Ejemplo n.º 1
0
class MoleculeUtil(object):
    """
    A class for managing a molecule defined by a PDB file
    """
    np.random.seed(20)

    def __init__(self, pdb_path, offset_size=2):
        # OpenMM init
        self.pdb_path = pdb_path
        self.pdb = PDBFile(self.pdb_path)
        self.forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
        self.modeller = Modeller(self.pdb.topology, self.pdb.positions)

        # Remove any water that might be present in the PDB file
        self.modeller.deleteWater()

        # Add any hydrogens not present
        self.modeller.addHydrogens(self.forcefield)
        self.system = self.forcefield.createSystem(self.modeller.topology,
                                                   nonbondedMethod=PME,
                                                   nonbondedCutoff=1 *
                                                   u.nanometer,
                                                   constraints=HBonds)
        self.integrator = LangevinIntegrator(300 * u.kelvin, 1 / u.picosecond,
                                             0.002 * u.picoseconds)
        self.simulation = Simulation(self.modeller.topology, self.system,
                                     self.integrator)
        self.pdb_positions = self.modeller.getPositions()

        # Initialize bond dictionary and positions for chemcoord
        self.cc_bonds = {}
        self.offset_size = offset_size
        self._init_pdb_bonds()
        self.set_cc_positions(self.pdb_positions)

        # Perform initial minimization, which updates self.pdb_positions
        min_energy, min_positions = self.run_simulation()

        # Reset the positions after the minimization
        self.set_cc_positions(self.pdb_positions)
        self.torsion_indices = self._get_torsion_indices()
        self.starting_positions = min_positions
        self.starting_torsions = np.array([
            self.zmat.loc[self.torsion_indices[:, 0], 'dihedral'],
            self.zmat.loc[self.torsion_indices[:, 1], 'dihedral']
        ]).T
        self.seed_offsets()

    def _add_backbone_restraint(self):
        # https://github.com/ParmEd/ParmEd/wiki/OpenMM-Tricks-and-Recipes#positional-restraints
        positions = self.modeller.getPositions()
        force = CustomExternalForce('k*((x-x0)^2+(y-y0)^2+(z-z0)^2)')
        force.addGlobalParameter(
            'k', 5.0 * u.kilocalories_per_mole / u.angstroms**2)
        force.addPerParticleParameter('x0')
        force.addPerParticleParameter('y0')
        force.addPerParticleParameter('z0')

        for index, atom in enumerate(self.modeller.topology.atoms()):
            if atom.name in ('CA', 'C', 'N'):
                coord = positions[index]
                force.addParticle(index, coord.value_in_unit(u.nanometers))

        self.restraint_force_id = self.system.addForce(force)

    def _remove_backbone_restraint(self):
        self.system.removeForce(self.restraint_force_id)

    def _fix_backbone(self):
        for index, atom in enumerate(self.modeller.topology.atoms()):
            if atom.name in ('CA', 'C', 'N'):
                self.system.setParticleMass(index, 0)

    def seed_offsets(self):
        self.offsets = np.random.choice([0, 0, -1, 1],
                                        self.starting_torsions.shape)

    def get_torsions(self):
        return np.array([
            self.zmat.loc[self.torsion_indices[:, 0], 'dihedral'],
            self.zmat.loc[self.torsion_indices[:, 1], 'dihedral']
        ]).T

    def set_torsions(self, new_torsions):
        self.zmat.safe_loc[self.torsion_indices[:, 0],
                           'dihedral'] = new_torsions[:, 0]
        self.zmat.safe_loc[self.torsion_indices[:, 1],
                           'dihedral'] = new_torsions[:, 1]

    def get_offset_torsions(self, scale_factor):
        """
        Calculates and returns new torsion angles based on randomly generated
        offsets.

        Args:
            scale_factor: the relative scale of the offset relative to
                          self.offset_size
        Returns:
            The new torsion angles
        """
        total_offset = self.offset_size * scale_factor
        new_torsions = np.zeros(shape=self.starting_torsions.shape)
        new_torsions[:, 0] = self.starting_torsions[:, 0] + \
            (self.offsets[:, 0] * total_offset)
        new_torsions[:, 1] = self.starting_torsions[:, 1] + \
            (self.offsets[:, 1] * total_offset)
        return new_torsions

    def run_simulation(self):
        """
        Run a simulation to calculate the current configuration's energy level.
        Note that the atoms will likely move somewhat during the calculation,
        since energy minimization is used.

