Ejemplo n.º 1
0
def test_apply_parallel_lazy():
    import dask.array as da

    # data
    a = np.arange(144).reshape(12, 12).astype(float)
    d = da.from_array(a, chunks=(6, 6))

    # apply the filter
    expected1 = threshold_local(a, 3)
    result1 = apply_parallel(threshold_local, a, chunks=(6, 6), depth=5,
                             extra_arguments=(3,),
                             extra_keywords={'mode': 'reflect'},
                             compute=False)

    # apply the filter on a Dask Array
    result2 = apply_parallel(threshold_local, d, depth=5,
                             extra_arguments=(3,),
                             extra_keywords={'mode': 'reflect'},
                             compute=False)

    assert isinstance(result1, da.Array)

    assert_array_almost_equal(result1.compute(), expected1)

    assert isinstance(result2, da.Array)

    assert_array_almost_equal(result2.compute(), expected1)
def test_apply_parallel():
    import dask.array as da

    # data
    a = np.arange(144).reshape(12, 12).astype(float)

    # apply the filter
    expected1 = threshold_local(a, 3)
    result1 = apply_parallel(threshold_local, a, chunks=(6, 6), depth=5,
                             extra_arguments=(3,),
                             extra_keywords={'mode': 'reflect'})

    assert_array_almost_equal(result1, expected1)

    def wrapped_gauss(arr):
        return gaussian(arr, 1, mode='reflect')

    expected2 = gaussian(a, 1, mode='reflect')
    result2 = apply_parallel(wrapped_gauss, a, chunks=(6, 6), depth=5)

    assert_array_almost_equal(result2, expected2)

    expected3 = gaussian(a, 1, mode='reflect')
    result3 = apply_parallel(
        wrapped_gauss, da.from_array(a, chunks=(6, 6)), depth=5, compute=True
    )

    assert isinstance(result3, np.ndarray)
    assert_array_almost_equal(result3, expected3)
Ejemplo n.º 3
0
 def preview(self):
     if g.win is None or g.win.closed:
         return
     win = g.win
     value = self.getValue('value')
     block_size = self.getValue('block_size')
     preview = self.getValue('preview')
     darkBackground = self.getValue('darkBackground')
     nDim = len(win.image.shape)
     if nDim > 3:
         g.alert("You cannot run this function on an image of dimension greater than 3. If your window has color, convert to a grayscale image before running this function")
         return None
     if preview:
         if nDim == 3: # if the image is 3d
             testimage=np.copy(win.image[win.currentIndex])
         elif nDim == 2:
             testimage=np.copy(win.image)
         testimage = threshold_local(testimage, block_size, offset=value)
         if darkBackground:
             testimage = np.logical_not(testimage)
         testimage = testimage.astype(np.uint8)
         win.imageview.setImage(testimage, autoLevels=False)
         win.imageview.setLevels(-.1, 1.1)
     else:
         win.reset()
         if nDim == 3:
             image = win.image[win.currentIndex]
         else:
             image = win.image
         win.imageview.setLevels(np.min(image), np.max(image))
Ejemplo n.º 4
0
def scanner(image):
	# Edge Detection
	# load the image and compute the ratio of old height to the new height, clone it and resize it
	image = cv2.imread(image)
	ratio = image.shape[0] / 500.0
	orig = image.copy()
	image = imutils.resize(image, height=500)

	# convert the image to grayscale, blur it, and find images edges in image
	gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	grayscale = cv2.GaussianBlur(gray, (5, 5), 0)
	edged = cv2.Canny(gray, 75, 200)

	#cv2.imshow("Image", image)
	#cv2.imshow("Edged", edged)
	#cv2.waitKey(0)
	#cv2.destroyAllWindows()

	# Finding Contours
	# Assume that the longest contour in the image with exactly four points is the piece of the paper
	# to be scanned
	cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
	cnts = imutils.grab_contours(cnts)
	# This will filter out all the contours with the largest area
	cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]

	for c in cnts:
		#approximating the contour
		peri = cv2.arcLength(c, True)
		approx = cv2.approxPolyDP(c, 0.02 * peri, True)

		# finding the rectangle if the contour has 4 points
		if len(approx) == 4:
			screenCnt = approx
			break

	cv2.drawContours(image, [screenCnt], -1, (0,255,0), 2)
	#cv2.imshow("Outline", image)
	#cv2.waitKey(0)
	#cv2.destroyAllWindows()

	#orig: original image
	#screenCnt: contour representing the document multiplied by ratio for resizing the original image
	warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)

	#this is for black and white feels
	warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
	T = threshold_local(warped, 11, offset=10, method="gaussian")
	warped = (warped > T).astype("uint8") * 255

	#cv2.imshow("Original", imutils.resize(orig, height = 650))
	#cv2.imshow("Scanned", imutils.resize(warped, height = 650))
	#cv2.waitKey(0)

	return warped
Ejemplo n.º 5
0
async def imgscan(event):
    ok = await event.get_reply_message()
    if not (ok and (ok.media)):
        await eor(event, "`Reply The pdf u Want to Download..`")
        return
    ultt = await ok.download_media()
    if not ultt.endswith(("png", "jpg", "jpeg", "webp")):
        await eor(event, "`Reply to a Image only...`")
        os.remove(ultt)
        return
    xx = await eor(event, "`Processing...`")
    image = cv2.imread(ultt)
    original_image = image.copy()
    ratio = image.shape[0] / 500.0
    image = imutils.resize(image, height=500)
    image_yuv = cv2.cvtColor(image, cv2.COLOR_BGR2YUV)
    image_y = np.zeros(image_yuv.shape[0:2], np.uint8)
    image_y[:, :] = image_yuv[:, :, 0]
    image_blurred = cv2.GaussianBlur(image_y, (3, 3), 0)
    edges = cv2.Canny(image_blurred, 50, 200, apertureSize=3)
    contours, hierarchy = cv2.findContours(
        edges,
        cv2.RETR_EXTERNAL,
        cv2.CHAIN_APPROX_SIMPLE,
    )
    polygons = []
    for cnt in contours:
        hull = cv2.convexHull(cnt)
        polygons.append(
            cv2.approxPolyDP(hull, 0.01 * cv2.arcLength(hull, True), False))
        sortedPoly = sorted(polygons, key=cv2.contourArea, reverse=True)
        cv2.drawContours(image, sortedPoly[0], -1, (0, 0, 255), 5)
        simplified_cnt = sortedPoly[0]
    if len(simplified_cnt) == 4:
        cropped_image = four_point_transform(
            original_image,
            simplified_cnt.reshape(4, 2) * ratio,
        )
        gray_image = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2GRAY)
        T = threshold_local(gray_image, 11, offset=10, method="gaussian")
        ok = (gray_image > T).astype("uint8") * 255
    if len(simplified_cnt) != 4:
        ok = cv2.detailEnhance(original_image, sigma_s=10, sigma_r=0.15)
    cv2.imwrite("o.png", ok)
    image1 = PIL.Image.open("o.png")
    im1 = image1.convert("RGB")
    scann = f"Scanned {ultt.split('.')[0]}.pdf"
    im1.save(scann)
    await event.client.send_file(event.chat_id,
                                 scann,
                                 reply_to=event.reply_to_msg_id)
    await xx.delete()
    os.remove(ultt)
    os.remove("o.png")
    os.remove(scann)
Ejemplo n.º 6
0
def local(fname):
    #read in image as bw
    adata = sm.imread(fname, flatten=True)
    #apply sobel edge detection
    block_size = 35
    val = filters.threshold_local(adata, block_size, offset=10)
    bdata = adata > val
    edg = bdata + 0.0
    #apply binary fill holes
    #shape = nd.binary_fill_holes(edg) + 0.0
    return edg
Ejemplo n.º 7
0
def local_thresholding(x_img, ext:int=200):
    gray = np.mean(x_img, axis=2)
    
    x_threshold = filters.threshold_local(gray, block_size=ext*2+1)
    
