Ejemplo n.º 1
0
def run_example():
    pso = PSO(save_sampled=False, verbose=True, num_proc=4)
    pso.set_cost_function(likelihood)
    pso.set_start_position(xnominal)
    pso.set_bounds(2)
    pso.set_speed(-.25, .25)
    pso.run(25, 100)
    display(pso.best)
def test_population_creation():
    pso = PSO(cost_function=h1, start=[10, 0], verbose=False)
    pso.set_bounds(lower=[-100, -100], upper=[100, 100])
    pso.run(num_iterations=100, num_particles=10)
    pso.return_ranked_populations()
    error = np.sum((pso.best - [8.6998, 6.7665]) ** 2)
    print('True value: [8.6998, 6.7665]. Found:{0}. Error^2 = {1}'.format(pso.best, error))
    assert (error < 0.1)
Ejemplo n.º 3
0
def run_example():
    pso = PSO(save_sampled=False, verbose=True, num_proc=4)
    pso.set_cost_function(likelihood)
    pso.set_start_position(xnominal)
    pso.set_bounds(lower=lower, upper=upper)
    pso.set_speed(-.25, .25)
    pso.run(25, 200)
    display(pso.best)
    np.save('calibrated_pars_pso1', pso.best)
Ejemplo n.º 4
0
def run_pso(lum, drug_conc, time, weights):

    # create global versions of lum, drug_conc, and time variables that can be used in cost function
    global _lum, _drug_conc, _time, _weights
    _lum = np.array(lum)
    _drug_conc = np.array(drug_conc)
    _time = np.array(time)
    _weights = np.array(weights)

    ##########
    # _dc, idx = np.unique(_drug_conc, return_index=True)
    # _lum_avg = np.array([np.mean(_lum[idx[i]:idx[i+1]], axis=0) for i in range(len(idx)-1)] +
    #                     [np.mean(_lum[idx[-1]:], axis=0)])
    # colors = cmap(np.linspace(0, 1, len(_dc)))
    # plt.figure()
    # u_idx = 0
    # for i in range(len(_lum)):
    #     if i <= idx[-1] and i == idx[u_idx+1]:
    #         u_idx += 1
    #     plt.plot(_time[i], _lum[i], 'o', color=colors[u_idx])
    #     plt.plot(_time[idx[u_idx]], _lum_avg[u_idx], '--', lw=2, color=colors[u_idx])
    # plt.show()
    ##########

    # estimate slope m and y-intercept nC0 from control luminescence data
    global _m, _nC0
    _m = 0
    _nC0 = 0
    # find indices of control experiments
    indices = np.where(_drug_conc == 0)[0]
    for idx in indices:
        fit = linregress(_time[idx], _lum[idx])
        _m += fit.slope
        _nC0 += fit.intercept
    _m /= len(indices)
    _nC0 /= len(indices)

    # run PSO to estimate the other three parameters: kdiv-kdeath, kdiv*-kdeath*, koff/kon
    pso = PSO(save_sampled=True, verbose=True, shrink_steps=False)
    pso.set_start_position([2, 2, 2])
    # allows particles to move +/- 2 orders of magnitude
    pso.set_bounds(2)
    # sets maximum speed that a particle can travel
    pso.set_speed(-0.1, 0.1)
    pso.run(
        num_particles=100,
        num_iterations=1000,
        stop_threshold=0,
        num_processors=1,
        max_iter_no_improv=1000,
        cost_function=cost
    )

    return np.array([_m, _nC0] + list(pso.best.pos))  # [m, nC0, kdiv-kdeath, kdiv*-kdeath*, koff/kon]
Ejemplo n.º 5
0
def test_population_creation():
    known_sol = [8.6998, 6.7665]
    pso = PSO(start=[0, 0], verbose=False, shrink_steps=False)
    pso.set_bounds(lower=[-100, -100], upper=[100, 100])
    pso.set_speed(-10, 10)
    pso.run(num_iterations=100, num_particles=10, cost_function=h1, )
    pso.return_ranked_populations()
    error = np.sum((pso.best.pos - known_sol) ** 2)
    print('True value: [8.6998, 6.7665]. Found:{0}. Error^2 = {1}'.format(
        pso.best.pos, error))
    assert (error < 0.1)
Ejemplo n.º 6
0
def run_pso(run, iterations, bd):
    pso = PSO(save_sampled=False, verbose=True, shrink_steps=False)
    #pso.set_cost_function(costfunction)
    pso.set_start_position(starting_position)
    pso.set_bounds(bd)
    pso.set_speed(-.1, .1)

    pso.run(num_particles=20, num_iterations=iterations, stop_threshold=1e-5,
            cost_function=costfunction, max_iter_no_improv=50,
            num_processors=20, save_samples=True)

    param_sets = convert_to_flat_array(pso, model)
    #print(param_sets)
    param_sets.to_csv('run'+run+'.csv')
Ejemplo n.º 7
0
def run_example():
    # Runs the cost function to calculate error between model and data
    print("Error at start = {}".format(likelihood(starting_position)[0]))
    # Displays the model with defaul positions
    display(starting_position, save_name='starting_position')