        Returns:
            A tuple of the form (potential_energy, updated_positions)
        """
        # Delete solvent that's based on previous positions
        cartesian = self.zmat.get_cartesian().sort_index()
        self.simulation.context.setPositions([
            Vec3(x, y, z)
            for x, y, z in zip(cartesian['x'], cartesian['y'], cartesian['z'])
        ])

        # self._add_backbone_restraint()
        # self._fix_backbone()

        self.modeller.addSolvent(self.forcefield, padding=1.0 * u.nanometer)
        self.simulation.minimizeEnergy(maxIterations=200)
        state = self.simulation.context.getState(getEnergy=True,
                                                 getPositions=True)
        p_energy = state.getPotentialEnergy()
        positions = state.getPositions(asNumpy=True)

        # Clean up - remove solvent and backbone restraint (for next iteration)
        self.modeller.deleteWater()

        # self._remove_backbone_restraint()

        return p_energy, positions

    def _init_pdb_bonds(self):
        """Construct a dictionary describing the PDB's bonds for chemcoord use"""
        for index in range(self.modeller.topology.getNumAtoms()):
            self.cc_bonds[index] = set()

        for bond in self.modeller.topology.bonds():
            self.cc_bonds[bond[0].index].add(bond[1].index)
            self.cc_bonds[bond[1].index].add(bond[0].index)

    def set_cc_positions(self, positions):
        """
        Calculates the zmat from an OpenMM modeller

        Args:
            positions (list): A list 
        """
        cc_df = self._get_cartesian_df(positions)
        self.cartesian = cc.Cartesian(cc_df)
        self.cartesian.set_bonds(self.cc_bonds)
        self.cartesian._give_val_sorted_bond_dict(use_lookup=True)
        self.zmat = self.cartesian.get_zmat(use_lookup=True)

    def _get_cartesian_df(self, positions):
        cc_positions = np.zeros((3, self.modeller.topology.getNumAtoms()))
        atom_names = []
        for index, atom in enumerate(self.modeller.topology.atoms()):
            pos = positions[index] / u.nanometer
            atom_names.append(atom.name)
            cc_positions[:, index] = pos

        cc_df = pd.DataFrame({
            'atom': atom_names,
            'x': cc_positions[0, :],
            'y': cc_positions[1, :],
            'z': cc_positions[2, :]
        })
        return cc_df

    def _get_torsion_indices(self):
        """
        Calculates indices into the zmatrix which correspond to phi
        and psi angles.

        Args:
            zmat: the zmatrix specifying the molecule
        Returns:
            a numpy.array, with first column as phi_indices, second column
            as psi_indices
        """
        phi_indices = []
        psi_indices = []

        for i in range(len(self.zmat.index)):
            b_index = self.zmat.loc[i, 'b']
            a_index = self.zmat.loc[i, 'a']
            d_index = self.zmat.loc[i, 'd']

            # If this molecule references a magic string (origin, e_x, e_y, e_z, etc)
            if isinstance(b_index, str) or isinstance(
                    a_index, str) or isinstance(d_index, str):
                continue

            # Psi angles
            if (self.zmat.loc[i, 'atom'] == 'N') & \
                    (self.zmat.loc[b_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[a_index, 'atom'] == 'C') & \
                    (self.zmat.loc[d_index, 'atom'] == 'N'):
                psi_indices.append(i)

            elif (self.zmat.loc[i, 'atom'] == 'N') & \
                    (self.zmat.loc[b_index, 'atom'] == 'C') & \
                    (self.zmat.loc[a_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[d_index, 'atom'] == 'N'):
                psi_indices.append(i)

            elif (self.zmat.loc[i, 'atom'] == 'C') & \
                    (self.zmat.loc[b_index, 'atom'] == 'N') & \
                    (self.zmat.loc[a_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[d_index, 'atom'] == 'C'):
                phi_indices.append(i)

            elif (self.zmat.loc[i, 'atom'] == 'C') & \
                    (self.zmat.loc[b_index, 'atom'] == 'CA') & \
                    (self.zmat.loc[a_index, 'atom'] == 'N') & \
                    (self.zmat.loc[d_index, 'atom'] == 'C'):
                phi_indices.append(i)

        return np.array([phi_indices, psi_indices]).T
Ejemplo n.º 2
0
import util

pdb = PDBFile('1ubq.pdb')
forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
modeller = Modeller(pdb.topology, pdb.positions)
modeller.addHydrogens(forcefield)

system = forcefield.createSystem(modeller.topology,
                                 nonbondedMethod=PME,
                                 nonbondedCutoff=1 * nanometer,
                                 constraints=HBonds)
integrator = LangevinIntegrator(300 * kelvin, 1 / picosecond,
                                0.002 * picoseconds)
pdb_bonds = modeller.topology.bonds()
atoms = modeller.topology.atoms()
positions = modeller.getPositions()

cc_bonds = {}
cc_positions = np.zeros((3, modeller.topology.getNumAtoms()))
atom_names = []

# Construct bond dictionary and positions chemcoord
for index, atom in enumerate(atoms):
    cc_bonds[index] = set()
    pos = positions[index] / nanometer
    atom_names.append(atom.name)
    cc_positions[:, index] = pos

nitro_list = []

for bond in pdb_bonds: