Ejemplo n.º 1
0
def LC_evolve(popSize, alleleFreq, diseaseModel):
    '''
    '''
    pop = sim.Population(
        size=popSize,
        loci=[1] * len(alleleFreq),
        infoFields=['age', 'smoking', 'age_death', 'age_LC', 'LC'])
    pop.setVirtualSplitter(
        sim.CombinedSplitter(splitters=[
            sim.InfoSplitter(field='age',
                             cutoff=[20, 40],
                             names=['youngster', 'adult', 'senior']),
            sim.SexSplitter(),
            sim.InfoSplitter(field='smoking',
                             values=[0, 1, 2],
                             names=['nonSmoker', 'smoker', 'formerSmoker'])
        ]))
    pop.evolve(
        initOps=[sim.InitSex(),
                 sim.InitInfo(range(75), infoFields='age')] + [
                     sim.InitGenotype(freq=[1 - f, f], loci=i)
                     for i, f in enumerate(alleleFreq)
                 ] + [
                     sim.PyOperator(func=diseaseModel.initialize),
                 ],
        preOps=[
            sim.InfoExec('age += 1'),
            # die of lung cancer or natural death
            sim.DiscardIf('age > age_death')
        ],
        matingScheme=sim.HeteroMating(
            [
                sim.CloneMating(weight=-1),
                sim.RandomMating(ops=[
                    sim.MendelianGenoTransmitter(),
                    sim.PyOperator(func=diseaseModel.initialize)
                ],
                                 subPops=[(0, 'adult')])
            ],
            subPopSize=lambda pop: pop.popSize() + popSize / 75),
        postOps=[
            # update individual, currently ding nothing.
            sim.PyOperator(func=diseaseModel.updateStatus),
            # determine if someone has LC at his or her age
            sim.InfoExec('LC = age >= age_LC'),
            # get statistics about COPD and LC prevalence
            sim.Stat(pop,
                     meanOfInfo='LC',
                     subPops=[(0, sim.ALL_AVAIL)],
                     vars=['meanOfInfo', 'meanOfInfo_sp']),
            sim.PyEval(
                r"'Year %d: Overall %.2f%% M: %.2f%% F: %.2f%% "
                r"NS: %.1f%%, S: %.2f%%\n' % (gen, meanOfInfo['LC']*100, "
                r"subPop[(0,3)]['meanOfInfo']['LC']*100,"
                r"subPop[(0,4)]['meanOfInfo']['LC']*100,"
                r"subPop[(0,5)]['meanOfInfo']['LC']*100,"
                r"subPop[(0,6)]['meanOfInfo']['LC']*100)"),
        ],
        gen=100)
Ejemplo n.º 2
0
 def simulation(self):
     self.pop = sim.Population(size = [500, 500], loci=[1]*20,
                              infoFields = ["age",'ind_id', 'father_idx', 'mother_idx', "hc", "ywc",'migrate_to'],
                              subPopNames = ["croatia", "slovenia"])
     sim.initInfo(pop = self.pop, values = list(map(int, np.random.negative_binomial(n = 1, p = 0.25, size=500))), infoFields="age")
 
     self.pop.setVirtualSplitter(sim.CombinedSplitter([
         sim.ProductSplitter([
             sim.SexSplitter(),
             sim.InfoSplitter(field = "age", cutoff = [1,3,6,10])])],
         vspMap = [[0,1], [2], [3], [4], [5,6,7,8], [9] ]))
 
     # Age groups: from 0 to 1 - cubs, from 1 to 3 - prereproductive, from 3 to 6 - reproductive class, from 6 to 10 - dominant
     self.pop.evolve(
         initOps=[
             sim.InitSex(),
             # random genotype
             sim.InitGenotype(freq=[0.01]*2 + [0.03]*2 + [0.23]*4),
             # assign an unique ID to everyone.
             sim.IdTagger(),
         ],
         # increase the age of everyone by 1 before mating.
         preOps=[sim.InfoExec('age += 1'),
                 sim.InfoExec("hc +=1 if 0 < hc < 3  else 0"), # Mother bear can't have cubs for two years after pregnancy
                 sim.Migrator(rate=[[self.cro_to_slo]],
                              mode=sim.BY_PROPORTION,
                              subPops=[(0, 0)],
                              toSubPops=[1]), # reproductive males migrate from Cro to Slo
                 sim.Migrator(rate=[[self.slo_to_cro]],
                              mode=sim.BY_PROPORTION,
                              subPops=[(1, 0)],
                              toSubPops=[0]),
                  sim.Stat(effectiveSize=sim.ALL_AVAIL, subPops=[(0,1),(0,2),(0,4), (1,1), (1,2), (1,4)], vars='Ne_demo_base'),
                  sim.Stat(effectiveSize=sim.ALL_AVAIL,subPops=[(0,1),(0,2),(0,4), (1,1), (1,2), (1,4)], vars='Ne_demo_base_sp')
                 #sim.PyEval(r'"Cro %d, Slo %d' ' % (Cro, Slo)', "Cro = pop.subPopSize(0)" "Slo = pop.subPopSize(1)",exposePop='pop'),
                 ],
         matingScheme=sim.HeteroMating([
             # CloneMating will keep individual sex and all
             # information fields (by default).
             # The age of offspring will be zero.
 
