Ejemplo n.º 1
0
    def getRHSDeriv_m(self, src, v, adjoint=False):
        C = self.mesh.edgeCurl
        MeMuI = self.MeMuI  
        S_mDeriv, S_eDeriv = src.evalDeriv(self, adjoint)

        if adjoint:
            if self._makeASymmetric:
                MfRho = self.MfRho
                v = MfRho*v
            S_mDerivv = S_mDeriv(MeMuI.T * (C.T * v))
            S_eDerivv = S_eDeriv(v)
            if S_mDerivv is not None and S_eDerivv is not None:
                return S_mDerivv - 1j * omega(freq) * S_eDerivv
            elif S_mDerivv is not None:
                return S_mDerivv
            elif S_eDerivv is not None:
                return - 1j * omega(freq) * S_eDerivv
            else:
                return None
        else:   
            S_mDerivv, S_eDerivv = S_mDeriv(v), S_eDeriv(v)

            if S_mDerivv is not None and S_eDerivv is not None: 
                RHSDeriv = C * (MeMuI * S_mDerivv) - 1j * omega(freq) * S_eDerivv
            elif S_mDerivv is not None:
                RHSDeriv = C * (MeMuI * S_mDerivv)
            elif S_eDerivv is not None:
                RHSDeriv = - 1j * omega(freq) * S_eDerivv
            else:
                return None

            if self._makeASymmetric:
                MfRho = self.MfRho
                return MfRho.T * RHSDeriv
            return RHSDeriv
Ejemplo n.º 2
0
    def getRHSDeriv_m(self, src, v, adjoint=False):
        C = self.mesh.edgeCurl
        MfMui = self.MfMui
        S_mDeriv, S_eDeriv = src.evalDeriv(self, adjoint)

        if adjoint:
            dRHS = MfMui * (C * v)
            S_mDerivv = S_mDeriv(dRHS)
            S_eDerivv = S_eDeriv(v)
            if S_mDerivv is not None and S_eDerivv is not None:
                return S_mDerivv - 1j * omega(freq) * S_eDerivv
            elif S_mDerivv is not None:
                return S_mDerivv
            elif S_eDerivv is not None:
                return - 1j * omega(freq) * S_eDerivv
            else:
                return None
        else:   
            S_mDerivv, S_eDerivv = S_mDeriv(v), S_eDeriv(v)

            if S_mDerivv is not None and S_eDerivv is not None: 
                return C.T * (MfMui * S_mDerivv) -1j * omega(freq) * S_eDerivv
            elif S_mDerivv is not None:
                return C.T * (MfMui * S_mDerivv)
            elif S_eDerivv is not None:
                return -1j * omega(freq) * S_eDerivv
            else:
                return None
Ejemplo n.º 3
0
    def getADeriv_m(self, freq, u, v, adjoint=False):
        dsig_dm = self.curModel.sigmaDeriv
        dMe_dsig = self.MeSigmaDeriv(u)

        if adjoint:
            return 1j * omega(freq) * ( dMe_dsig.T * v )

        return 1j * omega(freq) * ( dMe_dsig * v )
Ejemplo n.º 4
0
 def _hSecondary(self, jSolution, srcList):
     h =  self._MeMuI * (self._edgeCurl.T * (self._MfRho * jSolution) ) 
     for i, src in enumerate(srcList):
         h[:,i] *= -1./(1j*omega(src.freq))
         S_m,_ = src.eval(self.prob)
         if S_m is not None:
             h[:,i] += 1./(1j*omega(src.freq)) * self._MeMuI * (S_m)
     return h
Ejemplo n.º 5
0
    def getADeriv(self, freq, u, v, adjoint=False):
        sig = self.curTModel
        dsig_dm = self.curTModelDeriv
        dMe_dsig = self.mesh.getEdgeInnerProductDeriv(sig, v=u)

        if adjoint:
            return 1j * omega(freq) * (dsig_dm.T * (dMe_dsig.T * v))

