPO3min, shift=(0.3, 0.3, 0.0)) #shift = (-0.4, 0.4, -0.1) # print(len(dmulist)) # print(dmulist, xlist) dmulist, xlist, namelist = modify(dmulist, xlist, db['HPES_O4'], mucut=100) colors = energy2color(dmulist) # print(len(dmulist)) # print (namelist, xlist) # print(dmulist) # st = replic(LFPO3min.end) st_ref = replic(st_ref, (2, 3, 3)) # include_boundary = (1,5) # st.nn(12, 100, from_one=0) # to print 100 number of neighbors of 12 atom # write_jmol_script(st_ref, colors, xlist, local_path = '/home/irina/LFP/xyz', num_of_H=3, shift = (0.3, 0.3, 0.3), shift1 = (0, 0, 0.0)) points_relax(xlist, st=st_ref, inum_of_H=3, submit=0, namelist=namelist) # print(xlist, dmulist, colors) # separate_check # PES_relax(xlist, submit = 1, cl=LFPsPvac.end) # st = replic(LFPsPvac.end, (1, 2, 2)) # shift =(-0.4, 0.4, 0.40)