def main(args):
    seed = args.seed if args.seed is not None else secrets.randbits(32)

    capabilities = [
        Capability(f"C{n}", args.task_period, n)
        for n in range(args.num_capabilities)
    ]

    choose = get_agent_choose_behaviour(args.agent_choose)

    agent_behaviours = [[behaviour] * num_agents
                        for (num_agents, behaviour) in args.agents]

    # Assume that each agent has all capabilities
    agents = [
        Agent(f"A{n}", capabilities, get_behaviour(behaviour), choose,
              args.trust_dissem_period, args.max_crypto_buf,
              args.max_trust_buf, args.max_reputation_buf,
              args.max_stereotype_buf)
        for (n, behaviour) in enumerate(chain.from_iterable(agent_behaviours))
    ]

    es = get_eviction_strategy(args.eviction_strategy)

    sim = Simulator(seed, agents, es, args.duration, args.utility_targets,
                    args.log_level)

    sim.run(args.max_start_delay)

    sim.metrics.save(sim, args, args.path_prefix)
Ejemplo n.º 2
0
 def test_basic_simulation(self):
     sim = Simulator(end_time=2)
     m0 = Message(sim=sim, time=0, priority=9)
     m1 = Message(sim=sim, time=1, priority=9)
     m2 = Message(sim=sim, time=1, priority=0)
     m3 = Message(sim=sim, time=4, priority=9)
     msgs = [m0, m1, m2, m3]
     for m in msgs:
         sim.push(m)
     sim.do_all_events()
     self.assertGreaterEqual(sim.time, sim.end_time)
Ejemplo n.º 3
0
def simulate_benchmark(bench_name, cfg_name, debug=False):

    benchmark_path = Path(f"{BENCH_ROOT}/{bench_name}").resolve()
    cfg_path = Path(f"{CFG_ROOT}/{cfg_name}").resolve()
    simulator = Simulator(benchmark_path, cfg_path, debug)

    # simulator.only_debug_pu(3)

    #simulator.run_cycles(51)
    simulator.run()

    simulator.print_statistics()
Ejemplo n.º 4
0
 def setUp(self):
     self.sim = Simulator()
     self.m0 = Message(self.sim, 1, 'han0', 'cmd')
     self.m1 = Message(self.sim, 2, 'han1', 'cmd')
     self.m2 = Message(self.sim, 3, 'han2', 'cmd', preqs=[self.m0, self.m1])
     self.adj_list = {
         self.m0: [self.m2],
         self.m1: [self.m2],
         self.m2: []
     }
     self.graph = DirectedGraph()
     self.graph.from_adjacency_list(self.adj_list)
     self.seq = Sequence(self.graph)
 def setUp(self):
     self.sim = Simulator()
     self.agg = MessageAggregator()
     self.m0 = Message(self.sim, 1, 'han0', 'cmd')
     self.m1 = Message(self.sim, 2, 'han1', 'cmd')
     self.m2 = Message(self.sim, 3, 'han2', 'cmd', preqs=[self.m0, self.m1])
     self.adj_list = {self.m0: [self.m2], self.m1: [self.m2], self.m2: []}
     self.graph = DirectedGraph()
     self.graph.from_adjacency_list(self.adj_list)
     self.seq = Sequence(self.graph)
     self.m_alone_pending = Message(self.sim, 4, 'han_alone', 'cmd')
     self.m_alone_ready = Message(self.sim, 5, 'han_far_away', 'cmd')
     self.m_alone_ready.state = Message.READY
     self.m_alone_done = Message(self.sim, 5, 'han_far_away', 'cmd')
     self.m_alone_done.state = Message.DONE
 def setUp(self):
     self.sim = Simulator()
     self.agg = MessageAggregator()
     self.m0 = Message(self.sim, 1, 'han0', 'cmd')
     self.m1 = Message(self.sim, 2, 'han1', 'cmd')
     self.m2 = Message(self.sim, 3, 'han2', 'cmd', preqs=[self.m0, self.m1])
     adj_list1 = {self.m0: [self.m2], self.m1: [self.m2], self.m2: []}
     self.seq1 = Sequence(DirectedGraph().from_adjacency_list(adj_list1))
     self.m3 = Message(self.sim, 1, 'han0', 'cmd')
     self.m4 = Message(self.sim, 2, 'han1', 'cmd', preqs=[self.m3])
     adj_list2 = {self.m3: [self.m4], self.m4: []}
     self.seq1 = Sequence(DirectedGraph())
     self.seq1.graph.from_adjacency_list(adj_list1)
     self.seq2 = Sequence(DirectedGraph())
     self.seq2.graph.from_adjacency_list(adj_list2)
Ejemplo n.º 7
0
    def __init__(self):
        print("INITIALISING ENVIRONMENT:")
        self.width = ConfigReader("width")
        self.height = ConfigReader("height")
        self.start_amount_of_hunter = ConfigReader("start_amount_of_hunter")
        self.start_amount_of_preys = ConfigReader("start_amount_of_prey")
        print("\tWIDTH: ", int(self.width))
        print("\tHEIGHT: ", int(self.height))
        print("\tHUNTERS: ", int(self.start_amount_of_hunter))
        print("\tPREYS: ", int(self.start_amount_of_preys), "\n")