        return 1j * omega(freq) * (dMe_dsig * (dsig_dm * v))
Ejemplo n.º 6
0
 def _bSecondary(self, eSolution, srcList): 
     C = self._edgeCurl
     b = (C * eSolution)
     for i, src in enumerate(srcList):
         b[:,i] *= - 1./(1j*omega(src.freq))
         S_m, _ = src.eval(self.prob)
         if S_m is not None:
             b[:,i] += 1./(1j*omega(src.freq)) * S_m
     return b
Ejemplo n.º 7
0
    def getADeriv(self, freq, u, v, adjoint=False):
        sig = self.curTModel
        dsig_dm = self.curTModelDeriv
        dMe_dsig = self.mesh.getEdgeInnerProductDeriv(sig, v=u)

        if adjoint:
            return 1j * omega(freq) * ( dsig_dm.T * ( dMe_dsig.T * v ) )

        return 1j * omega(freq) * ( dMe_dsig * ( dsig_dm * v ) )
Ejemplo n.º 8
0
    def getADeriv_m(self, freq, u, v, adjoint=False):
        """
        The derivative of A wrt sigma
        """

        dsig_dm = self.curModel.sigmaDeriv
        MeMui = self.mesh.getEdgeInnerProduct(1.0/mu_0)
        #
        u_src = u['e_1dSolution']
        dMf_dsig = self.mesh.getFaceInnerProductDeriv(self.curModel.sigma)(u_src) * self.curModel.sigmaDeriv
        if adjoint:
            return 1j * omega(freq) * (  dMf_dsig.T * v )
        # Note: output has to be nN/nF, not nC/nE.
        # v should be nC
        return 1j * omega(freq) * ( dMf_dsig * v )
Ejemplo n.º 9
0
    def fields(self, m, m_back):
        '''
        Function to calculate all the fields for the model m.

        :param np.ndarray (nC,) m: Conductivity model
        :param np.ndarray (nC,) m_back: Background conductivity model
        '''
        self.curModel = m
        self.backModel = m_back
        # RHS, CalcFields = self.getRHS(freq,m_back), self.calcFields

        F = FieldsMT_3D(self.mesh, self.survey)
        for freq in self.survey.freqs:
            if self.verbose:
                startTime = time.time()
                print 'Starting work for {:.3e}'.format(freq)
                sys.stdout.flush()
            A = self.getA(freq)
            rhs, e_p = self.getRHS(freq, m_back)
            Ainv = self.Solver(A, **self.solverOpts)
            e_s = Ainv * rhs
            e = e_s
            # Store the fields
            Src = self.survey.getSources(freq)
            # Store the fieldss
            F[Src, 'e_px'] = e[:, 0]
            F[Src, 'e_py'] = e[:, 1]
            # Note curl e = -iwb so b = -curl/iw
            b = -(self.mesh.edgeCurl * e) / (1j * omega(freq))
            F[Src, 'b_px'] = b[:, 0]
            F[Src, 'b_py'] = b[:, 1]
            if self.verbose:
                print 'Ran for {:f} seconds'.format(time.time() - startTime)
                sys.stdout.flush()
        return F
Ejemplo n.º 10
0
    def getA(self, freq, full=False):
        """
            Function to get the A matrix.

            :param float freq: Frequency
            :param logic full: Return full A or the inner part
            :rtype: scipy.sparse.csr_matrix
            :return: A
        """

        Mmui = self.mesh.getEdgeInnerProduct(1.0/mu_0)
        Msig = self.mesh.getFaceInnerProduct(self.curModel.sigma)
        # Note: need to use the code above since in the 1D problem I want
        # e to live on Faces(nodes) and h on edges(cells). Might need to rethink this
        # Possible that _fieldType and _eqLocs can fix this
        # Mmui = self.MfMui
        # Msig = self.MeSigma
        C = self.mesh.nodalGrad
        # Make A
        A = C.T*Mmui*C + 1j*omega(freq)*Msig
        # Either return full or only the inner part of A
        if full:
            return A
        else:
            return A[1:-1,1:-1]
Ejemplo n.º 11
0
    def getADeriv_m(self, freq, u, v, adjoint=False):
        """
        The derivative of A wrt sigma
        """