             sim.HomoMating(subPops=sim.ALL_AVAIL,
                 chooser=sim.CombinedParentsChooser(
                     fatherChooser=sim.PyParentsChooser(generator=self.bearFather),
                     motherChooser=sim.PyParentsChooser(generator=self.bearMother)
                 ),
                 generator=sim.OffspringGenerator(ops=[
                     sim.InfoExec("age = 0"),
                     sim.IdTagger(),
                     #sim.PedigreeTagger(),
                     sim.ParentsTagger(),
                     sim.MendelianGenoTransmitter()
                 ], numOffspring=(sim.UNIFORM_DISTRIBUTION, 1, 3))),
             sim.CloneMating(subPops=[(0,0), (0,1), (0,2), (0,4), (1,0), (1,1), (1,2), (1,4)], weight=-1),
 
         ], subPopSize=popmodel.demoModel),
         # number of individuals?
         postOps = [
             #sim.PyOperator(func=popmodel.NaturalMortality),
             sim.PyOperator(func = popmodel.CalcNe, param={"me":self.me, "Ne":self.Ne}, begin=int(0.2*self.generations)),
             sim.PyOperator(func = popmodel.CalcLDNe, param={"me":self.me, "x":self.x}, begin=int(0.2*self.generations)),
             sim.PyOperator(func=popmodel.cullCountry,param={"slo_cull": self.slo_cull, "cro_cull": self.cro_cull}),
                    ],
 
         gen = self.generations
     ) 
Ejemplo n.º 3
0
def runSimulation(scenario_id, sub_population_size, minMatingAge, maxMatingAge,
                  gen):
    '''
    sub_population_size   A vector giving the population sizes for each sub-population. The subpopulations determine which breeding ground an individual belongs to
    minMatingAge          minimal mating age.
    maxMatingAge          maximal mating age. Individuals older than this are effectively dead
    years                 number of years to simulate
    '''

    # scenario_id describes the batch of files to load
    # The mitochondrial DNA will be in mtdna_<scenario_id>
    # The SNP DNA will be in snp_<scenario_id>

    # Read the mitochondrial haplotype frequencies. There's a bit to unpack here
    # We read the lines into an array, and for each one, call split() on it to get one element per column.
    # However, we do not want this - we want the transpose, where haplotype_frequencies[0] is a vector of
    # all the frequencies for population 0, and haplotype_frequencies[1] is the corresponding vector for
    # population 2. list(map(list, zip(*t))) will achieve this transformation for us.
    # While we are at it, we also convert the strings into floats.
    mitochondrial_file = "mtdna_" + scenario_id + ".txt"
    with open(mitochondrial_file, "r") as fd:
        haplotype_frequencies = list(
            map(list,
                zip(*[list(map(float, line[0:-1].split())) for line in fd])))

    if len(haplotype_frequencies) != len(sub_population_size):
        raise ValueError(
            'The number of populations in the population size vector and the number of populations deduced from the haplotype file are different'
        )

    # Now read the SNP data. This builds a 2D array indexed as snp[locus][population]
    snp_file = "snp_" + scenario_id + ".txt"
    with open(snp_file, "r") as fd:
        snp = [list(map(float, line[0:-1].split())) for line in fd]

    sub_population_count = len(sub_population_size)
    print()
    print(sub_population_count, "subpopulations detected")

    # Now we can create the population. We want to give each population a population name, starting from A
    sub_population_names = list(map(chr, range(65, 65 + sub_population_count)))

