Ejemplo n.º 1
0
def drawRectangle(image, rec):
    rr, cc = line(rec[0], rec[1], rec[0], rec[3])
    image[rr, cc] = 1
    rr, cc = line(rec[0], rec[3], rec[2], rec[3])
    image[rr, cc] = 1
    rr, cc = line(rec[2], rec[3], rec[2], rec[1])
    image[rr, cc] = 1
    rr, cc = line(rec[2], rec[1], rec[0], rec[1])
    image[rr, cc] = 1
Ejemplo n.º 2
0
def drawRectangle(image, rec):
    rec = list(rec)
    if rec[1] >= image.shape[1]:
        rec[1] = image.shape[1] - 1
    if rec[3] >= image.shape[1]:
        rec[3] = image.shape[1] - 1
    if rec[0] >= image.shape[0]:
        rec[0] = image.shape[0] - 1
    if rec[2] >= image.shape[0]:
        rec[2] = image.shape[0] - 1
    rr, cc = line(rec[0], rec[1], rec[0], rec[3])
    image[rr, cc] = 1
    rr, cc = line(rec[0], rec[3], rec[2], rec[3])
    image[rr, cc] = 1
    rr, cc = line(rec[2], rec[3], rec[2], rec[1])
    image[rr, cc] = 1
    rr, cc = line(rec[2], rec[1], rec[0], rec[1])
    image[rr, cc] = 1
Ejemplo n.º 3
0
def polygon_perimeter(cr, cc, shape=None, clip=False):
    """Generate polygon perimeter coordinates.
    Parameters
    ----------
    cr : (N,) ndarray
        Row (Y) coordinates of vertices of polygon.
    cc : (N,) ndarray
        Column (X) coordinates of vertices of polygon.
    shape : tuple, optional
        Image shape which is used to determine maximum extents of output pixel
        coordinates. This is useful for polygons which exceed the image size.
        By default the full extents of the polygon are used.
    clip : bool, optional
        Whether to clip the polygon to the provided shape.  If this is set
        to True, the drawn figure will always be a closed polygon with all
        edges visible.
    Returns
    -------
    pr, pc : ndarray of int
        Pixel coordinates of polygon.
        May be used to directly index into an array, e.g.
        ``img[pr, pc] = 1``.
    """

    if clip:
        if shape is None:
            raise ValueError("Must specify clipping shape")
        clip_box = array([0, 0, shape[0] - 1, shape[1] - 1])
    else:
        clip_box = array([min(cr), min(cc),
                          max(cr), max(cc)])

    # Do the clipping irrespective of whether clip is set.  This
    # ensures that the returned polygon is closed and is an array.
    cr, cc = polygon_clip(cr, cc, *clip_box)

    cr = round(cr).astype(int)
    cc = round(cc).astype(int)

    # Construct line segments
    pr, pc = [], []
    for i in range(len(cr) - 1):
        line_r, line_c = line(cr[i], cc[i], cr[i + 1], cc[i + 1])
        pr.extend(line_r)
        pc.extend(line_c)

    pr = asarray(pr)
    pc = asarray(pc)

    if shape is None:
        return pr, pc
    else:
        return _coords_inside_image(pr, pc, shape)
Ejemplo n.º 4
0
def polygon_perimeter(cr, cc, shape=None, clip=False):
    """Generate polygon perimeter coordinates.
    Parameters
    ----------
    cr : (N,) ndarray
        Row (Y) coordinates of vertices of polygon.
    cc : (N,) ndarray
        Column (X) coordinates of vertices of polygon.
    shape : tuple, optional
        Image shape which is used to determine maximum extents of output pixel
        coordinates. This is useful for polygons which exceed the image size.
        By default the full extents of the polygon are used.
    clip : bool, optional
        Whether to clip the polygon to the provided shape.  If this is set
        to True, the drawn figure will always be a closed polygon with all
        edges visible.
    Returns
    -------
    pr, pc : ndarray of int
        Pixel coordinates of polygon.
        May be used to directly index into an array, e.g.
        ``img[pr, pc] = 1``.
    """

    if clip:
        if shape is None:
            raise ValueError("Must specify clipping shape")
        clip_box = array([0, 0, shape[0] - 1, shape[1] - 1])
    else:
        clip_box = array([min(cr), min(cc), max(cr), max(cc)])

    # Do the clipping irrespective of whether clip is set.  This
    # ensures that the returned polygon is closed and is an array.
    cr, cc = polygon_clip(cr, cc, *clip_box)

    cr = round(cr).astype(int)
    cc = round(cc).astype(int)