        dsig_dm = self.curModel.sigmaDeriv
        MeMui = self.mesh.getEdgeInnerProduct(1.0 / mu_0)
        #
        u_src = u['e_1dSolution']
        dMf_dsig = self.mesh.getFaceInnerProductDeriv(
            self.curModel.sigma)(u_src) * self.curModel.sigmaDeriv
        if adjoint:
            return 1j * omega(freq) * (dMf_dsig.T * v)
        # Note: output has to be nN/nF, not nC/nE.
        # v should be nC
        return 1j * omega(freq) * (dMf_dsig * v)
Ejemplo n.º 12
0
    def getA(self, freq, full=False):
        """
            Function to get the A matrix.

            :param float freq: Frequency
            :param logic full: Return full A or the inner part
            :rtype: scipy.sparse.csr_matrix
            :return: A
        """

        Mmui = self.mesh.getEdgeInnerProduct(1.0 / mu_0)
        Msig = self.mesh.getFaceInnerProduct(self.curModel.sigma)
        # Note: need to use the code above since in the 1D problem I want
        # e to live on Faces(nodes) and h on edges(cells). Might need to rethink this
        # Possible that _fieldType and _eqLocs can fix this
        # Mmui = self.MfMui
        # Msig = self.MeSigma
        C = self.mesh.nodalGrad
        # Make A
        A = C.T * Mmui * C + 1j * omega(freq) * Msig
        # Either return full or only the inner part of A
        if full:
            return A
        else:
            return A[1:-1, 1:-1]
Ejemplo n.º 13
0
    def getRHSDeriv_m(self, freq, v, adjoint=False):
        """
        The derivative of the RHS with respect to sigma
        """

        Src = self.survey.getSrcByFreq(freq)[0]
        S_eDeriv = Src.S_eDeriv_m(self, v, adjoint)
        return -1j * omega(freq) * S_eDeriv
Ejemplo n.º 14
0
    def getRHSDeriv_m(self, freq, v, adjoint=False):
        """
        The derivative of the RHS wrt sigma
        """

        Src = self.survey.getSrcByFreq(freq)[0]
        S_eDeriv = Src.S_eDeriv_m(self, v, adjoint)
        return -1j * omega(freq) * S_eDeriv
Ejemplo n.º 15
0
 def bPrimary(self,problem):
     # Project ePrimary to bPrimary
     # Satisfies the primary(background) field conditions
     if problem.mesh.dim == 1:
         C = problem.mesh.nodalGrad
     elif problem.mesh.dim == 3:
         C = problem.mesh.edgeCurl
     bBG_bp = (- C * self.ePrimary(problem) )*(1/( 1j*omega(self.freq) ))
     return bBG_bp
Ejemplo n.º 16
0
 def bPrimary(self, problem):
     # Project ePrimary to bPrimary
     # Satisfies the primary(background) field conditions
     if problem.mesh.dim == 1:
         C = problem.mesh.nodalGrad
     elif problem.mesh.dim == 3:
         C = problem.mesh.edgeCurl
     bBG_bp = (-C * self.ePrimary(problem)) * (1 / (1j * omega(self.freq)))
     return bBG_bp
Ejemplo n.º 17
0
 def _bSecondary(self, eSolution, srcList):
     C = self.mesh.nodalGrad
     b = C * eSolution
     for i, src in enumerate(srcList):
         b[:, i] *= -1.0 / (1j * omega(src.freq))
         # There is no magnetic source in the MT problem
         # S_m, _ = src.eval(self.survey.prob)
         # if S_m is not None:
         #     b[:,i] += 1./(1j*omega(src.freq)) * S_m
     return b
Ejemplo n.º 18
0
 def _bSecondary(self, eSolution, srcList):
     C = self.mesh.nodalGrad
     b = (C * eSolution)
     for i, src in enumerate(srcList):
         b[:,i] *= - 1./(1j*omega(src.freq))
         # There is no magnetic source in the MT problem
         # S_m, _ = src.eval(self.survey.prob)
         # if S_m is not None:
         #     b[:,i] += 1./(1j*omega(src.freq)) * S_m
     return b
Ejemplo n.º 19
0
    def getRHS(self, freq):
        """
            Function to return the right hand side for the system.
            :param float freq: Frequency
            :rtype: numpy.ndarray (nE, 2), numpy.ndarray (nE, 2)
            :return: RHS for both polarizations, primary fields
        """