    # Debugging:
    if 1:
        from plotting import concurrent
        concurrent([gray, x_threshold])
    
    return np.greater_equal(gray, x_threshold)
Ejemplo n.º 8
0
def get_component_props(img_stack, output_file=None, verbose=False):
    z_dim = img_stack.shape[0]
    y_dim = img_stack.shape[1]
    x_dim = img_stack.shape[2]
    z_props = []

    bin_stack = np.zeros(img_stack.shape)

    for k in range(0, z_dim):
        z_slice = img_stack[k, :, :]

        if (not np.any(z_slice)):
            # If all values in the slice are 0, then continue to the next slice
            continue

        # Initial thresholding: making all voxels with intensity less than half of otsu's 0.
        thresh_value = threshold_otsu(z_slice) / 2
        initial_thresholding = np.zeros(z_slice.shape)
        for i in range(0, x_dim):
            for j in range(0, y_dim):
                initial_thresholding[
                    j, i] = 0 if z_slice[j, i] < thresh_value else z_slice[j,
                                                                           i]

        # Adaptive thresholding. After this step, images should be binary.
        block_size = 35
        local_thresh = threshold_local(initial_thresholding, block_size)
        otsu_thresh_value = threshold_otsu(local_thresh)
        otsu_thresh = local_thresh > otsu_thresh_value

        # Morphological tranformations using a disk shaped kernal of radius 5 pixels
        erosion = binary_erosion(otsu_thresh, disk(5))
        opening = binary_opening(erosion, disk(5))

        bin_stack[k, :, :] = opening

        # Labelling connected components
        components, num_components = label(opening,
                                           return_num=True,
                                           connectivity=2)
        if (verbose):
            print('%d detected component(s) for z=%d ' % (num_components, z))
        props = regionprops(components)
        z_props.append(props)

    # imsave('bin_stack.tif', bin_stack)
    image = sitk.GetImageFromArray(bin_stack)
    sitk.WriteImage(sitk.Cast(image, sitk.sitkUInt16), 'bin_stack.tif')

    if (output_file != None):
        with open(output_file + '.pkl', 'wb') as f:
            pickle.dump(z_props, f)

    return z_props
Ejemplo n.º 9
0
def adaptive_threshold(directory, image_name, block_size):
    np_array = misc.imread(directory, flatten=True)
    block_size = block_size
    plt.imshow(np_array)
    plt.show()
    adaptive_threshold = skif.threshold_local(np_array,
                                              block_size,
                                              method='mean',
                                              offset=0)
    binary_threshold = np_array > adaptive_threshold
    misc.imsave(image_name, binary_threshold)
Ejemplo n.º 10
0
    def _deskew(self):
        image = self.image
        ratio = image.shape[0] / 500.0
        orig = image.copy()
        image = imutils.resize(image, height=500)

        # convert the image to grayscale, blur it, and find edges
        # in the image
        gray = image
        gray = cv2.GaussianBlur(gray, (5, 5), 0)
        edged = cv2.Canny(gray, 75, 200)

        # find the contours in the edged image, keeping only the
        # largest ones, and initialize the screen contour
        cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
        cnts = imutils.grab_contours(cnts)
        cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:10]

        # loop over the contours
        approx = []
        screenCnt = None

        # print('=')
        for c in cnts:
            # print(c.shape, cv2.contourArea(c))
            # approximate the contour
            peri = cv2.arcLength(c, True)
            approx.append(cv2.approxPolyDP(c, 0.02 * peri, True))

            # if our approximated contour has four points, then we
            # can assume that we have found our screen
            # print(approx[-1])
            if screenCnt is None and len(approx[-1]) == 4:
                screenCnt = approx[-1]

        # print(screenCnt)
        cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)

        # apply the four point transform to obtain a top-down
        # view of the original image
        warped: np.array = four_point_transform(
            orig,
            screenCnt.reshape(4, 2) * ratio)

        # convert the warped image to grayscale, then threshold it
        # to give it that 'black and white' paper effect
        # warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
        T = threshold_local(warped,
                            self.block_size,
                            offset=self.offset,
                            method="gaussian")
        warped = (warped > T).astype("uint8") * 255
        return warped.astype("uint8")
Ejemplo n.º 11
0
    def _apply_transformation(self, ctr, blackwhite=False):
        wrp = four_point_transform(self.original,
                                   ctr.reshape(4, 2) * self.ratio)

        # convert the warped image to grayscale, then threshold it
        # to give it that 'black and white' paper effect
        if blackwhite:
            wrp = cvtColor(wrp, COLOR_BGR2GRAY)
            t = threshold_local(wrp, 11, offset=10, method="gaussian")
            wrp = (wrp > t).astype("uint8") * 255
        return wrp
Ejemplo n.º 12
0
    def rotate_image(self):

        warped = four_point_transform(self.orig,
                                      self.get_contours().reshape(4, 2))

        warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
        T = threshold_local(warped, 11, offset=10, method='gaussian')
        warped = (warped > T).astype('uint8') * 255

        cv2.imshow('warped', imutils.resize(warped, height=1000))
        cv2.waitKey(0)
Ejemplo n.º 13
0
    def __call__(self, value, block_size, darkBackground=False, keepSourceWindow=False):
        self.start(keepSourceWindow)
        if self.tif.dtype == np.float16:
            g.alert("Local Threshold does not support float16 type arrays")
            return
        newtif = np.copy(self.tif)

        if self.oldwindow.nDims == 2:
            newtif = threshold_local(newtif, block_size, offset=value)
        elif self.oldwindow.nDims == 3:
            for i in np.arange(len(newtif)):
                newtif[i] = threshold_local(newtif[i], block_size, offset=value)
        else:
            g.alert("You cannot run this function on an image of dimension greater than 3. If your window has color, convert to a grayscale image before running this function")
            return None
        if darkBackground:
            newtif = np.logical_not(newtif)
        self.newtif = newtif.astype(np.uint8)
        self.newname = self.oldname + ' - Thresholded ' + str(value)
        return self.end()
Ejemplo n.º 14
0
    def getCenterAndR_adap(self, blockSize=33):
        """Calculate the weighting center and radius of circle based on the
        adapative threshold.

        Parameters
        ----------
        blockSize : int, optional
            Block size for adaptive threshold. This value should be odd. (the
            default is 33.

        Returns
        -------
        float
            Weighting center x.
        float
            Weighting center y.
        float
            Radius.
        numpy.ndarray[int]
            Binary image.
        """

        # Adaptive threshold
        delta = 1
        times = 0
        while (delta > 1e-2) and (times < 10):
            img = self.getImg().copy()
            imgBinary = (img > threshold_local(img, blockSize)).astype(float)

            # Calculate the weighting radius
            realR = np.sqrt(np.sum(imgBinary) / np.pi)

            # Calculte the nearest odd number of radius for the blockSize
            if (int(realR)%2 == 0):
                oddRearR = int(realR+1)
            else:
                oddRearR = int(realR)

            # Critera check of while loop
            delta = abs(blockSize - oddRearR)
            times += 1

            # New value of blockSize
            blockSize = oddRearR

        # Calculate the center of mass
        realcy, realcx = center_of_mass(imgBinary)

        # The values of (realcx, realcy, realR) will be (nan, nan, 0.0) for the
        # invalid image.
        if (not np.isfinite([realcx, realcy]).any()):
            print("Can not fit donut to circle.")