    # Construct line segments
    pr, pc = [], []
    for i in range(len(cr) - 1):
        line_r, line_c = line(cr[i], cc[i], cr[i + 1], cc[i + 1])
        pr.extend(line_r)
        pc.extend(line_c)

    pr = asarray(pr)
    pc = asarray(pc)

    if shape is None:
        return pr, pc
    else:
        return _coords_inside_image(pr, pc, shape)
Ejemplo n.º 5
0
 def connect_points(self):
     """
     connect points with lines
     """
     points = []
     normed_coords = np.array(self.coords)
     normed_coords[0, :] = normed_coords[0, :] * 10.0 / self.norm_w
     normed_coords[1, :] = normed_coords[1, :] * 10.0 / self.norm_h
     normed_coords = normed_coords.astype(int)
     prev_coords = normed_coords[:, 0]
     for idx in range(1, normed_coords.shape[1]):
         rr, cc = line(prev_coords[0], prev_coords[1], normed_coords[0, idx], normed_coords[1, idx])
         points.append([rr, cc])
         prev_coords = normed_coords[:, idx]
     if points == []:
         return normed_coords
     else:
         return np.concatenate(points, axis=1)
Ejemplo n.º 6
0
    def get_local_image(self, trace_dict):
        """
        generate a binary image of this symbol
        """
        coords = None
        trace_id_map = []

        counter = 0
        for trace in self.traces:
            if coords is None:
                coords = np.array(trace.coords)
            else:
                coords = np.concatenate((coords, trace.coords), axis=1)
            trace_id_map += [counter for i in range(trace.coords.shape[1])]
            counter += 1

        #self.calc_cmy_asc_des()

        max_width = np.max(coords[0, :]) - np.min(coords[0, :])
        max_height = np.max(coords[1, :]) - np.min(coords[1, :])
        max_length = max(max_width, max_height)
        coords[0, :] = (coords[0, :] - np.min(coords[0, :])) * 25.0 // (max_length + 1e-12)
        coords[1, :] = (coords[1, :] - np.min(coords[1, :])) * 25.0 // (max_length + 1e-12)
        center_x = (np.max(coords[0, :]) - np.min(coords[0, :])) // 2
        center_y = (np.max(coords[1, :]) - np.min(coords[1, :])) // 2
        coords[0, :] = coords[0, :] - center_x + 16
        coords[1, :] = coords[1, :] - center_y + 16
        coords = coords.astype(np.int)
        prev_id = -1
        image = np.zeros((32, 32), dtype=np.uint8)
        for idx in range(coords.shape[1]):
            if prev_id == trace_id_map[idx]:
                rr, cc = line(prev_x, prev_y, coords[0, idx], coords[1, idx])
                image[cc, rr] = 255
            prev_id = trace_id_map[idx]
            prev_x = coords[0, idx]
            prev_y = coords[1, idx]

        return image
def draw_hog(orientation_histogram, w_sz_x, w_sz_y, c_sz_x, c_sz_y, n_bins):
    orientations = n_bins
    n_cellsx = int(np.floor(w_sz_x // c_sz_x))  # number of cells in x
    n_cellsy = int(np.floor(w_sz_y // c_sz_y))  # number of cells in y
    radius = min(c_sz_x, c_sz_y) // 2 - 1  # - 1
    hog_image = np.zeros((w_sz_x, w_sz_y), dtype=float)
    #     for x in range(n_cellsx):
    #         for y in range(n_cellsy):
    for y in range(n_cellsy):
        for x in range(n_cellsx):
            for o in range(orientations):
                centre = tuple([y * c_sz_y + c_sz_y // 2, x * c_sz_x + c_sz_x // 2])
                #                 dx = radius * scipy.cos(float(o) / orientations * np.pi)
                #                 dy = radius * scipy.sin(float(o) / orientations * np.pi)
                dy = radius * scipy.cos(float(o) / orientations * np.pi)
                dx = radius * scipy.sin(float(o) / orientations * np.pi)
                rr, cc = line(int(centre[0] - dx),
                              int(centre[1] + dy),
                              int(centre[0] + dx),
                              int(centre[1] - dy))
                hog_image[rr, cc] += orientation_histogram[y, x, o]
    return hog_image
Ejemplo n.º 8
0
    def visible(self, trace2, trace_map):
        """
        calculate if it's visible to trace2, which means
        no other traces block them
        """
        rr1, cc1 = self.normed_connected_coords[0, :], self.normed_connected_coords[1,
                                                       :]  # np.nonzero(trace_map == self.id)
        cd1 = np.vstack([rr1, cc1])
        rr2, cc2 = trace2.normed_connected_coords[0, :], trace2.normed_connected_coords[1,
                                                         :]  # np.nonzero(trace_map == trace2.id)
        cd2 = np.vstack([rr2, cc2])
        dist = distance.cdist(cd1.T, cd2.T, 'euclidean')

        x, y = np.unravel_index(np.argmin(dist), dist.shape)
        x1, y1 = cd1[:, x]
        x2, y2 = cd2[:, y]

        rr, cc = line(int(x1), int(y1), int(x2), int(y2))
        for idx in range(len(rr)):
            pixels = (trace_map[rr[idx] - 1:rr[idx] + 2, cc[idx] - 1:cc[idx] + 1] != self.id) \
                     * (trace_map[rr[idx] - 1:rr[idx] + 2, cc[idx] - 1:cc[idx] + 1] != trace2.id) \
                     * (trace_map[rr[idx] - 1:rr[idx] + 2, cc[idx] - 1:cc[idx] + 1] != -1)
            if np.sum(pixels) != 0: return 0
        return 1