        # Get sources for the frequncy(polarizations)
        Src = self.survey.getSrcByFreq(freq)[0]
        S_e = Src.S_e(self)
        return -1j * omega(freq) * S_e
Ejemplo n.º 20
0
    def getRHS(self, freq):
        """
            Function to return the right hand side for the system.
            :param float freq: Frequency
            :rtype: numpy.ndarray (nF, 1), numpy.ndarray (nF, 1)
            :return: RHS for 1 polarizations, primary fields
        """

        # Get sources for the frequncy(polarizations)
        Src = self.survey.getSrcByFreq(freq)[0]
        S_e = Src.S_e(self)
        return -1j * omega(freq) * S_e
Ejemplo n.º 21
0
    def getA(self, freq):
        """
            Function to get the A matrix.

            :param float freq: Frequency
            :rtype: scipy.sparse.csr_matrix
            :return: A
        """
        Mmui = self.MfMui
        Msig = self.MeSigma
        C = self.mesh.edgeCurl

        return C.T * Mmui * C + 1j * omega(freq) * Msig
Ejemplo n.º 22
0
    def getA(self, freq):
        """
            .. math ::
                \mathbf{A} = \mathbf{C}^T \mathbf{M_{\mu^{-1}}^f} \mathbf{C} + i \omega \mathbf{M^e_{\sigma}}

            :param float freq: Frequency
            :rtype: scipy.sparse.csr_matrix
            :return: A
        """
        MfMui = self.MfMui
        MeSigma = self.MeSigma
        C = self.mesh.edgeCurl

        return C.T*MfMui*C + 1j*omega(freq)*MeSigma
Ejemplo n.º 23
0
    def _hSecondaryDeriv_m(self, src, v, adjoint=False):
        jSolution = self[[src],'jSolution']
        MeMuI = self._MeMuI
        C = self._edgeCurl
        MfRho = self._MfRho
        MfRhoDeriv = self._MfRhoDeriv
        Me = self._Me

        if not adjoint: 
            hDeriv_m =  -1./(1j*omega(src.freq)) * MeMuI * (C.T * (MfRhoDeriv(jSolution)*v ) ) 
        elif adjoint:
            hDeriv_m =  -1./(1j*omega(src.freq)) * MfRhoDeriv(jSolution).T * ( C * (MeMuI.T * v ) ) 

        S_mDeriv,_ = src.evalDeriv(self.prob, adjoint)

        if not adjoint:
            S_mDeriv = S_mDeriv(v)
            if S_mDeriv is not None:
                hDeriv_m += 1./(1j*omega(src.freq)) * MeMuI * (Me * S_mDeriv)
        elif adjoint:
            S_mDeriv = S_mDeriv(Me.T * (MeMuI.T * v))
            if S_mDeriv is not None:
                hDeriv_m += 1./(1j*omega(src.freq)) * S_mDeriv
        return hDeriv_m
Ejemplo n.º 24
0
    def getA(self, freq):
        """
            .. math ::

                \mathbf{A} = \mathbf{C}^T \mathbf{M_{\\rho}^f} \mathbf{C} + i \omega \mathbf{M_{\mu}^e}

            :param float freq: Frequency
            :rtype: scipy.sparse.csr_matrix
            :return: A
        """