        return realcx, realcy, realR, imgBinary
Ejemplo n.º 15
0
def get_string():
    global cap
    global ctr
    global flag
    ctr = 0
    flag = 0
    while 1:
        ret, image = cap.read()
        if ret == False:
            return "Vibrate 2"
        else:
            rows, cols, x = image.shape
            M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 90, 1)
            image = cv2.warpAffine(image, M, (cols, rows))
            if ctr >= 1:
                print("Capturing Image.....")
                orig = image.copy()
                gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
                gray = cv2.GaussianBlur(gray, (5, 5), 0)
                edged = cv2.Canny(gray, 75, 200)
                cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST,
                                        cv2.CHAIN_APPROX_SIMPLE)
                cnts = imutils.grab_contours(cnts)
                cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]
                for c in cnts:
                    peri = cv2.arcLength(c, True)
                    approx = cv2.approxPolyDP(c, 0.02 * peri, True)
                    if len(approx) == 4:
                        screenCnt = approx
                        break
                    else:
                        flag = 1
                        break
                if flag == 1:
                    cv2.imwrite('capture.jpg', image)
                    return "Vibrate"
                else:
                    #print(flag)
                    print("Getting OCR....")
                    warped = four_point_transform(orig,
                                                  screenCnt.reshape(4, 2))
                    warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
                    T = threshold_local(warped,
                                        11,
                                        offset=10,
                                        method="gaussian")
                    #warped = (warped > T).astype("uint8") * 255
                    #cv2.imshow("Scanned", warped)
                    #cv2.imshow("pers", image)
                    cv2.imwrite('capture.jpg', image)
                    cv2.imwrite('text.jpg', warped)
                    cv2.waitKey(0)
                    cv2.destroyAllWindows()
                    return pytesseract.image_to_string(warped)
Ejemplo n.º 16
0
def convertImages(images):
    i = cv2.imread(images)
    i = cv2.cvtColor(i,cv2.COLOR_BGR2GRAY)
    T = threshold_local(i,999,offset=10,method="gaussian")
    i = (T - i).astype("uint8")*255
    img = Image.fromarray(i).resize((28,28))
    im2arr = np.array(img)/255.0
    #squeeze - removes unwanted dimensions. (28*28,1 - n^2,1 (1D))
    im2arr = np.squeeze(im2arr.reshape(1,28*28,1,1))
    im2arr = im2arr.reshape(1,28*28)
    return im2arr
Ejemplo n.º 17
0
def subtract_rolling_ball(image, radius):
    """Subtracts background from image using the Rolling Ball algorithm."""
    subtract = SubtractBall(radius)
    new_radius = subtract.ball.width
    small_image = pyramid_reduce(image, downscale=subtract.ball.shrink_factor)
    background = threshold_local(small_image,
                                 new_radius,
                                 method='generic',
                                 param=subtract.bg)
    background = resize(background, image.shape)
    return image - background
Ejemplo n.º 18
0
def intensity_object_features(im,
                              threshold=None,
                              adaptive_t_radius=51,
                              sample_size=None,
                              random_seed=None):
    """Segment objects based on intensity threshold and compute properties.

    Parameters
    ----------
    im : 2D np.ndarray of float or uint8.
        The input image.
    threshold : float, optional
        A threshold for the image to determine objects: connected pixels
        above this threshold will be considered objects. If ``None``
        (default), the threshold will be automatically determined with
        both Otsu's method and a locally adaptive threshold.
    adaptive_t_radius : int, optional
        The radius to calculate background with adaptive threshold.
    sample_size : int, optional
        Sample this many objects randomly, rather than measuring all
        objects.
    random_seed: int, or numpy RandomState instance, optional
        An optional random number generator or seed from which to draw
        samples.

    Returns
    -------
    f : 1D np.ndarray of float
        The feature vector.
    names : list of string
        The list of feature names.
    """
    if threshold is None:
        tim1 = im > filters.threshold_otsu(im)
        f1, names1 = object_features(tim1,
                                     im,
                                     sample_size=sample_size,
                                     random_seed=random_seed)
        names1 = ['otsu-threshold-' + name for name in names1]
        tim2 = im > filters.threshold_local(im, adaptive_t_radius)
        f2, names2 = object_features(tim2,
                                     im,
                                     sample_size=sample_size,
                                     random_seed=random_seed)
        names2 = ['adaptive-threshold-' + name for name in names2]
        f = np.concatenate([f1, f2])
        names = names1 + names2
    else:
        tim = im > threshold
        f, names = object_features(tim,
                                   im,
                                   sample_size=sample_size,
                                   random_seed=random_seed)
    return f, names
Ejemplo n.º 19
0
def img_thresholding(img, type):
    show_image(img)
    img_grayscale = color.rgb2gray(img)
    if type == 'global':
        thresh = threshold_otsu(img_grayscale)
    else:
        thresh = threshold_local(img_grayscale, block_size=35, offset=10)
    img_binary = img_grayscale > thresh
    img_binary2 = img_grayscale < thresh
    show_image(img_binary)
    show_image(img_binary2)
Ejemplo n.º 20
0
    def create_photos(self):
        tempPhotos = self.photos[:]
        for item in tempPhotos:
            oldpath = r'' + oldPhotosPath + "\\" + item

            image = cv2.imread(oldpath)
            ratio = image.shape[0] / 500.0
            orig = image.copy()
            image = imutils.resize(image, height=500)

            # convert photos to gray and find edges
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            gray = cv2.GaussianBlur(gray, (5, 5), 0)
            edged = cv2.Canny(gray, 75, 200)

            # find the contours in the edged image, keeping only the
            # largest ones, and initialize the screen contour
            cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST,
                                    cv2.CHAIN_APPROX_SIMPLE)
            cnts = imutils.grab_contours(cnts)
            cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]

            # loop over the contours
            for c in cnts:
                peri = cv2.arcLength(c, True)
                approx = cv2.approxPolyDP(c, 0.02 * peri, True)

                if len(approx) == 4:
                    screenCnt = approx
                    break

            newPath = r'' + newPhotosPath + '\\' + item + '.jpg'
            if len(approx) != 4:
                self.add_photos_left(item)
                save_photo = self.no_scan(oldpath)
                if save_photo:
                    self.save_photo(newPath, image)
                    self.del_photo(item)
                else:
                    self.del_photo(item)
                    continue
            else:
                cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)

                warped = four_point_transform.four_point_transform(
                    orig,
                    screenCnt.reshape(4, 2) * ratio)
                warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
                T = threshold_local(warped, 11, offset=10, method="gaussian")
                warped = (warped > T).astype("uint8") * 255

