def Prism(dx, dy, dz, depth, pinc, pdec, npts2D, xylim, rx_h, View_elev, View_azim): #p = definePrism(dx, dy, dz, depth,pinc=pinc, pdec=pdec, susc = 1., Einc=90., Edec=0., Bigrf=1e-6) p = definePrism() p.dx, p.dy, p.dz, p.z0 = dx, dy, dz, -depth p.pinc, p.pdec = pinc, pdec srvy = MAG.survey() srvy.rx_h, srvy.npts2D, srvy.xylim = rx_h, npts2D, xylim # Create problem prob = MAG.problem() prob.prism = p prob.survey = srvy return plotObj3D(p, rx_h, View_elev, View_azim, npts2D, xylim, profile="X"), prob
x1, x2, y1, y2 = x1, x2, y1, y2 = -xylim, xylim, 0., 0. comp = 'tf' irt = 'total' Q, rinc,rdec = 0., 60., 270. susc = 0.25 vmin, vmax = 0., 0.015 ax1.axis('equal') ax1.set_title('Forward Simulation') # Define the problem interactively p = MAG.definePrism() p.dx, p.dy, p.dz, p.z0 = dx, dy, dz, -depth p.pinc, p.pdec = pinc, pdec srvy = PFlocal.survey() srvy.rx_h, srvy.npts2D, srvy.xylim = rx_h, npts2D, xylim # Create problem prob = PFlocal.problem() prob.prism = p prob.survey = srvy X, Y = np.meshgrid(prob.survey.xr, prob.survey.yr) Z = np.ones(X.shape)*rx_h x, y = MAG.linefun(x1, x2, y1, y2, prob.survey.npts2D) xyz_line = np.c_[x, y, np.ones_like(x)*prob.survey.rx_h] # Create a mesh dx = 5.
def plotProfile(p, data, Binc, Bdec, Bigrf, susc, Q, rinc, rdec): if data is 'MonSt': filename = "data/StudentData2015_Monday.csv" elif data is 'WedSt': filename = "data/StudentData2015_Wednesday.csv" elif data is 'WedTA': filename = "data/TAData2015_Wednesday.csv" dat = pd.DataFrame(pd.read_csv(filename, header=0)) tf = dat["Corrected Total Field Data (nT)"].values std = dat["Standard Deviation (nT)"].values loc = dat["Location (m)"].values teams = dat["Team"].values tfa = tf - Bigrf nx, ny = 100, 1 shape = (nx, ny) xLoc = np.linspace(xlim[0], xlim[1], nx) zLoc = np.ones(np.shape(xLoc)) * rx_h yLoc = np.zeros(np.shape(xLoc)) #xpl, ypl, zpl = fatiandoGridMesh.regular(surveyArea,shape, z=z) rxLoc = np.c_[Utils.mkvc(xLoc), Utils.mkvc(yLoc), Utils.mkvc(zLoc)] prob1D = MAG.problem() srvy1D = MAG.survey() srvy1D._rxLoc = rxLoc prob1D.prism = p prob1D.survey = srvy1D prob1D.Bdec, prob1D.Binc, prob1D.Bigrf = Bdec, Binc, Bigrf prob1D.Q, prob1D.rinc, prob1D.rdec = Q, rinc, rdec prob1D.uType, prob1D.mType = 'tf', 'total' prob1D.susc = susc # Compute fields from prism magi, magr = prob1D.fields() #out_linei, out_liner = getField(p, xyz_line, comp, 'total') #out_linei = getField(p, xyz_line, comp,'induced') #out_liner = getField(p, xyz_line, comp,'remanent') # distance = np.sqrt((x-x1)**2.+(y-y1)**2.) f = plt.figure(figsize=(10, 5)) gs = gridspec.GridSpec(2, 1, height_ratios=[2, 1]) ax0 = plt.subplot(gs[0]) ax1 = plt.subplot(gs[1]) ax1.plot(p.x0, p.z0, 'ko') ax1.text(p.x0 + 0.5, p.z0, 'Rebar', color='k') ax1.text(xlim[0] + 1., -1.2, 'Magnetometer height (1.9 m)', color='b') ax1.plot(xlim, np.r_[-rx_h, -rx_h], 'b--') # magi,magr = getField(p, rxLoc, 'bz', 'total') ax1.plot(xlim, np.r_[0., 0.], 'k--') ax1.set_xlim(xlim) ax1.set_ylim(-2.5, 2.5) ax0.scatter(loc, tfa, c=teams) ax0.errorbar(loc, tfa, yerr=std, linestyle="None", color="k") ax0.set_xlim(xlim) ax0.grid(which="both") ax0.plot(xLoc, magi, 'b', label='induced') ax0.plot(xLoc, magr, 'r', label='remnant') ax0.plot(xLoc, magi + magr, 'k', label='total') ax0.legend(loc=2) # ax[1].plot(loc-8, magnT[::-1], ) ax1.set_xlabel("Northing (m)") ax1.set_ylabel("Depth (m)") ax0.set_ylabel("Total field anomaly (nT)") ax0.grid(True) ax0.set_xlabel("Northing (m)") ax1.grid(True) ax1.set_xlabel("Northing (m)") ax1.invert_yaxis() plt.tight_layout() plt.show() return True