        MeMu = self.MeMu
        MfRho = self.MfRho
        C = self.mesh.edgeCurl

        return C.T * (MfRho * C) + 1j*omega(freq)*MeMu
Ejemplo n.º 25
0
    def getRHS(self, freq):
        """
            .. math ::
                \mathbf{RHS} = \mathbf{C}^T \mathbf{M_{\mu^{-1}}^f}\mathbf{s_m} -i\omega\mathbf{M_e}\mathbf{s_e}

            :param float freq: Frequency
            :rtype: numpy.ndarray (nE, nSrc)
            :return: RHS
        """

        S_m, S_e = self.getSourceTerm(freq)
        C = self.mesh.edgeCurl
        MfMui = self.MfMui

        # RHS = C.T * (MfMui * S_m) -1j * omega(freq) * Me * S_e
        RHS = C.T * (MfMui * S_m) -1j * omega(freq) * S_e

        return RHS
Ejemplo n.º 26
0
    def getA(self, freq):
        """
            .. math ::
                \mathbf{A} = \mathbf{C} \mathbf{M^e_{\sigma}}^{-1} \mathbf{C}^T \mathbf{M_{\mu^{-1}}^f}  + i \omega

            :param float freq: Frequency
            :rtype: scipy.sparse.csr_matrix
            :return: A
        """

        MfMui = self.MfMui
        MeSigmaI = self.MeSigmaI
        C = self.mesh.edgeCurl
        iomega = 1j * omega(freq) * sp.eye(self.mesh.nF)

        A = C * (MeSigmaI * (C.T * MfMui)) + iomega

        if self._makeASymmetric is True:
            return MfMui.T*A
        return A
Ejemplo n.º 27
0
    def getA(self, freq):
        """
            .. math ::
                    \\mathbf{A} = \\mathbf{C}  \\mathbf{M^e_{mu^{-1}}} \\mathbf{C}^T \\mathbf{M^f_{\\sigma^{-1}}}  + i\\omega

            :param float freq: Frequency
            :rtype: scipy.sparse.csr_matrix
            :return: A
        """

        MeMuI = self.MeMuI
        MfRho = self.MfRho
        C = self.mesh.edgeCurl
        iomega = 1j * omega(freq) * sp.eye(self.mesh.nF)

        A = C * MeMuI * C.T * MfRho + iomega

        if self._makeASymmetric is True:
            return MfRho.T*A
        return A
Ejemplo n.º 28
0
    def getRHS(self, freq):
        """
            .. math ::

                \mathbf{RHS} = \mathbf{C} \mathbf{M_{\mu}^e}^{-1}\mathbf{s_m} -i\omega \mathbf{s_e}
            :param float freq: Frequency
            :rtype: numpy.ndarray (nE, nSrc)
            :return: RHS
        """

        S_m, S_e = self.getSourceTerm(freq)
        C = self.mesh.edgeCurl
        MeMuI = self.MeMuI  

        RHS = C * (MeMuI * S_m) - 1j * omega(freq) * S_e
        if self._makeASymmetric is True:
            MfRho = self.MfRho
            return MfRho.T*RHS

        return RHS
Ejemplo n.º 29
0
    def getRHS(self, freq, backSigma):
        """
            Function to return the right hand side for the system.
            :param float freq: Frequency
            :param numpy.ndarray (nC,) backSigma: Background conductivity model
            :rtype: numpy.ndarray (nE, 2)
            :return: one RHS for both polarizations
        """
        # Get sources for the frequency
        src = self.survey.getSources(freq)
        # Make sure that there is 2 polarizations.
        # assert len()
        # Get the background electric fields
        from simpegMT.Sources import homo1DModelSource
        eBG_bp = homo1DModelSource(self.mesh, freq, backSigma)
        MeBack = self.MeSigmaBack
        # Set up the A system
        mui = self.MfMui
        C = self.mesh.edgeCurl
        Abg = C.T * mui * C + 1j * omega(freq) * MeBack

        return Abg * eBG_bp, eBG_bp
Ejemplo n.º 30
0
    def getADeriv_m(self, freq, u, v, adjoint=False):