                self.save_photo(newPath, warped)
                self.del_photo(item)
Ejemplo n.º 21
0
def show_adaptive_thresholding(image, blurred_image):
    cv_thresh = cv2.adaptiveThreshold(
        blurred_image, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV,
        blockSize=25, C=15)
    sk_t = threshold_local(
        blurred_image, block_size=29, offset=5, method="gaussian")
    # bitwise_not equivalent
    sk_thresh = (blurred_image < sk_t).astype("uint8") * 255
    cv2.imshow("OpenCV Mean Adaptive Thresholding", cv_thresh)
    cv2.imshow("Scikit Mean Adaptive Thresholding", sk_thresh)
    cv2.imshow("Original", image)
    cv2.waitKey(0)
Ejemplo n.º 22
0
def ocr(image, median):
    gray = get_grayscale(image)
    if(median):
        gray = cv2.medianBlur(gray, 3)
    warped = thresholding(gray)
    warped = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    T = threshold_local(warped, 11, offset=10, method='gaussian')
    warped = (warped > T).astype('uint8') * 255
    pytesseract.pytesseract.tesseract_cmd = TESSERACT_PATH
    custom_config = r'--oem 3 --psm 6'
    text = pytesseract.image_to_string(warped, config=custom_config)
    return text
Ejemplo n.º 23
0
def image_to_df(image_name):
    angle_indicator = int(image_name.split('_')[1])
    image = misc.imread('train_sample/' + image_name + '.jpg',flatten = True).astype(float)
    image_rgb = misc.imread('train_sample/' + image_name + '.jpg')
    image_float = image_rgb.astype(float)
    image_mask = misc.imread('train_masks/' + image_name + '_mask.gif',flatten = True)
    image_mask = image_mask/255
#io.imshow(image_mask)
    image_index = np.where(image >= 0)
    sobel = filters.sobel(image)   # working
#io.imshow(sobel)
    sobel_blurred = filters.gaussian(sobel,sigma=1)  # Working
#io.imshow(sobel_blurred)
    canny_filter_image = canny(image/255.)
#io.imshow(canny_filter_image)
#    threshold_niblack_11 = filters.threshold_niblack(sobel_blurred,201)
#io.imshow(threshold_niblack)
    threshold_li = filters.threshold_li(image)
    mask_li = image > threshold_li
#io.imshow(mask)
    sobel_h = filters.sobel_h(image)
    sobel_v = filters.sobel_v(image)
    laplace = filters.laplace(image)
    threshold_local_51 = filters.threshold_local(image,51)
    mask_local_51 = image > threshold_local_51
#io.imshow(mask)
    df = pd.DataFrame()
    df['l1_dist_y'] = abs(image_index[0] - 639.5)/639.5
    df['l1_dist_x'] = abs(image_index[1] - 958.5)/958.5
    df['l2_dist'] = np.sqrt((df.l1_dist_y)**2 + (df.l1_dist_x)**2)/np.sqrt(2)
    df['grey_values'] = image.reshape((1,1918*1280))[0]/255.
    df['red_values'] = image_rgb.reshape((3,1918*1280))[0]/255.
    df['blue_values'] = image_rgb.reshape((3,1918*1280))[1]/255.
    df['green_values'] = image_rgb.reshape((3,1918*1280))[2]/255.
    df['red_float'] = image_float.reshape((3,1918*1280))[0]/255.
    df['blue_float'] = image_float.reshape((3,1918*1280))[1]/255.
    df['green_float'] = image_float.reshape((3,1918*1280))[2]/255.
    df['sobel_blurred'] = sobel_blurred.reshape((1,1918*1280))[0]/255.
    df['canny_filter_image'] = canny_filter_image.reshape((1,1918*1280))[0].astype(int)
    df['sobel_h'] = sobel_h.reshape((1,1918*1280))[0]/255.
    df['sobel_v'] = sobel_v.reshape((1,1918*1280))[0]/255.
    df['laplace'] = laplace.reshape((1,1918*1280))[0]/511.
    df['threshold_local_51'] = mask_local_51.reshape((1,1918*1280))[0].astype(int)
#    df['threshold_niblack_11'] = threshold_niblack_11.reshape((1,1918*1280))[0]#/255.
    df['threshold_li'] = mask_li.reshape((1,1918*1280))[0].astype(int)
    for i in range(1,17):
        if i == angle_indicator:
            df['angle_indicator_' + str(i)] = 1
        else:
            df['angle_indicator_' + str(i)] = -1
    df['mask'] = image_mask.reshape((1,1918*1280))[0]
    df['mask'] = df['mask'].astype('category')
    return df
Ejemplo n.º 24
0
def preprocess_mobile_image(image):
    # convert the image to grayscale, blur it, and find edges
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(gray, 100, 200)

    T = threshold_local(edged, 11, offset=10, method="gaussian")
    edged = (edged > T).astype("uint8") * 255

    output = Image.fromarray(edged)
    output.save("temp/mobile_output.jpg")
    return True
Ejemplo n.º 25
0
def test():
    files = [
        f.path for f in os.scandir("../sroie-data/task1/data_bordered/")
        if f.name.endswith(".jpg")
    ]

    for f in files:
        print(f)
        im = numpy.array(Image.open(f).convert("L"))
        im_bin = threshold_local(im, block_size=9).astype(numpy.uint8)
        # print(im_bin)
        Image.fromarray(im_bin).save(os.path.splitext(f)[0] + "-bin.png")
Ejemplo n.º 26
0
def denoising():

    listImagesLocal = []
    listImagesBinary = []

    for i in range(143):
        listImagesLocal.append(
            threshold_local(images[i], block_size=35, offset=40))

        listImagesBinary.append(images[i] > listImagesLocal[i])

    return listImagesBinary
Ejemplo n.º 27
0
def preprocess_image(image, i):
    gray = image.copy()
    element = np.ones((1, 2))
    #bright images are processed more accurately with mean method and smaller range
    if (np.mean(gray) < 190):
        T = threshold_local(gray, 15, offset=8,
                            method="median")  #generic, mean, median, gaussian
    else:
        T = threshold_local(gray, 7, offset=8,
                            method="mean")  #generic, mean, median, gaussian

    thresholded = (gray > T).astype("uint8") * 255
    cv2.imwrite("staffs/staffs" + repr(i) + "_thr.png", thresholded)

    thresholded = cv2.erode(thresholded, element)
    cv2.imwrite("staffs/staffs" + repr(i) + "_erode.png", thresholded)

    edges = cv2.Canny(thresholded, 10, 100, apertureSize=3)
    cv2.imwrite("staffs/staffs" + repr(i) + "_canny.png", edges)

    return edges, thresholded
Ejemplo n.º 28
0
def findmembranes(arr_raw):
    '''Morphological operations to find cell membranes from dystrophin channel, or similar'''
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
    kernelsm = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))

    # Need to check here that the values in arr lie between 0 and 255!
    arr = np.array(arr_raw, dtype=np.uint8)

    recipe = [
        (cv2.dilate, kernelsm),
        (cv2.dilate, kernelsm),
        (cv2.dilate, kernelsm),
        #(cv2.dilate,kernel),
        #(cv2.dilate,kernel),
        #(cv2.erode,kernel),
        (cv2.erode, kernelsm),
        (cv2.erode, kernelsm),
        (cv2.erode, kernelsm)
    ]

    #arrf = ndimage.gaussian_filter(arr,0.3)
    #arrf = cv2.GaussianBlur(arr, ksize=(3,3),sigmaX=0,sigmaY=0)
    #arrf = cv2.medianBlur(arr,3)

    #arrf = cv2.bilateralFilter(arr,d=9,sigmaColor=1555,sigmaSpace=1555)
    #ret,thresh = cv2.threshold(arrf.astype(np.uint8),1,255,cv2.THRESH_BINARY)

    arrf = restoration.denoise_bilateral(arr,
                                         11,
                                         sigma_color=3,
                                         sigma_spatial=3,
                                         multichannel=False)
    Image.fromarray(makepseudo(arrf)).show()

    #glob_thresh = filters.threshold_otsu(arrf)
    #thresh = np.array(255*(arrf > glob_thresh/2.0),dtype=np.uint8)
    locthresh = filters.threshold_local(arrf, block_size=21, offset=0)
    thresh = arrf > (locthresh)
    Image.fromarray(makepseudo(255 * thresh)).show()
    threshclean = morphology.remove_small_objects(thresh, 600)
    Image.fromarray(makepseudo(255 * threshclean)).show()
    #thresh = morphology.skeletonize(thresh)
    #Image.fromarray(makepseudo(255*thresh)).show()
    #thresh = morphology.binary_dilation(thresh)
    #Image.fromarray(makepseudo(255*thresh)).show()

    thresh = np.array(255 * thresh, dtype=np.uint8)
    comb0 = threshorig(arr, thresh)
    for func, kern in recipe:
        thresh = func(thresh, kern)
        Image.fromarray(makepseudo(thresh)).show()
    ithresh = cv2.bitwise_not(thresh)
    return ((ithresh, comb0, threshorig(arr, thresh)))
Ejemplo n.º 29
0
    def run(self):
        while True:
            ret, img = self.cam.read()
            if ret:

                block_size = 35
                bw = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
                adaptive_thresh = threshold_local(bw, block_size, offset=10)
                binary_adaptive = bw > adaptive_thresh
                img[binary_adaptive] = (0,0,0)
                image = QtGui.QImage(img.data, self.width, self.height, QtGui.QImage.Format_RGB888)
                self.signal.emit(image)
Ejemplo n.º 30
0
def local_threshold(imagePath, outputPath):
    warnings.filterwarnings("ignore")
    imagePath = "" + imagePath
    color = io.imread(imagePath)
    img = rgb2gray(color)
    image = img_as_ubyte(img)
    block_size = 35
    adaptive_thresh = threshold_local(image, block_size, offset=10)
    binary_local = image > adaptive_thresh
    local_out = img_as_ubyte(binary_local)
    imsave('' + outputPath, local_out)
    image
    def detectCharacterCandidates(self,region):
        plate = perspective.four_point_transform(self.image,region)