    # We have two chromosomes. The first is an autosome with nb_loci loci, and the second is the mitochondrial chromosome with 1 locus
    pop = simuPOP.Population(
        sub_population_size,
        ploidy=2,
        loci=[nb_loci, 1],
        ancGen=2,
        infoFields=[
            'age', 'ind_id', 'father_id', 'mother_id', 'nitrogen', 'carbon',
            'feeding_ground', 'native_breeding_ground', 'migrate_to'
        ],
        subPopNames=sub_population_names,
        chromTypes=[simuPOP.AUTOSOME, simuPOP.MITOCHONDRIAL])
    sub_population_names = tuple(sub_population_names)

    # Create an attribute on each individual called 'age'. Set it to a random number between 0 and maxMatingAge
    # Note that size is a vector - the size of each population. We have to sum these to get the total number of individuals
    individual_count = sum(sub_population_size)

    # Assign a random age to each individual
    pop.setIndInfo(
        [random.randint(0, maxMatingAge) for x in range(individual_count)],
        'age')
    # Assign a random feeding ground to each individual
    pop.setIndInfo([
        random.randint(0, numberOfFeedingGrounds - 1)
        for x in range(individual_count)
    ], 'feeding_ground')

    # Currently we have these virtual subpopulations:
    # age < minMatingAge (juvenile)
    # age >= minMatingAge and age < maxMatingAge + 0.1 (age <= maxMatingAge) (mature)
    # age >= maxMatingAge (dead)
    #
    # Ideally we would want something like this:
    # 1) Immature
    # 2) Receptive female (every 3 years)
    # 3) Non-receptive female
    # 4) Mature male
    # 5) Dead
    #
    # Note that we use a cutoff InfoSplitter here, it is also possible to
    # provide a list of values, each corresponding to a virtual subpopulation.
    pop.setVirtualSplitter(
        simuPOP.CombinedSplitter([
            simuPOP.ProductSplitter([
                simuPOP.SexSplitter(),
                simuPOP.InfoSplitter('age',
                                     cutoff=[minMatingAge, maxMatingAge + 0.1],
                                     names=['juvenile', 'mature', 'dead'])
            ])
        ],
                                 vspMap=[[0], [1], [2], [3], [4], [5],
                                         [0, 1, 3, 4], [1, 4]],
                                 names=[
                                     'Juvenile Male', 'Mature Male',
                                     'Dead Male', 'Juvenile Female',
                                     'Mature Female', 'Dead Female',
                                     'Not dead yet', 'Active'
                                 ]))

    pop.evolve(
        initOps=[
            simuPOP.InitSex(),
            simuPOP.IdTagger(),
            simuPOP.PyOperator(func=init_native_breeding_grounds)
        ] + [
            simuPOP.InitGenotype(subPops=sub_population_names[i],
                                 freq=haplotype_frequencies[i],
                                 loci=[nb_loci])
            for i in range(0, sub_population_count)
        ] + [
            simuPOP.InitGenotype(subPops=sub_population_names[i],
                                 freq=[snp[n][i], 1 - snp[n][i]],
                                 loci=[n])
            for i in range(0, sub_population_count)
            for n in range(0, nb_loci - 1)
        ],
        # increase age by 1
        preOps=[simuPOP.InfoExec('age += 1')],
        matingScheme=simuPOP.HeteroMating(
            [
                # age <= maxAge, copy to the next generation (weight=-1)
                # subPops is a list of tuples that will participate in mating. The tuple is a pair (subPopulation, virtualSubPopulation)
                # First, we propagate (clone) all individuals in all subpopulations (and all VSPs except the ones who are now in the VSP of deceased individuals) to the next generation
                simuPOP.CloneMating(
                    ops=[simuPOP.CloneGenoTransmitter(chroms=[0, 1])],
                    subPops=[
                        (sub_population, 6)
                        for sub_population in range(0, sub_population_count)
                    ],
                    weight=-1),
                # Then we simulate random mating only in VSP 1 (ie reproductively mature individuals) within subpopulation (breeding/winter grounds)
                simuPOP.RandomMating(
                    ops=[
                        simuPOP.MitochondrialGenoTransmitter(),
                        simuPOP.MendelianGenoTransmitter(),
                        simuPOP.IdTagger(),
                        simuPOP.InheritTagger(mode=simuPOP.MATERNAL,
                                              infoFields=['feeding_ground']),
                        simuPOP.InheritTagger(
                            mode=simuPOP.MATERNAL,
                            infoFields=['native_breeding_ground']),
                        simuPOP.PedigreeTagger()
                    ],
                    subPops=[
                        (sub_population, 7)
                        for sub_population in range(0, sub_population_count)
                    ],
                    weight=1)
            ],
            subPopSize=configure_new_population_size),
        postOps=[