    # create PSO object
    pso = PSO(save_sampled=False, verbose=True, num_proc=4)
    pso.set_cost_function(likelihood)
    pso.set_start_position(starting_position)
    # allows particles to move +/- 2 orders of magnitude
    pso.set_bounds(2)
    # sets maximum speed that a particle can travel
    pso.set_speed(-.25, .25)

    pso.run(num_particles=25, num_iterations=50, stop_threshold=1e-5)
    display(pso.best, save_name='best_fit')
    np.savetxt("pso_fit_for_model.csv", pso.best)
def run_example():
    # Runs the cost function to calculate error between model and data
    print("Error at start = {}".format(likelihood(starting_position)[0]))
    # Displays the model with defaul positions
    display(starting_position, save_name='starting_position')

    # create PSO object
    pso = PSO(save_sampled=False, verbose=True, num_proc=4)
    pso.set_cost_function(likelihood)
    pso.set_start_position(starting_position)
    # allows particles to move +/- 2 orders of magnitude
    pso.set_bounds(2)
    # sets maximum speed that a particle can travel
    pso.set_speed(-.25, .25)

    pso.run(num_particles=25, num_iterations=50, stop_threshold=1e-5)
    display(pso.best, save_name='best_fit')
    np.savetxt("pso_fit_for_model.csv", pso.best)
Ejemplo n.º 9
0
def run_pso(run, iterations, bd):
    pso = PSO(save_sampled=False,
              verbose=True,
              shrink_steps=False,
              num_proc=14)
    pso.set_cost_function(costfunction)
    pso.set_start_position(starting_position)
    pso.set_bounds(bd)
    pso.set_speed(-.1, .1)

    pso.run(num_particles=200, num_iterations=iterations, stop_threshold=1e-5)
    #print('best pos: ', pso.best.pos)
    print('history ', pso.history)
    print('run ', run)
    print('fit ', pso.best.fitness)
    print('all fitness ', pso.values)
    np.savetxt("H841_params_" + run + ".txt", 10**pso.history, delimiter=",")
    np.savetxt("H841_fit_" + run + ".txt", pso.values, delimiter=",")
def test_himmelblau():
    """ test to see if PSO can find simple minimum
    """
    minimums = [[3.0, 2.0],
                [-2.805118, 3.131312],
                [-3.779310, -3.283186],
                [3.584428, -1.848126]]

    pso = PSO(cost_function=himmelblau, start=[10, 0], verbose=False)
    pso.set_bounds(lower=[-100, -100], upper=[100, 100])
    pso.run(num_iterations=100, num_particles=10)
    good_min = False
    for i in minimums:
        if np.sum((pso.best - i) ** 2) < .1:
            good_min = True
            error = np.sum((pso.best - i) ** 2)
            found_min = i
    if good_min:
        print('Found minimum')
        print('True value: {0}. Found:{1}. Error^2 = {2}'.format(found_min, pso.best, error))
Ejemplo n.º 11
0
def run_example():
    # create PSO object
    pso = PSO(save_sampled=False, verbose=True, shrink_steps=False)
    pso.set_start_position(starting_position)

    # allows particles to move +/- 2 orders of magnitude
    pso.set_bounds(2)
    # sets maximum speed that a particle can travel
    pso.set_speed(-.1, .1)

    pso.run(num_particles=24,
            num_iterations=100,
            stop_threshold=1e-5,
            num_processors=18,
            max_iter_no_improv=20,
            cost_function=likelihood)

    display(pso.best.pos, save_name='best_fit')
    np.savetxt("pso_fit_for_model.csv", pso.best.pos)
    create_gif_of_model_training(pso)
Ejemplo n.º 12
0
def run_example_multiple():
    best_pars = np.zeros((100, len(model.parameters)))
    counter = 0
    for i in range(100):
        pso = PSO(save_sampled=False, verbose=False, num_proc=4)
        pso.set_cost_function(likelihood)
        nominal_random = xnominal + np.random.uniform(-1, 1, len(xnominal))
        pso.set_start_position(nominal_random)
        pso.set_bounds(2.5)
        pso.set_speed(-.25, .25)
        pso.run(25, 100)
        if pso.best.fitness.values[0] < 0.066:
            Y = np.copy(pso.best)
            param_values[rates_of_interest_mask] = 10**Y
            best_pars[counter] = param_values
            counter += 1
        print(i, counter)

        # display(pso.best)
    np.save('jnk3_noASK1_ncalibrated_pars_1h', best_pars)
Ejemplo n.º 13
0
def run_pso(run, iterations, bd, outdir='', suffix=''):

    pso = PSO(save_sampled=True, verbose=True, shrink_steps=False)

    #pso.set_cost_function(costfunction)
    pso.set_start_position(starting_params)
    pso.set_bounds(bd)
    pso.set_speed(-0.1, 0.1)

    pso.run(num_particles=20,
            num_iterations=iterations,
            stop_threshold=1e-5,
            cost_function=costfunction,
            max_iter_no_improv=500,
            num_processors=20,
            save_samples=True)

    param_sets = convert_to_flat_array(pso, model)

    #print(param_sets)
    outfile = os.path.join(outdir, 'run%d%s.csv' % (run, suffix))
    param_sets.to_csv(outfile, index_label='iter')
def run_example():

    # Here we initial the class
    # We must proivde the cost function and a starting value
    optimizer = PSO(cost_function=obj_function, start=start_position, verbose=True)
    # We also must set bounds. This can be a single scalar or an array of len(start_position)
    optimizer.set_bounds(parameter_range=3)
    optimizer.set_speed(speed_min=-.5, speed_max=.5)
    optimizer.run(num_particles=25, num_iterations=100)
    if plot:
        display(start_position, optimizer.best)

        print("Original values {0}".format(log10_original_values ** 10))
        print("Starting values {0}".format(start_position ** 10))
        print("Best PSO values {0}".format(optimizer.best ** 10))
        fig = plt.figure()
        fig.add_subplot(221)
        plt.scatter(log10_original_values[0], log10_original_values[1], marker='>', color='b', label='ideal')
        plt.scatter(start_position[0], start_position[1], marker='^', color='r', label='start')
        plt.scatter(optimizer.history[:, 0], optimizer.history[:, 1], c=optimizer.values, cmap=plt.cm.coolwarm)

        fig.add_subplot(223)
        plt.scatter(log10_original_values[0], log10_original_values[2], marker='>', color='b', label='ideal')
        plt.scatter(start_position[0], start_position[2], marker='^', color='r', label='start')
        plt.scatter(optimizer.history[:, 0], optimizer.history[:, 2], c=optimizer.values, cmap=plt.cm.coolwarm)

        fig.add_subplot(222)
        plt.scatter(log10_original_values[1], log10_original_values[2], marker='>', color='b', label='ideal')
        plt.scatter(start_position[1], start_position[2], marker='^', color='r', label='start')
        plt.scatter(optimizer.history[:, 1], optimizer.history[:, 2], c=optimizer.values, cmap=plt.cm.coolwarm)

        fig.add_subplot(224)
        plt.legend(loc=0)
        plt.colorbar()
        plt.tight_layout()
        plt.savefig('population.png')
Ejemplo n.º 15
0
                     np.random.uniform(-1, 1,
                                       size=len(log_original_values))

    display(start_position, "Before optimization")
    plt.tight_layout()
    plt.savefig("fit_before_pso.png", bbox_inches='tight')
    logger.info("Saving pre-fit figure as fit_before_pso.png")

    # Here we initial the class
    # We must proivde the cost function and a starting value
    optimizer = PSO(start=start_position, verbose=True, shrink_steps=False)

    # We also must set bounds of the parameter space, and the speed PSO will
    # travel (max speed in either direction)
    optimizer.set_bounds(parameter_range=4)
    optimizer.set_speed(speed_min=-.05, speed_max=.05)

    # Now we run the pso algorithm
    optimizer.run(num_particles=50,
                  num_iterations=500,
                  num_processors=12,
                  cost_function=obj_function,
                  max_iter_no_improv=25)

    best_params = optimizer.best.pos
    display(best_params, "After optimization")
    plt.tight_layout()
    plt.savefig("fit_after_pso.png", bbox_inches='tight')
    logger.info("Saving post-fit figure as fit_after_pso.png")
    plt.show()
def test_mismatched_bounds():
    pso = PSO(start=[10, 0], cost_function=himmelblau, verbose=False)
    pso.set_bounds(lower=[-100, 0, -100], upper=[100, 100])
    pso.run(num_iterations=100, num_particles=10)
Ejemplo n.º 17
0
def obj_function(params):
    params_tmp = np.copy(params)
    param_values[rate_mask] = 10 ** params_tmp  # don't need to change
    result = solver1.run(param_values=param_values)
    ysim_array1 = result.observables['MLKLa_obs'][:]
    ysim_norm1 = normalize(ysim_array1)
​
    e1 = np.sum((ydata_norm - ysim_norm1) ** 2)
​
    return e1,
​
def run_example():
    print('run_example')
    best_pars = np.zeros((1000, len(model.parameters)))
​
    counter = 0
    # Here we initial the class
    # We must proivde the cost function and a starting value
    for i in range(1000):
        optimizer = PSO(cost_function=obj_function,start = log10_original_values, verbose=True)
        # We also must set bounds. This can be a single scalar or an array of len(start_position)
        optimizer.set_bounds(parameter_range=2)
        optimizer.set_speed(speed_min=-.25, speed_max=.25)
        optimizer.run(num_particles=75, num_iterations=25)
        best_pars[i] = optimizer.best
        print(optimizer.best)
        # print(i, counter)
    np.save('optimizer_best_75_50_100TNF',best_pars)
​
if '__main__' == __name__:
    run_example()

# USER-Set: must appropriately update cost function!
def cost(position):
    Y = np.copy(position)
    param_values[calibrate_mask] = 10**Y
    sim = solver.run(param_values=param_values).all
    logp_data = np.sum(like_data.logpdf(sim['observable']))
    if np.isnan(logp_data):
        logp_data = np.inf
    return -logp_data,


# Setup the particle swarm optimization run

# Set the number of particles in the swarm.
num_particles = 25
# Set the number of iterations for PSO run.
num_iterations = 50
# Construct the optimizer
pso = PSO(save_sampled=False, verbose=True, num_procs=1)
pso.set_cost_function(cost)
starting_position = swarm_param.centers()
pso.set_start_position(starting_position)
pso.set_bounds(lower=swarm_param.lower(), upper=swarm_param.upper())
# sets maximum speed that a particle can travel
pso.set_speed(-.25, .25)
# run it
pso.run(num_particles, num_iterations, stop_threshold=1e-5)
print("Best parameters: ", pso.best)
def test_missing_cost_function():
    pso = PSO(start=[10, 0], verbose=False)
    pso.set_bounds(lower=[-100, -100], upper=[100, 100])
    pso.run(num_iterations=100, num_particles=10)
def test_no_bounds():
    pso = PSO(start=[10, 0], cost_function=himmelblau, verbose=False)
    pso.run(num_iterations=100, num_particles=10)
Ejemplo n.º 21
0
def run_example():

    # Here we initial the class
    # We must proivde the cost function and a starting value
    optimizer = PSO(cost_function=obj_function,
                    start=start_position,
                    verbose=True)
    # We also must set bounds. This can be a single scalar or an array of len(start_position)
    optimizer.set_bounds(parameter_range=3)
    optimizer.set_speed(speed_min=-.5, speed_max=.5)
    optimizer.run(num_particles=25, num_iterations=100)
    if plot:
        display(start_position, optimizer.best)

        print("Original values {0}".format(log10_original_values**10))
        print("Starting values {0}".format(start_position**10))
        print("Best PSO values {0}".format(optimizer.best**10))
        fig = plt.figure()
        fig.add_subplot(221)
        plt.scatter(log10_original_values[0],
                    log10_original_values[1],
                    marker='>',
                    color='b',
                    label='ideal')
        plt.scatter(start_position[0],
                    start_position[1],
                    marker='^',
                    color='r',
                    label='start')
        plt.scatter(optimizer.history[:, 0],
                    optimizer.history[:, 1],
                    c=optimizer.values,
                    cmap=plt.cm.coolwarm)

        fig.add_subplot(223)
        plt.scatter(log10_original_values[0],
                    log10_original_values[2],
                    marker='>',
                    color='b',
                    label='ideal')
        plt.scatter(start_position[0],
                    start_position[2],
                    marker='^',
                    color='r',
                    label='start')
        plt.scatter(optimizer.history[:, 0],
                    optimizer.history[:, 2],
                    c=optimizer.values,
                    cmap=plt.cm.coolwarm)

        fig.add_subplot(222)
        plt.scatter(log10_original_values[1],
                    log10_original_values[2],
                    marker='>',
                    color='b',
                    label='ideal')
        plt.scatter(start_position[1],
                    start_position[2],
                    marker='^',
                    color='r',
                    label='start')
        plt.scatter(optimizer.history[:, 1],
                    optimizer.history[:, 2],
                    c=optimizer.values,
                    cmap=plt.cm.coolwarm)

        fig.add_subplot(224)
        plt.legend(loc=0)
        plt.colorbar()
        plt.tight_layout()
        plt.savefig('population.png')