        V = cv2.split(cv2.cvtColor(plate,cv2.COLOR_BGR2HSV))[2]
        T = threshold_local(V,29,offset=15,method="gaussian")
        thresh = (V>T).astype("uint8") *255
        thresh = cv2.bitwise_not(thresh)

        plate = imutils.resize(plate,width=400)
        thresh = imutils.resize(thresh,width=400)



        labels = measure.label(thresh,neighbors=8,background=0)
        charCandidates = np.zeros(thresh.shape,dtype="uint8")

        for label in np.unique(labels):
            if label ==0:
                continue
            
            labelMask = np.zeros(thresh.shape, dtype="uint8")
            labelMask[labels == label] = 255
            cnts = cv2.findContours(labelMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            cnts = imutils.grab_contours(cnts)
            
            if len(cnts) > 0:
                c = max(cnts, key=cv2.contourArea)
                (boxX, boxY, boxW, boxH) = cv2.boundingRect(c)
                
                aspectRatio = boxW / float(boxH)
                solidity = cv2.contourArea(c) / float(boxW * boxH)
                heightRatio = boxH / float(plate.shape[0])
                
                keepAspectRatio = aspectRatio < 1.0
                keepSolidity = solidity > 0.15
                keepHeight = heightRatio > 0.4 and heightRatio < 0.95
                
                if keepAspectRatio and keepSolidity and keepHeight:
                    hull = cv2.convexHull(c)
                    cv2.drawContours(charCandidates, [hull], -1, 255, -1)

        charCandidates = segmentation.clear_border(charCandidates)
	
        cnts = cv2.findContours(charCandidates.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
        cnts = imutils.grab_contours(cnts)
        
        if len(cnts) > self.minChars:
            (charCandidates, cnts) = self.pruneCandidates(charCandidates, cnts)
            
        thresh = cv2.bitwise_and(thresh, thresh, mask=charCandidates)
        cv2.imshow("Char Threshold", thresh)
        
        return LicensePlate(success=True,plate=plate,thresh=thresh,candidates=charCandidates)
def eucledean_distance_map(img, thresh_block_size=21, denoise_level=9):
    '''creates an Eucledean distance map for an input image'''
    img_gray = color.rgb2gray(img)  #convert to gray scale
    adaptive_thresh = filters.threshold_local(
        img_gray, block_size=thresh_block_size, offset=0
    )  # sets the thershold values    img_gray_thres = img_gray > adaptive_thresh # applies the threshold values
    img_gray_thres = img_gray > adaptive_thresh  # applies the threshold values
    img_denoise = median_filter(
        img_gray_thres, size=denoise_level)  # reduce image noise by despeckle
    img_EDM = distance_transform_edt(
        img_denoise)  # estimate eucldean distance to the closest dark pixel
    return img_EDM, img_denoise
def warp(img):
    # compute the ratio of the old height
    # to the new height, clone it, and resize it
    ratio = img.shape[0] / 500.0
    orig = img.copy()
    img = imutils.resize(img, height=500)

    # convert the image to grayscale, blur it, and find edges
    # in the image
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    edged = cv2.Canny(gray, 75, 200)

    # find the contours in the edged image, keeping only the
    # largest ones, and initialize the screen contour
    cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST,
                            cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)
    cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]

    # loop over the contours
    for c in cnts:
        # approximate the contour
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, 0.02 * peri, True)

        # if our approximated contour has four points, then we
        # can assume that we have found our screen
        ### todo: incomplete document with more than 4 edges
        if len(approx) == 4:
            screenCnt = approx
            break

    # apply the four point transform to obtain a top-down
    # view of the original image
    warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)

    # convert the warped image to grayscale, then threshold it
    # to give it that 'black and white' paper effect
    warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)
    T = threshold_local(warped, 11, offset=10, method="gaussian")
    warped = (warped > T).astype("uint8") * 255
    warped = cv2.cvtColor(warped, cv2.COLOR_GRAY2RGB)

    # show the original and scanned images
    #print("STEP 3: Apply perspective transform")
    cv2.imshow("Original", imutils.resize(orig, height=650))
    cv2.imshow("Scanned", imutils.resize(warped, height=650))
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    return warped
    def segmentation(self, LpRegion, name):
        # apply thresh to extracted licences plate
        V = cv2.split(cv2.cvtColor(LpRegion, cv2.COLOR_BGR2HSV))[2]

        # adaptive threshold
        T = threshold_local(V, 15, offset=10, method="gaussian")
        thresh = (V > T).astype("uint8") * 255
        cv2.imwrite("output/lp/{}_step2_1.png".format(name), thresh)
        # convert black pixel of digits to white pixel
        thresh = cv2.bitwise_not(thresh)
        cv2.imwrite("output/lp/{}_step2_2.png".format(name), thresh)
        thresh = imutils.resize(thresh, width=400)
        thresh = cv2.medianBlur(thresh, 5)
        cv2.imwrite("output/lp/{}_step2_3.png".format(name), thresh)

        # connected components analysis
        labels = measure.label(thresh, connectivity=2, background=0)

        # loop over the unique components
        for label in np.unique(labels):
            # if this is background label, ignore it
            if label == 0:
                continue

            # init mask to store the location of the character candidates
            mask = np.zeros(thresh.shape, dtype="uint8")
            mask[labels == label] = 255

            # find contours from mask
            _, contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL,
                                                      cv2.CHAIN_APPROX_SIMPLE)

            if len(contours) > 0:
                contour = max(contours, key=cv2.contourArea)
                (x, y, w, h) = cv2.boundingRect(contour)

                # rule to determine characters
                aspectRatio = w / float(h)
                solidity = cv2.contourArea(contour) / float(w * h)
                heightRatio = h / float(LpRegion.shape[0])

                if 0.1 < aspectRatio < 1.0 and solidity > 0.1 and 0.35 < heightRatio < 2.0:
                    # extract characters
                    candidate = np.array(mask[y:y + h, x:x + w])
                    square_candidate = convert2Square(candidate)
                    square_candidate = cv2.resize(square_candidate, (28, 28),
                                                  cv2.INTER_AREA)
                    cv2.imwrite(
                        './characters/' + str(x) + "_" + str(y) + ".png",
                        cv2.resize(square_candidate, (56, 56), cv2.INTER_AREA))
                    square_candidate = square_candidate.reshape((28, 28, 1))
                    self.candidates.append((square_candidate, (y, x)))
Ejemplo n.º 35
0
def threshold_local(image, *args, **kwargs):
    '''
    skimage changed threshold_adaptive to threshold_local. This wraps both
    to ensure the same behaviour with old and new versions.
    '''
    try:
        from skimage.filters import threshold_local
        mask = image > threshold_local(image, *args, **kwargs)
    except ImportError:
        from skimage.filters import threshold_adaptive
        mask = threshold_adaptive(image, *args, **kwargs)

    return mask
Ejemplo n.º 36
0
def preprocess_cheque(infile, outfile):
    # Open image in grayscale mode
    image = np.array(Image.open(infile).convert("L"))

    # Apply local OTSU thresholding
    block_size = 25
    adaptive_thresh = threshold_local(image, block_size, offset=15)
    binarized = image > adaptive_thresh
    binarized = binarized.astype(float) * 255
    binarized = Image.fromarray(binarized).convert("L")

    # Save binarized file
    binarized.save(outfile)
Ejemplo n.º 37
0
 def get_bin_threshold(self, percent, high=True, adaptive=False, binary=True, img=False):
     if adaptive:
         if binary:
             return self.pixels > threshold_local(self.pixels, percent)
         return threshold_local(self.pixels, percent)
     mi = np.min(self.pixels)
     norm = (self.pixels-mi)/(np.max(self.pixels)-mi)
     if high:
         r = norm > percent
     else:
         r = norm < percent
     if not img:
         if binary:
             return r
         return np.ones(self.pixels.shape)*r
     else:
         I = copy.deepcopy(self)
         I.channel = "Threshold from "+I.channel
         if binary:
             I.pixels = r
         else:
             I.pixels = np.ones(self.pixels.shape)*r
         return I
Ejemplo n.º 38
0
def intensity_object_features(im, threshold=None, adaptive_t_radius=51,
                              sample_size=None, random_seed=None):
    """Segment objects based on intensity threshold and compute properties.