        # Nee to account for both the polarizations
        # dMe_dsig = (self.MeSigmaDeriv( u['e_pxSolution'] ) + self.MeSigmaDeriv( u['e_pySolution'] ))
        # dMe_dsig = (self.MeSigmaDeriv( u['e_pxSolution'] +  u['e_pySolution'] ))

        # # dMe_dsig = self.MeSigmaDeriv( u )
        # if adjoint:
        #     return 1j * omega(freq) * ( dMe_dsig.T * v ) # As in simpegEM

        # return 1j * omega(freq) * ( dMe_dsig * v ) # As in simpegEM

        # This considers both polarizations and returns a nE,2 matrix for each polarization
        if adjoint:
            dMe_dsigV = sp.hstack((self.MeSigmaDeriv(u['e_pxSolution']).T,
                                   self.MeSigmaDeriv(u['e_pySolution']).T)) * v
        else:
            # Need a nE,2 matrix to be returned
            dMe_dsigV = np.hstack(
                (mkvc(self.MeSigmaDeriv(u['e_pxSolution']) * v,
                      2), mkvc(self.MeSigmaDeriv(u['e_pySolution']) * v, 2)))
        return 1j * omega(freq) * dMe_dsigV
Ejemplo n.º 31
0
 def _b_pySecondaryDeriv_u(self, src, v, adjoint = False):
     # C = sp.kron(self.mesh.edgeCurl,[[0,0],[0,1]])
     C = sp.hstack((Utils.spzeros(self.mesh.nF,self.mesh.nE),self.mesh.edgeCurl)) # This works for adjoint = None
     if adjoint:
         return - 1./(1j*omega(src.freq)) * (C.T * v)
     return - 1./(1j*omega(src.freq)) * (C * v)
Ejemplo n.º 32
0
 def S_m(self, prob):
     b = self.bPrimary(prob)
     return -1j*omega(self.freq)*b
Ejemplo n.º 33
0
 def _bSecondaryDeriv_u(self, src, v, adjoint = False):
     C = self.mesh.nodalGrad
     if adjoint:
         return - 1./(1j*omega(src.freq)) * (C.T * v)
     return - 1./(1j*omega(src.freq)) * (C * v)
Ejemplo n.º 34
0
 def _b_pySecondaryDeriv_u(self, src, v, adjoint=False):
     # C = sp.kron(self.mesh.edgeCurl,[[0,0],[0,1]])
     C = sp.hstack((Utils.spzeros(self.mesh.nF, self.mesh.nE), self.mesh.edgeCurl))  # This works for adjoint = None
     if adjoint:
         return -1.0 / (1j * omega(src.freq)) * (C.T * v)
     return -1.0 / (1j * omega(src.freq)) * (C * v)
Ejemplo n.º 35
0
 def _bSecondaryDeriv_m(self, src, v, adjoint = False):
     S_mDeriv, _ = src.evalDeriv(self.prob, adjoint)
     S_mDeriv = S_mDeriv(v)
     if S_mDeriv is not None:
         return 1./(1j * omega(src.freq)) * S_mDeriv
     return None
Ejemplo n.º 36
0
 def _bSecondaryDeriv_u(self, src, v, adjoint = False):
     C = self._edgeCurl
     if adjoint:
         return - 1./(1j*omega(src.freq)) * (C.T * v)
     return - 1./(1j*omega(src.freq)) * (C * v)
Ejemplo n.º 37
0
 def _bSecondaryDeriv_u(self, src, v, adjoint=False):
     C = self.mesh.nodalGrad
     if adjoint:
         return -1.0 / (1j * omega(src.freq)) * (C.T * v)
     return -1.0 / (1j * omega(src.freq)) * (C * v)
Ejemplo n.º 38
0
 def _hSecondaryDeriv_u(self, src, v, adjoint=False):
     if not adjoint: 
         return  -1./(1j*omega(src.freq)) * self._MeMuI * (self._edgeCurl.T * (self._MfRho * v) )
     elif adjoint:
         return  -1./(1j*omega(src.freq)) * self._MfRho.T * (self._edgeCurl * ( self._MeMuI.T * v))