        self.prey_model = Preys()
        self.hunter_model = Hunters()
        self.prey_model.set_hunters(self.hunter_model)

        self.simulator = Simulator()
        self.simulation_time = 0
Ejemplo n.º 8
0
def main():
    args = parse_args()
    start_time = time.time()
    total_running_time=0

    #Log_handling
    
    # Seed the random generator
    random.seed(args.seed)
    numpy.random.seed(args.seed)

    params=SimulatorParams(args.seed,args.no_of_gw,args.no_of_rp,args.duration,args.checkin_interval)

    for no_of_run in range(args.total_runs):

        # Create a SimPy environment
        env = simpy.Environment()

        # Create a Simulator object, pass the SimPy environment and params objects
        simulator = Simulator(env, params)

        # Start the simulation
        simulator.start()

        # Run the simpy environment for the specified duration
        env.run(until=args.duration)

        # Record endtime and running_time metrics
        end_time = time.time()
        if simulator.gw_running_time > simulator.rp_running_time :
            running_time=simulator.gw_running_time
        else:
            running_time=simulator.rp_running_time

        #Dumping metrics
        #log.info(simulator.metrics)
             
        
        log.info("SIMULATION CYCLE :%d Total upgrade time :%.2f"%(no_of_run,running_time))
        total_running_time +=running_time

    #Calculating average running time
    average_running_time=total_running_time / args.total_runs
    
    log.info("Average simulation running time for %d runs :(foreach run %d Gateway & %d Repeater) :%.2f"%
             (args.total_runs,args.no_of_gw,args.no_of_rp,average_running_time))    
    def _run_accept_experiments(self, beta0_list):
        separation_ratio = self.separation_ratio
        if beta0_list is None:
            raise ValueError(
                "beta0_list is None, but must contain beta_0 vals.")

        timer = Timer()
        name = self.experiment_name

        for exp in range(self.start_experiments_at, len(beta0_list)):
            beta0 = beta0_list[exp]
            noise_list = [beta0, beta0 * separation_ratio]
            name = self.experiment_name + '_' + str(exp)
            if self.verbose:
                print('experiment:', exp + 1, '/', len(beta0_list),
                      ', separation_ratio:', separation_ratio)
            if self.verbose:
                print(noise_list)

            sim = Simulator(self.model,
                            self.learning_rate,
                            noise_list,
                            self.noise_type,
                            batch_size=self.batch_size,
                            n_epochs=self.n_epochs,
                            name=name,
                            n_simulations=self.n_simulations,
                            swap_step=self.swap_step,
                            separation_ratio=separation_ratio,
                            tuning_parameter_name=self.tuning_param_name,
                            surface_view=self.surface_view,
                            burn_in_period=self.burn_in_period,
                            loss_func_name=self.loss_func_name,
                            description=self.description)

            sim.train_n_times(sim.train_PTLD,
                              train_data=self.data['train_data'],
                              train_labels=self.data['train_labels'],
                              test_data=self.data['test_data'],
                              test_labels=self.data['test_labels'],
                              validation_data=self.data['valid_data'],
                              validation_labels=self.data['valid_labels'])
            if self.verbose:
                print()
            if self.verbose:
                print('time took:', timer.elapsed_time(), 'min')
    def _run_tempfactor_experiments(self):
        timer = Timer()
        for exp in range(self.start_experiments_at, self.n_experiments):
            separation_ratio = self.tuning_parameter_vals[exp]
            name = self.experiment_name + '_' + str(exp)
            if self.verbose:
                print('experiment:', exp + 1, '/', self.n_experiments,
                      ', param_val:', separation_ratio)
            if self.verbose:
                print(name)