    Parameters
    ----------
    im : 2D np.ndarray of float or uint8.
        The input image.
    threshold : float, optional
        A threshold for the image to determine objects: connected pixels
        above this threshold will be considered objects. If ``None``
        (default), the threshold will be automatically determined with
        both Otsu's method and a locally adaptive threshold.
    adaptive_t_radius : int, optional
        The radius to calculate background with adaptive threshold.
    sample_size : int, optional
        Sample this many objects randomly, rather than measuring all
        objects.
    random_seed: int, or numpy RandomState instance, optional
        An optional random number generator or seed from which to draw
        samples.

    Returns
    -------
    f : 1D np.ndarray of float
        The feature vector.
    names : list of string
        The list of feature names.
    """
    if threshold is None:
        tim1 = im > imfilter.threshold_otsu(im)
        f1, names1 = object_features(tim1, im, sample_size=sample_size,
                                     random_seed=random_seed)
        names1 = ['otsu-threshold-' + name for name in names1]
        tim2 = im > imfilter.threshold_local(im, adaptive_t_radius)
        f2, names2 = object_features(tim2, im, sample_size=sample_size,
                                     random_seed=random_seed)
        names2 = ['adaptive-threshold-' + name for name in names2]
        f = np.concatenate([f1, f2])
        names = names1 + names2
    else:
        tim = im > threshold
        f, names = object_features(tim, im, sample_size=sample_size,
                                   random_seed=random_seed)
    return f, names
Ejemplo n.º 39
0
def _optimal_w(image, p=0.05):
    # Calculate the optimal window size for the image segmentation given a quantile.
    # It expand the radious until it reaches the best segmentation.


    # radiusMin, radius Max and inc in percentages of the image size, p as [0,1] value, image is the original version
    radiusMin = 5
    radiusMax = 40
    inc = 1

    f = (image - np.min(image)) / (np.max(image) - np.min(image))
    dims = f.shape
    rows = dims[0]
    cols = dims[1]

    maxsize = np.max([rows, cols])
    imagesize = cols * rows
    radius_thresh = np.round(np.min([rows, cols]) / 4.)
    unit = np.round(maxsize / 100.)

    radiusMin = radiusMin * unit
    radiusMax = radiusMax * unit
    radiusMax = int(np.min([radiusMax, radius_thresh]))
    radius = radiusMin
    inc = inc * unit

    bg = np.percentile(f, p * 100)
    fg = np.percentile(f, (1 - p) * 100)
    min_ov = imagesize

    while (radius <= radiusMax):
        tt = int(radius * radius)
        if tt % 2 == 0:
            tt += 1

        adaptive_threshold = threshold_local(f, tt, method='mean', offset=0)#(f, tt, offset=0)
        g = f > adaptive_threshold

        ov = _bg_fg(f, g, bg, fg)
        if (ov < min_ov):
            w = radius
            min_ov = ov

        radius += inc
    return w
Ejemplo n.º 40
0
def test_apply_parallel():
    # data
    a = np.arange(144).reshape(12, 12).astype(float)

    # apply the filter
    expected1 = threshold_local(a, 3)
    result1 = apply_parallel(threshold_local, a, chunks=(6, 6), depth=5,
                             extra_arguments=(3,),
                             extra_keywords={'mode': 'reflect'})

    assert_array_almost_equal(result1, expected1)

    def wrapped_gauss(arr):
        return gaussian(arr, 1, mode='reflect')

    expected2 = gaussian(a, 1, mode='reflect')
    result2 = apply_parallel(wrapped_gauss, a, chunks=(6, 6), depth=5)

    assert_array_almost_equal(result2, expected2)
Ejemplo n.º 41
0
def equalize_exposure(image, iterations=1, kernel_size=None, min_object_size=500, dark_objects=True, stretch=False):
    """
    Filter a grayscale image with uneven brightness across it, such as you might see in a microscope image.
    Removes large objects using adaptive thresholding based on `min_object_size`, then calculates the mean
    in a circular neighborhood of diameter `kernel_size`. Smooths this mean, then subtracts the background
    variation from the original image (including large objects). Run twice of best results, though once
    should give satisfactory results. As a bonus, this often enhances white balance and colors.

    For color images, run on each band separately and then combine into a [dim_x, dim_y, 3] numpy array.
    When run on color images with `stretch=True`, this function improves white balance and colors.

    Essential for filtering candidate objects by color. Slow; could be optimized with `opencv_python`, though
    this function doesn't support masking when calculating means.

    Parameters
    ----------
    image : ndarray (float, int)
        Grayscale image or band.
    kernel_size : int
        Passes to `skimage.morphology.disk` to create a kernel of diameter kernel_size in pixels. If `None`,
        defaults to `max(image.shape)/10`.
    min_object_size : int
        Passes to `skimage.morphology.remove_small_holes`. Area of objects to ignore when averaging
        background values, in pixels.
    dark_objects : bool
        Are objects dark against a light background?
    stretch : bool
        Stretch values to cover entire colorspace? Enhances colors. Largely aesthetic. Not recommended
        for batch analyses.

    Returns
    -------
    An ndarray of type float [0:1].

    See Also
    --------
    `skimage.filters.rank.mean`
    """

    # Housekeeping
    img = img_as_float(image.copy())

    if stretch is True:
        img = img/img.max()

    if dark_objects is False:
        img = 1-img  # invert

    img_in = img.copy()  # for use later

    if kernel_size is None:
        kernel_size = np.int(max(image.shape[0], image.shape[1])/10)

    # mean filter kernel
    kernel = morphology.disk(int(kernel_size/2))

    # identify objects to ignore
    if kernel_size % 2 is 0:
        block_size = kernel_size + 1
    else:
        block_size = kernel_size

    #objects = ~filters.threshold_adaptive(img, block_size, offset = 0.01*img.max())  # deprecated function
    objects = img > filters.threshold_local(img, block_size, offset = 0.01*img.max())
    objects = morphology.remove_small_objects(objects, min_size = min_object_size)

    # Correct Exposure x times
    i = 0
    while i < iterations:
        # Global mean
        img_mean = np.ma.masked_array(img, mask=objects).mean()

        # global means
        local_means = filters.rank.mean(img, selem=kernel, mask=~objects)
        local_means = filters.gaussian(local_means, kernel_size)

        # Correct Image
        img += (img_mean - local_means)
        img[img>1] = 1  # for compatibilty with img_as_float
        img[img<0] = 0  # for compatibilty with img_as_float
        i += 1

    out = img_as_float(img)

    return(out)
Ejemplo n.º 42
0
def frangi_segmentation(image, 
                        colors,
                        frangi_args, 
                        threshold_args,
                        separate_objects=True, 
                        contrast_kernel_size='skip',
                        color_args_1='skip',
                        color_args_2='skip', 
                        color_args_3='skip', 
                        neighborhood_args='skip',
                        morphology_args_1='skip', 
                        morphology_args_2='skip', 
                        hollow_args='skip', 
                        fill_gaps_args='skip', 
                        diameter_args='skip', 
                        diameter_bins='skip', 
                        image_name='image', 
                        verbose=False):
    """
    Possible approach to object detection using frangi filters. Selects colorbands for
    analysis, runs frangi filter, thresholds to identify candidate objects, then removes
    spurrious objects by color and morphology characteristics. See frangi_approach.ipynb. 
    
    Unless noted, the dictionaries are called by their respective functions in order.
    