def plogMagSurvey2D(prob2D, susc, Einc, Edec, Bigrf, x1, y1, x2, y2, comp, irt, Q, rinc, rdec, fig=None, axs1=None, axs2=None): import matplotlib.gridspec as gridspec # The MAG problem created is stored in result[1] # prob2D = Box.result[1] if fig is None: fig = plt.figure(figsize=(18 * 1.5, 3.4 * 1.5)) plt.rcParams.update({'font.size': 14}) gs1 = gridspec.GridSpec(2, 7) gs1.update(left=0.05, right=0.48, wspace=0.05) if axs1 is None: axs1 = plt.subplot(gs1[:2, :3]) if axs2 is None: axs2 = plt.subplot(gs1[0, 4:]) axs1.axis("equal") prob2D.Bdec, prob2D.Binc, prob2D.Bigrf = Edec, Einc, Bigrf prob2D.Q, prob2D.rinc, prob2D.rdec = Q, rinc, rdec prob2D.uType, prob2D.mType = comp, 'total' prob2D.susc = susc # Compute fields from prism b_ind, b_rem = prob2D.fields() if irt == 'total': out = b_ind + b_rem elif irt == 'induced': out = b_ind else: out = b_rem X, Y = np.meshgrid(prob2D.survey.xr, prob2D.survey.yr) dat = axs1.contourf(X, Y, np.reshape(out, (X.shape)).T, 25) cb = plt.colorbar(dat, ax=axs1, ticks=np.linspace(out.min(), out.max(), 5)) cb.set_label("nT") axs1.plot(X, Y, '.k') # Compute fields on the line by creating a similar mag problem x, y = linefun(x1, x2, y1, y2, prob2D.survey.npts2D) xyz_line = np.c_[x, y, np.ones_like(x) * prob2D.survey.rx_h] # Create problem prob1D = MAG.problem() srvy1D = MAG.survey() srvy1D._rxLoc = xyz_line prob1D.prism = prob2D.prism prob1D.survey = srvy1D prob1D.Bdec, prob1D.Binc, prob1D.Bigrf = Edec, Einc, Bigrf prob1D.Q, prob1D.rinc, prob1D.rdec = Q, rinc, rdec prob1D.uType, prob1D.mType = comp, 'total' prob1D.susc = susc # Compute fields from prism out_linei, out_liner = prob1D.fields() #out_linei, out_liner = getField(p, xyz_line, comp, 'total') #out_linei = getField(p, xyz_line, comp,'induced') #out_liner = getField(p, xyz_line, comp,'remanent') out_linet = out_linei + out_liner distance = np.sqrt((x - x1)**2. + (y - y1)**2.) axs1.plot(x, y, 'w.', ms=3) axs1.text(x[0], y[0], 'A', fontsize=16, color='w') axs1.text(x[-1], y[-1], 'B', fontsize=16, color='w', horizontalalignment='right') axs1.set_xlabel('Easting (X; m)') axs1.set_ylabel('Northing (Y; m)') axs1.set_xlim(X.min(), X.max()) axs1.set_ylim(Y.min(), Y.max()) axs1.set_title(irt + ' ' + comp) axs2.plot(distance, out_linei, 'b.-') axs2.plot(distance, out_liner, 'r.-') axs2.plot(distance, out_linet, 'k.-') axs2.set_xlim(distance.min(), distance.max()) axs2.set_xlabel("Distance (m)") axs2.set_ylabel("Magnetic field (nT)") axs2.text(distance.min(), out_linei.max() * 0.8, 'A', fontsize=16) axs2.text(distance.max() * 0.97, out_linei.max() * 0.8, 'B', fontsize=16) axs2.legend(("induced", "remanent", "total"), bbox_to_anchor=(0.5, -0.3)) axs2.grid(True) plt.show() return True