            noise_list = [
                self.beta_0 * separation_ratio**i
                for i in range(self.n_replicas)
            ]
            if self.verbose:
                print(noise_list)

            sim = Simulator(self.model,
                            self.learning_rate,
                            noise_list,
                            self.noise_type,
                            batch_size=self.batch_size,
                            n_epochs=self.n_epochs,
                            name=name,
                            n_simulations=self.n_simulations,
                            swap_step=self.swap_step,
                            separation_ratio=separation_ratio,
                            surface_view=self.surface_view,
                            burn_in_period=self.burn_in_period,
                            loss_func_name=self.loss_func_name,
                            description=self.description)

            sim.train_n_times(sim.train_PTLD,
                              train_data=self.data['train_data'],
                              train_labels=self.data['train_labels'],
                              test_data=self.data['test_data'],
                              test_labels=self.data['test_labels'],
                              validation_data=self.data['valid_data'],
                              validation_labels=self.data['valid_labels'])
            if self.verbose:
                print()
            if self.verbose:
                print('time took:', timer.elapsed_time(), 'min')
 def __init__(self):
     self.action_space = spaces.Box(
         np.array([0, 1, 2, 3, 4, 5]),
         np.array([355, 356, 357, 358, 359, 360]))
     # self.observation_space = spaces.Dict({
     #     'capacity_matrix': spaces.Box(low=0, high=10, shape=(4, 4, 1), dtype=np.int32),
     #     'distance_matrix': spaces.Box(low=0, high=10000, shape=(4, 4, 1), dtype=np.int32),
     #     'time_tables': spaces.Box(low=0, high=1440, shape=(3, 6, 1), dtype=np.int32),
     #     # 'max_passengers_per_h': spaces.Discrete(500)
     # })
     self.observation_space = spaces.Box(low=0.0,
                                         high=1.0,
                                         shape=(4 * 4 + 4 * 4 + 3 * 6 +
                                                1, ),
                                         dtype=np.float64)
     self.state_0 = RL_Network()
     self.timetables = copy.deepcopy(self.state_0.TIME_TABLES)
     self.current_schedule_pointer = 0
     self._reward = 0
     self._simulator = Simulator(DemoNetwork1)
    def run_simulator(self, team1_names, team2_names, num_sims,
                      attack_heuristic='Random', heal_heuristic='LowestHealth'):
        self.num_sims = num_sims
        self.res.num_sims = num_sims
        heuristics = heuristic_container.HeuristicContainer(
            attack_selection=heuristic_mapping[attack_heuristic](),
            heal_selection=heuristic_mapping[heal_heuristic]())

        # Add the name prefix so that combatants with the same name on
        # either side can be differentiated
        team1 = [
            Combatant.load_combatant(
                name,
                name_suffix="t1_{}".format(i),
                should_ready=True,
                num_enemies=len(team2_names))
            for i, name in enumerate(team1_names)]
        team2 = [
            Combatant.load_combatant(
                name,
                name_suffix="t2_{}".format(i),
                should_ready=True,
                num_enemies=len(team1_names))
            for i, name in enumerate(team2_names)]

        self.res.number_of_rounds = []
        self.res.number_of_player_deaths = []
        self.res.winning_teams = []
        for i in range(self.num_sims):
            sim = Simulator(team1, team2)
            num_rounds, num_player_deaths, winning_team = sim.run_battle(
                heuristics)
            self.res.number_of_player_deaths.append(num_player_deaths)
            self.res.winning_teams.append(winning_team)
            self.res.number_of_rounds.append(num_rounds)

        self.save_simulation(team1, team2)
Ejemplo n.º 13
0
 def _create_simulation(self):
     sg = SimulationGraph(self.nodes, 1)
     self.simulator = Simulator(sg)
Ejemplo n.º 14
0
from simulation.simulator import Simulator

s = Simulator(from_date='2014-01-01',
              to_date='2015-01-01',
              starting_fiat=0,
              starting_coins=1,
              ema1=8,
              ema2=13,
              display_orders=False)