    Parameters
    ----------
    image : ndarray
        RGB image to analyze
    colors : dict or str
        Parameters for picking the colorspace. See `pyroots.band_selector`. 
    frangi_args : list of dict or dict
        Parameters to pass to `skimage.filters.frangi`
    threshold_args : list of dict or dict
        Parameters to pass to `skimage.filters.threshold_adaptive`
    contrast_kernel_size : int, str, or None
        Kernel size for `skimage.exposure.equalize_adapthist`. If `int`, then gives the size of the kernel used
        for adaptive contrast enhancement. If `None`, uses default (1/8 shortest image dimension). If `skip`,
        then skips. 
    color_args_1 : dict
        Parameters to pass to `pyroots.color_filter`.
    color_args_2 : dict
        Parameters to pass to `pyroots.color_filter`. Combines with color_args_1
        in an 'and' statement.
    color_args_3 : dict
        Parameters to pass to `pyroots.color_filter`. Combines with color_args_1, 2
        in an 'and' statement.
    neighborhood_args : dict
        Parameters to pass to 'pyroots.neighborhood_filter'. 
    morphology_args_1 : dict
        Parameters to pass to `pyroots.morphology_filter`    
    morphology_args_2 : dict
        Parameters to pass to `pyroots.morphology_filter`. Happens after fill_gaps_args in the algorithm.
    hollow_args : dict
        Parameters to pass to `pyroots.hollow_filter`
    fill_gaps_args : dict
        Paramaters to pass to `pyroots.fill_gaps`
    diameter_bins : list
        To pass to `pyroots.bin_by_diameter`
    image_name : str
        Identifier of image for summarizing
    
    Returns
    -------
    A dictionary containing:
        1. `"geometry"` summary `pandas.DataFrame`
        2. `"objects"` binary image
        3. `"length"` medial axis image
        4. `"diameter"` medial axis image
 
    """

    # Pull band from colorspace
    working_image = band_selector(image, colors)  # expects dictionary (lazy coding)
    nbands = len(working_image)
    if verbose is True:
        print("Color bands selected")
    
    ## Count nubmer of dictionaries in threshold_args and frangi_args. Should equal number of bands. Convert to list if necessary
    try:
        len(threshold_args[0])
    except:
        threshold_args = [threshold_args]
        if nbands != len(threshold_args):
            raise ValueError(
                """Number of dictionaries in `threshold_args` doesn't
                equal the number of bands in `colors['band']`!"""
            )
        pass 
    
    try:
        len(frangi_args[0])
    except:
        frangi_args = [frangi_args]
        if nbands != len(frangi_args):
            raise ValueError(
                """Number of dictionaries in `frangi_args` doesn't 
                equal the number of bands in `colors['band']`!"""
            )
        pass    
    
    working_image = [img_as_float(i) for i in working_image]
    
    # Contrast enhancement
    try:
        for i in range(nbands):
            temp = exposure.equalize_adapthist(working_image[i], 
                                               kernel_size = contrast_kernel_size)
            working_image[i] = img_as_float(temp)
        if verbose:
            print("Contrast enhanced")
    except:
        if contrast_kernel_size is not 'skip':
            warn('Skipping contrast enhancement')
        pass
        
    # invert if necessary
    for i in range(nbands):
        if not colors['dark_on_light'][i]:
            working_image[i] = 1 - working_image[i]
    
    # Identify smoothing sigma for edges and frangi thresholding
    # simultaneously detect edges (computationally cheaper than multiple frangi enhancements)
    edges = [np.ones_like(working_image[0]) == 1] * nbands    # all True
    sigma_val = [0.125] * nbands  # step is 0, 0.25, 0.5, 1, 2, 4, 8, 16
    for i in range(nbands):
        edge_val = 1
        while edge_val > 0.1 and sigma_val[i] < 10:
            sigma_val[i] = 2*sigma_val[i]
            temp = filters.gaussian(working_image[i], sigma=sigma_val[i])
            temp = filters.scharr(temp)
            temp = temp > filters.threshold_otsu(temp)
            edge_val = np.sum(temp) / np.sum(np.ones_like(temp))

            edges_temp = temp.copy()

        if sigma_val[i] == 0.25: # try without smoothing
            temp = filters.scharr(working_image[i])
            temp = temp > filters.threshold_otsu(temp)
            edge_val = np.sum(temp) / np.sum(np.ones_like(temp))
            if edge_val <= 0.1:
                sigma_val[i] = 0
                edges_temp = temp.copy()
            
        if separate_objects:
            edges[i] = morphology.skeletonize(edges_temp)
    
    if verbose:
        print("Sigma value: {}".format(sigma_val))
        if separate_objects:
            print("Edges found")
    
    # Frangi vessel enhancement
    for i in range(nbands):
        temp = filters.gaussian(working_image[i], sigma=sigma_val[i])
        temp = filters.frangi(temp, **frangi_args[i])
        temp = 1 - temp/np.max(temp)
        temp = temp < filters.threshold_local(temp, **threshold_args[i])
        working_image[i] = temp.copy()
    
    frangi = working_image.copy()
    if verbose:
        print("Frangi filter, threshold complete")
    
    
    # Combine bands, separate objects
    combined = working_image[0] * ~edges[0]
    for i in range(1, nbands):
        combined = combined * working_image[i] * ~edges[i]
    working_image = combined.copy()
    
    # Filter candidate objects by color
    try:
        color1 = color_filter(image, working_image, **color_args_1)  #colorspace, target_band, low, high, percent)
        if verbose:
            print("Color filter 1 complete")
    except:
        if color_args_1 is not 'skip':
            warn("Skipping Color Filter 1")
        color1 = np.ones(working_image.shape)  # no filtering      

    try:
        color2 = color_filter(image, working_image, **color_args_2)  # nesting equates to an "and" statement.
        if verbose:
            print("Color filter 2 complete")   
    except:
        if color_args_2 is not 'skip':
            warn("Skipping Color Filter 2")
        color2 = np.ones(working_image.shape)  # no filtering
    
    try:
        color3 = color_filter(image, working_image, **color_args_3)  # nesting equates to an "and" statement.
        if verbose:
            print("Color filter 3 complete")
    except:
        if color_args_3 is not 'skip':
            warn("Skipping Color Filter 3")
        color3 = np.ones(working_image.shape)  # no filtering
    
    # Combine bands
    working_image = color1 * color2 * color3
    del color1
    del color2
    del color3
    
    # Re-expand to area
    if separate_objects:
    
        # find edges removed
        temp = [frangi[i] * edges[i] for i in range(nbands)]
        rm_edges = temp[0].copy()
        for i in range(1, nbands):
            rm_edges = rm_edges * temp[i]
        
        # filter by color per criteria above
        try:    color1 = color_filter(image, rm_edges, **color_args_1)
        except: color1 = np.ones(rm_edges.shape)
        try:    color2 = color_filter(image, rm_edges, **color_args_2)
        except: color2 = np.ones(rm_edges.shape)
        try:    color3 = color_filter(image, rm_edges, **color_args_3)
        except: color3 = np.ones(rm_edges.shape)
        
        # Combine color filters
        expanded = color1 * color2 * color3
    else:
        expanded = np.zeros(colorfilt.shape) == 1  # evaluate to false
    
    
    working_image = expanded ^ working_image  # bitwise or
    
    try:    # remove little objects (for computational efficiency)
        working_image = morphology.remove_small_objects(
            working_image, 
            min_size=morphology_args_1['min_size']
        )
    except:
        pass
    if verbose:
        print("Edges re-added")

    # Filter candidate objects by morphology
    try:
        working_image = morphology_filter(working_image, **morphology_args_1)
        if verbose:
            print("Morphology filter 1 complete")
    except:
        if morphology_args_1 is not 'skip':
            warn("Skipping morphology filter 1")
        pass        
    
    # Filter objects by neighborhood colors
    try:
        working_image = neighborhood_filter(image, working_image, **neighborhood_args)
        if verbose:
            print("Neighborhood filter complete")
    except:
        if neighborhood_args is not 'skip':
            warn("Skipping neighborhood filter")
        pass
    
    # Filter candidate objects by hollowness
    if hollow_args is not 'skip':  
        temp = morphology.remove_small_holes(working_image, min_size=10)
        try:
            if np.sum(temp) > 0:
                working_image = hollow_filter(temp, **hollow_args)
            if verbose:
                print("Hollow filter complete")
        except:
            warn("Skipping hollow filter")
            pass
    
    # Close small gaps and holes in accepted objects
    try:
        working_image = fill_gaps(working_image, **fill_gaps_args)
        if verbose:
            print("Gap filling complete")
    except:
        if fill_gaps_args is not 'skip':
            warn("Skipping filling gaps")
        pass
    