            # Determine the isotopic ratios in individuals
            simuPOP.PyOperator(func=postop_processing),
            simuPOP.Migrator(mode=simuPOP.BY_IND_INFO),
            # count the individuals in each virtual subpopulation
            #simuPOP.Stat(popSize=True, subPops=[(0,0), (0,1), (0,2), (1,0), (1, 1), (1, 2)]),
            # print virtual subpopulation sizes (there is no individual with age > maxAge after mating)
            #simuPOP.PyEval(r"'Size of age groups: %s\n' % (','.join(['%d' % x for x in subPopSize]))")

            # Alternatively, calculate the Fst
            # FIXME: How does this actually work? Does it work for > 2 populations? I don't really understand it yet
            # ELC: it is a calculation that partitions variance among and between populations, and can be calculated as a
            # global statistic or on a pairwise basis. We use it as an indication of genetic differentiation.
            simuPOP.Stat(structure=range(1),
                         subPops=sub_population_names,
                         suffix='_AB',
                         step=10),
            simuPOP.PyEval(r"'Fst=%.3f \n' % (F_st_AB)", step=10)
        ],
        gen=years)

    #simuPOP.dump(pop, width=3, loci=[], subPops=[(simuPOP.ALL_AVAIL, simuPOP.ALL_AVAIL)], max=1000, structure=False);
    #return

    ped = simuPOP.Pedigree(pop)
    print("This is the pedigree stuff")
    simuPOP.dump(pop)

    # Now sample the individuals
    sample = drawRandomSample(pop, sizes=[sample_count] * sub_population_count)

    # Print out the allele frequency data
    simuPOP.stat(sample, alleleFreq=simuPOP.ALL_AVAIL)
    frequencies = sample.dvars().alleleFreq
    with open('freq.txt', 'w') as freqfile:
        index = 0
        for locus in frequencies:
            if (locus == nb_loci):
                continue
            if (len(frequencies[locus]) < 2):
                continue
            print(index, end=' ', file=freqfile)
            index = index + 1
            for allele in frequencies[locus]:
                print(frequencies[locus][allele], end=' ', file=freqfile)
            print(file=freqfile)

    # We want to remove monoallelic loci. This means a position in the genotype for which all individuals have the same value in both alleles
    # To implement this we will build up a list of loci that get ignored when we dump out the file. Generally speaking, if we add all the values up
    # then either they will sum to 0 (if all individuals have type 0) or to the number of individuals * 2 (if all individuals have type 1)
    geno_sum = [0] * (nb_loci + 1) * 2
    for individual in sample.individuals():
        geno_sum = list(map(add, geno_sum, individual.genotype()))
    final_sum = list(
        map(add, geno_sum[:(nb_loci + 1)], geno_sum[(nb_loci + 1):]))

    monoallelic_loci = []
    for i in range(0, nb_loci):
        if final_sum[i] == 0 or final_sum[
                i] == sample_count * sub_population_count * 2:
            monoallelic_loci = [i] + monoallelic_loci
    monoallelic_loci = sorted(monoallelic_loci, reverse=True)

    nb_ignored_loci = len(monoallelic_loci)
    # Generate the two files
    with open('mixfile.txt', 'w') as mixfile:
        with open('haploiso.txt', 'w') as haplofile:
            print(sub_population_count,
                  nb_loci - nb_ignored_loci,
                  2,
                  1,
                  file=mixfile)
            print("sex, haplotype, iso1, iso2, native_ground", file=haplofile)
            for i in range(0, nb_loci - nb_ignored_loci):
                print('Loc', i + 1, sep='_', file=mixfile)
            for individual in sample.individuals():
                genotype = individual.genotype()
                print(
                    1 if individual.sex() == 1 else 0,
                    genotype[nb_loci],
                    individual.info('carbon'),
                    individual.info('nitrogen'),
                    #                      int(individual.info('native_breeding_ground')),
                    file=haplofile,
                    sep=' ')
                print(int(individual.info('native_breeding_ground') + 1),
                      end=' ',
                      file=mixfile)
                for i in range(0, nb_loci):
                    if i not in monoallelic_loci:
                        print(genotype[i] + 1,
                              genotype[i + nb_loci + 1] + 1,
                              ' ',
                              end='',
                              sep='',
                              file=mixfile)
                print(file=mixfile)
    return sample
Ejemplo n.º 4
0
# This script is an example in the simuPOP user's guide. Please refer to
# the user's guide (http://simupop.sourceforge.net/manual) for a detailed
# description of this example.
#

