Ejemplo n.º 1
0
    def test_semi_vectorized(self):

        mean = np.zeros((3, 2, 1))
        mean[0, ...] = np.array([[[1], [10]]])  # state 1
        mean[1, ...] = np.array([[[2], [20]]])  # state 2
        mean[2, ...] = np.array([[[3], [30]]])  # state 3

        stack_mats = lambda arr: np.vstack([a[np.newaxis, ...] for a in arr])

        covariance = stack_mats([np.eye(2)] * 3)

        state_transition = np.eye(2)
        process_noise = np.eye(2) * 0.1

        m1, P1 = primitives.predict(mean, covariance, state_transition,
                                    process_noise)

        self.assertMatrixEqual(m1, mean)
        self.assertSequenceEqual(P1.shape, (3, 2, 2))

        observation_model = np.ones((1, 2))
        observation_noise = np.eye(1) * 0.1

        measurement = np.array([[[2]], [[np.nan]], [[33]]])

        m, P = primitives.update_with_nan_check(m1, P1, observation_model,
                                                observation_noise, measurement)

        self.assertSequenceEqual(m.shape, (3, 2, 1))
        self.assertSequenceEqual(P.shape, (3, 2, 2))

        self.assertMatrixEqual(m[1, ...], m1[1, ...])
        self.assertMatrixEqual(m[2, ...], mean[2, ...], epsilon=1e-6)
        self.assertMatrixEqual(P[1, ...], P1[1, ...])
Ejemplo n.º 2
0
    def test_one_dimensional(self):
        mean = np.array([[1]])
        covariance = np.array([[1]])
        state_transition = np.array([[2]])
        process_noise = np.array([[0.1]])

        m1, P1 = primitives.predict(
            mean,
            covariance,
            state_transition,
            process_noise)

        self.assertMatrixEqual(m1, mean*2, epsilon=1e-6)
        self.assertSequenceEqual(P1.shape, (1,1))

        observation_model = np.array([[1]])
        observation_noise = np.array([[0.2]])

        measurement = np.array([[1]])

        m, P = primitives.update_with_nan_check(
            m1,
            P1,
            observation_model,
            observation_noise,
            measurement)

        self.assertSequenceEqual(m.shape, (1,1))
        self.assertSequenceEqual(P.shape, (1,1))
Ejemplo n.º 3
0
    def test_update_with_nan_check(self):
        prior_mean = np.array([[1], [2], [3]])
        prior_covariance = np.eye(3) * 2

        observation_model = np.ones((2, 3))
        observation_noise = np.eye(2) * 0.1

        measurement = np.array([[3], [np.nan]])

        m, P = primitives.update_with_nan_check(prior_mean, prior_covariance,
                                                observation_model,
                                                observation_noise, measurement)

        self.assertSequenceEqual(m.shape, (3, 1))
        self.assertSequenceEqual(P.shape, (3, 3))
        self.assertMatrixEqual(m, prior_mean)
        self.assertMatrixEqual(P, prior_covariance)