import simuPOP as sim
import random
pop = sim.Population(size=[2000, 4000], loci=[30], infoFields='x')
# assign random information fields
sim.initSex(pop)
sim.initInfo(pop, lambda: random.randint(0, 3), infoFields='x')
#
# 1, use a combined splitter
pop.setVirtualSplitter(sim.CombinedSplitter(splitters = [
    sim.SexSplitter(),
    sim.InfoSplitter(field='x', values=[0, 1, 2, 3])
]))
pop.numVirtualSubPop()    # Number of defined VSPs
pop.subPopName([0, 0])    # Each VSP has a name
pop.subPopSize([0, 0])    # sim.MALE
pop.subPopSize([1, 4])    # individuals in sp 1 with value 2 at field x
#
# use a product splitter that defines additional VSPs by sex and info
pop.setVirtualSplitter(sim.ProductSplitter(splitters = [
    sim.SexSplitter(names=['M', 'F']),  # give a new set of names
    sim.InfoSplitter(field='x', values=[0, 1, 2, 3])
]))
pop.numVirtualSubPop()    # Number of defined VSPs
pop.subPopName([0, 0])    # Each VSP has a name
pop.subPopSize([0, 0])    # sim.MALE with value 1 in sp 0
pop.subPopSize([1, 5])    # sim.FEMALE with value 1 in sp 1
Ejemplo n.º 5
0
def demo(gen, pop):
   return pop.popSize()

###############################################################
#                         POPULATION                          #
###############################################################

pop = sim.Population(args.N, loci = 0, ploidy = 2, infoFields = ['age', 'a', 'b', 'smurf', 'luck', 't0'])

pop.setVirtualSplitter(
   sim.CombinedSplitter(
      splitters = [
         sim.ProductSplitter(
            splitters = [
               sim.InfoSplitter(field = 'age', cutoff = 10),
               sim.InfoSplitter(field = 'smurf', values = [0, 1])
            ]
         )
      ],
      vspMap = [(0), (2), (1,3)],
      names = ['larvae', 'adults', 'smurfs']
   )
)

# This is to be able to call random from InfoExec:
exec('import random', pop.vars(), pop.vars())
exec('import math', pop.vars(), pop.vars())
pop.dvars().k = args.k
pop.dvars().model = args.model

###############################################################
#                         SIMULATION                          #
Ejemplo n.º 6
0
            age, age_cat, sex = line.strip().split()[-3:]
            pop.individual(idx -
                           18).setSex(sim.MALE if sex == '2' else sim.FEMALE)
            pop.individual(idx - 18).age = int(age)
            #pop.individual(idx-18).age_cat = int(age_cat)
        elif line.startswith('2 '):
            age_cat, sex = line.strip().split()[-2:]
            pop.individual(idx -
                           18).setSex(sim.MALE if sex == '2' else sim.FEMALE)
            # no age info
            pop.individual(idx - 18).age = random.randint(0, 17)
            #pop.individual(idx-18).age_cat = int(age_cat)

pop.setVirtualSplitter(
    sim.CombinedSplitter([
        sim.SexSplitter(),
        sim.InfoSplitter(field='age', cutoff=[3, 9, 17]),
    ]))

# population 0, from 68 female to 68 female + 62 male
pop.resize([130, 338], propagate=True)
# set sex
for idx in range(68, 130):
    pop.individual(idx, 0).setSex(sim.MALE)
# add 110-37=73 male
for idx in range(192, 192 + 73):
    pop.individual(idx, 1).setSex(sim.MALE)
for idx in range(192 + 73, 338):
    pop.individual(idx, 1).setSex(sim.FEMALE)

migr = sim.Migrator(
    rate=[
import random


def breatCancer(geno, age):
    # brca1 is recessive
    if 0 in geno:
        return 0
    return [0, 0, 0.036, 0.18, 0.57, 0.75, 0.83][int(age / 10)]


pop = sim.Population(size=10000, loci=1, infoFields='age', lociNames='BRCA1')
sim.initGenotype(pop, freq=[0.73, 0.27])
sim.initInfo(pop, lambda: random.randint(0, 69), infoFields='age')
sim.pyPenetrance(pop, func=breatCancer, loci=0)
pop.setVirtualSplitter(
    sim.CombinedSplitter([
        sim.InfoSplitter(field='age', cutoff=[30, 40, 50, 60]),
        sim.ProductSplitter([
            sim.InfoSplitter(field='age', cutoff=[30, 40, 50, 60]),
            sim.GenotypeSplitter(loci=0, alleles=[1, 1], names='carrier'),
        ])
    ]))
sim.stat(pop,
         numOfAffected=True,
         subPops=[(0, sim.ALL_AVAIL)],
         vars=['propOfAffected', 'propOfAffected_sp'])
print('Population prevalence is %.2f%%' % (pop.dvars().propOfAffected * 100))
for x in range(pop.numVirtualSubPop()):
    print('Prevalence in group %s is %.2f%%' % \
        (pop.subPopName((0,x)), pop.dvars((0,x)).propOfAffected*100))
Ejemplo n.º 8
0
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#

# This script is an example in the simuPOP user's guide. Please refer to
# the user's guide (http://simupop.sourceforge.net/manual) for a detailed
# description of this example.
#

import simuPOP as sim
pop = sim.Population(10000, loci=1)
pop.setVirtualSplitter(
    sim.CombinedSplitter([sim.SexSplitter(),
                          sim.AffectionSplitter()]))
sim.initSex(pop)
sim.initGenotype(pop, freq=[0.2, 0.8])
sim.maPenetrance(pop, loci=0, penetrance=[0.1, 0.2, 0.5])
# Count sim.population size
sim.stat(pop, popSize=True, subPops=[(0, 0), (0, 2)])
# popSize is the size of two VSPs, does not equal to total sim.population size.
# Because two VSPs overlap (all males and all unaffected), popSize can be
# greater than real sim.population size.
print(pop.dvars().subPopSize, pop.dvars().popSize)
# print popSize of each virtual subpopulation.
sim.stat(pop, popSize=True, subPops=[(0, 0), (0, 2)], vars='popSize_sp')
# Note the two ways to access variable in (virtual) subpopulations.
print(pop.dvars((0, 0)).popSize, pop.dvars().subPop[(0, 2)]['popSize'])
# Count number of male (should be the same as the size of VSP (0,0).
sim.stat(pop, numOfMales=True)
Ejemplo n.º 9
0
def MutationSelection(N=1000,
                      generations=10000,
                      X_loci=100,
                      A_loci=0,
                      AgingModel='two_phases',
                      seed=2001,
                      reps=1,
                      InitMutFreq=0.001,
                      aging_a1=0.003,
                      aging_a2=0.05,
                      aging_b=-0.019,
                      aging_k=0.1911,
                      MutRate=0.001,
                      StatsStep=100,
                      OutPopPrefix='z1',
                      PrintFreqs=False,
                      debug=False):
    '''Creates and evolves a population to reach mutation-selection balance.'''
    if debug:
        sim.turnOnDebug('DBG_ALL')
    else:
        sim.turnOffDebug('DBG_ALL')
    sim.setRNG('mt19937', seed)
    pop = sim.Population(N,
                         loci=[X_loci, A_loci],
                         ploidy=2,
                         chromTypes=[sim.CHROMOSOME_X, sim.AUTOSOME],
                         infoFields=[
                             'age', 'a', 'b', 'smurf', 'ind_id', 'father_id',
                             'mother_id', 'luck', 't0', 'fitness'
                         ])
    pop.setVirtualSplitter(
        sim.CombinedSplitter(
            splitters=[
                sim.ProductSplitter(splitters=[
                    sim.InfoSplitter(field='age', cutoff=9),
                    sim.InfoSplitter(field='smurf', values=[0, 1])
                ]),
                sim.SexSplitter(),
                sim.InfoSplitter(field='age', values=0)
            ],
            vspMap=[(0), (2), (1, 3), (4), (5), (6)],
            names=['larvae', 'adults', 'smurfs', 'males', 'females', 'zero']))
    pop.dvars().k = aging_k
    pop.dvars().N = N
    pop.dvars().seed = seed
    pop.dvars().X_loci = X_loci
    pop.dvars().A_loci = A_loci
    pop.dvars().AgingModel = AgingModel
    exec("import random\nrandom.seed(seed)", pop.vars(), pop.vars())
    exec("import math", pop.vars(), pop.vars())
    simu = sim.Simulator(pop, rep=reps)
    simu.evolve(
        initOps=[
            sim.InitSex(),
            sim.InitGenotype(freq=[1 - InitMutFreq, InitMutFreq]),
            sim.InitInfo([0], infoFields='age'),
            sim.InitInfo([aging_a1], infoFields='a'),
            sim.InitInfo([aging_b], infoFields='b'),
            sim.InitInfo(lambda: random.random(), infoFields='luck'),
            sim.InfoExec('t0 = -ind.b / ind.a', exposeInd='ind'),
            sim.InfoExec(
                'smurf = 1.0 if AgingModel == "two_phases" and (ind.smurf == 1 or (ind.age > ind.t0 and ind.luck < 1.0 - math.exp(-ind.a * ind.age + ind.a * ind.t0 - ind.a / 2.0))) else 0.0',
                exposeInd='ind'),
            sim.IdTagger(),
            sim.PyExec('XFreqChange={}'),
            sim.PyExec('AFreqChange={}')
        ],
        preOps=[
            sim.InfoExec('luck = random.random()'),
            sim.InfoExec(
                'smurf = 1.0 if AgingModel == "two_phases" and (ind.smurf == 1 or (ind.age > ind.t0 and ind.luck < 1.0 - math.exp(-ind.a * ind.age + ind.a * ind.t0 - ind.a / 2.0))) else 0.0',
                exposeInd='ind'),
            sim.DiscardIf(natural_death(AgingModel)),
            sim.InfoExec('age += 1'),
            sim.PySelector(func=fitness_func1)
        ],
        matingScheme=sim.HeteroMating([
            sim.CloneMating(subPops=[(0, 0), (0, 1), (0, 2)], weight=-1),
            sim.RandomMating(ops=[
                sim.IdTagger(),
                sim.PedigreeTagger(),
                sim.InfoExec('smurf = 0.0'),
                sexSpecificRecombinator(
                    rates=[0.75 / X_loci for x in range(X_loci)] +
                    [2.07 / A_loci for x in range(A_loci)],
                    maleRates=0.0),
                sim.PyQuanTrait(loci=sim.ALL_AVAIL,
                                func=TweakAdditiveRecessive(
                                    aging_a1, aging_a2, aging_b, X_loci),
                                infoFields=['a', 'b'])
            ],
                             weight=1,
                             subPops=[(0, 1)],
                             numOffspring=1)
        ],
                                      subPopSize=demo),
        postOps=[
            sim.SNPMutator(u=MutRate, subPops=[(0, 5)]),
            sim.Stat(alleleFreq=sim.ALL_AVAIL, step=StatsStep),
            sim.IfElse(
                'X_loci > 0',
                ifOps=[
                    sim.PyExec(
                        'XFreqChange[gen] = [alleleFreq[x][1] for x in range(X_loci)]'
                    )
                ],
                elseOps=[sim.PyExec('XFreqChange[gen] = []')],
                step=StatsStep),
            sim.IfElse(
                'A_loci > 0',
                ifOps=[
                    sim.PyExec(
                        'AFreqChange[gen] = [alleleFreq[a][1] for a in range(X_loci, pop.totNumLoci())]',
                        exposePop='pop')
                ],
                elseOps=[sim.PyExec('AFreqChange[gen] = []')],
                step=StatsStep),
            sim.IfElse(
                PrintFreqs,
                ifOps=[
                    sim.PyEval(
                        r"str(rep) + '\t' + str(gen) + '\t' + '\t'.join(map('{0:.4f}'.format, XFreqChange[gen])) + '\t\t' + '\t'.join(map('{0:.4f}'.format, AFreqChange[gen])) + '\n'"
                    )
                ],
                step=StatsStep),
            sim.TerminateIf(
                'sum([alleleFreq[x][0] * alleleFreq[x][1] for x in range(X_loci + A_loci)]) == 0'
            )
        ],
        gen=generations)
    i = 0
    for pop in simu.populations():
        pop.save('{}_{}.pop'.format(OutPopPrefix, i))
        i += 1