    # Filter candidate objects by morphology
    try:
        working_image = morphology_filter(working_image, **morphology_args_2)
        if verbose:
            print("Morphology filter 2 complete")
    except:
        if morphology_args_2 is not 'skip':
            warn("Skipping morphology filter 2")
        pass
        
    # Skeletonize. Now working with a dictionary of objects.
    skel = skeleton_with_distance(working_image)
    if verbose:
        print("Skeletonization complete")
    
    # Diameter filter
    try:
        diam = diameter_filter(skel, **diameter_args)
        if verbose:
            print("Diameter filter complete")
    except:
        diam = skel.copy()
        if diameter_args is not 'skip':
            warn("Skipping diameter filter")
        pass
    
    # Summarize
    if diameter_bins is None or diameter_bins is 'skip':
        summary_df = summarize_geometry(diam['geometry'], image_name)

    else:
        diam_out, summary_df = bin_by_diameter(diam['length'],
                                               diam['diameter'],
                                               diameter_bins,
                                               image_name)
        diam['diameter'] = diam_out
    
    out = {'geometry' : summary_df,
           'objects'  : diam['objects'],
           'length'   : diam['length'],
           'diameter' : diam['diameter']}

    if verbose is True:
        print("Done")

    return(out)
Ejemplo n.º 43
0
# Here, we binarize an image using the `threshold_local` function, which
# calculates thresholds in regions with a characteristic size `block_size` surrounding
# each pixel (i.e. local neighborhoods). Each threshold value is the weighted mean
# of the local neighborhood minus an offset value.
#

from skimage.filters import threshold_otsu, threshold_local


image = data.page()

global_thresh = threshold_otsu(image)
binary_global = image > global_thresh

block_size = 35
adaptive_thresh = threshold_local(image, block_size, offset=10)
binary_adaptive = image > adaptive_thresh

fig, axes = plt.subplots(nrows=3, figsize=(7, 8))
ax = axes.ravel()
plt.gray()

ax[0].imshow(image)
ax[0].set_title('Original')

ax[1].imshow(binary_global)
ax[1].set_title('Global thresholding')

ax[2].imshow(binary_adaptive)
ax[2].set_title('Adaptive thresholding')
Ejemplo n.º 44
0
def thresholding_segmentation(image,
                              threshold_args,
                              image_name='Default Image',
                              colors='dark',
                              contrast_kernel_size='skip',
                              mask_args='skip',
                              noise_removal_args='skip',
                              morphology_filter_args='skip',
                              fill_gaps_args='skip',
                              lw_filter_args='skip',
                              diam_filter_args='skip',
                              diameter_bins=None,
                              verbose=False):
    """
    Full analysis of an image for length of objects based on thresholding.
    Performs the following steps:
    1. Colorspace conversion and selecting analysis bands
    2. Contrast enhancement
    3. Adaptive thresholding bands to binary images
    4. Combining multiplicatively (i.e. kept if `True` in all, if multiple bands)
    5. Filter objects by size, length:width ratio, and diameter (all optional)
    6. Smoothing (optional)
    7. Measuring medial axis length and diameter along the length
    8. Summarizing by diameter class or the entire image

    Methods that are optional are set as 'skip' for default. Most arguments require
    dictionaries of arguments for the subfunctions. The easiest way to generate these
    dictionaries is to use the thresholding-based segmentation notebook. See the pyroots
    functions for more information.

    Parameters
    ----------
    image : array
    	An RGB or black and white image for analysis

    threshold_args : list of dicts
        Dictionaries contain options for adaptive thresholding. See skimage.filters.threshold_adaptive().
        At minimum, requires 'block_size', for example, threshold_args = [{'block_size':101}].

    image_name : str
    	What do you want to call your image?

    colors : dict or string
        See `pyroots.band_selector`
        For color analysis:
            Currently only supports one colorspace, but you can choose multiple bands.
        	A dictionary containing:
            - colorspace: string.
                Colorspace in which to run the analysis (ex. RGB, LAB, HSV). See
                scikit-image documentation for all options.
            - band: list of integers
                Specifying which bands of `colorspace` on which to run the analysis
                (ex. 2 in RGB gives Blue, 0 gives Red).
            - dark_on_light: list of boolean
                Are the objects dark objects on a light background? Length must match
                length of `colors['band']`.
        For black and white analysis:
            A string of either:
                `'dark'` for dark roots on a light background
                `'light'` for light roots on a dark background

    contrast_kernel_size : int or None
        Dimension of kernel for adaptively enhancing contrast. Calls
        `skimage.exposure.equalize_adapthist()`. If `None`, will use a default of
        1/8 height by 1/8 width.

    mask_args : dict
    	Used for masking the image with an ellipse. Useful for photomicroscopy. See `pr.ellipse_mask`.

    noise_removal_args : dict
    	Smooths and despeckles the image, and also separates loosely connected objects for easier filtering.
        Contains arguments for `pyroots.noise_removal()`.

    morphology_filter_args : dict
        Filters objects by shape, size, and solidity. See `pyroots.morphology_filter()`.

    fill_gaps_args : dict
        Removes small holes and gaps between objects, now that most noise is removed. See
        `pyroots.fill_gaps()`.

    lw_filter_args : dict
        Removes objects based on medial axis length:mean width ratios. See `pyroots.length_width_filter()`.

    diam_filter_args : dict
        Removes entire objects or parts of objects based on diameters. See `pyroots.diameter_filter()`.

    diameter_bins : list of float
    	Bin cutoffs for summarizing object length by diameter class.
    	Defaults to `None`, which returns total length and average diameter for
    	all objects in the image.

    verbose : bool
        Give feedback showing the step working on?

    Returns
    -------
    A dictionary containing:
        1. 'geometry' : a `pandas` dataframe describing either:
            - image name, total length, mean diameter, and the number of objects (if `diameter_bins` is `None`)
            - image name, length by diameter class, and diameter class (otherwise)
        2. 'objects'  : a binary image of kept objects
        3. 'length'   : a 2D image array of object medial axes with values indicating the length at that axis
        4. 'diameter' : a 2D image array of object medial axes with values indicating either:
            - the diameter at that pixel (if `diameter_bins` is `None`)
            - the diameter bin to which a pixel belongs (otherwise)
    3) skeleton pixel lengths; 4) skeleton pixel diameters.
    
    Notes
    -----
    Most functions within this method are attempted. If they receive an unuseable argument, 
    e.g. the dictionary contains a formatting error or a bad keyword, then the method will be 
    skipped with a warning. If you see such a warning ("Skipping (function)..."), check the 
    formatting of your argument and re-create a parameters file with a jupyter notebook.
    
    See Also
    --------
    For example parameter dictionaries, see example_thresholding_analysis_parameters.py.

    """


    # Begin
    ## Convert Colorspace, enhance contrast
    # Pull band from colorspace
    working_image = band_selector(image, colors)
    nbands = len(working_image)
    if verbose is True:
        print("Color bands selected")
    

    ## Count nubmer of dictionaries in threshold_args. Should equal number of bands. Make sure is list.
    try:
        len(threshold_args[0])
    except:
        threshold_args = [threshold_args]
        if nbands != len(threshold_args):
            raise ValueError("Number of dictionaries in `threshold_args` doesn't\
                             equal the number of bands in `colors['band']`!")
        pass        

    try:
        for i in range(nbands):
            temp = exposure.equalize_adapthist(working_image[i],
                                               kernel_size = contrast_kernel_size)
            working_image[i] = img_as_ubyte(temp)
        if verbose is True:
            print("Contrast enhanced")
    except:
        if contrast_kernel_size is not 'skip':
            warn("Skipping contrast enhancement")
        pass

    ## threshold
    for i in range(nbands):
        working_image[i] = working_image[i] > filters.threshold_local(working_image[i],
                                                                      **threshold_args[i])
    for i in range(nbands):
        if len(colors) == 3:
            if colors['dark_on_light'][i] is True:
                working_image[i] = ~working_image[i]
        else:
            if colors == 'dark':
                working_image[i] = ~working_image[i]
                
    ## Combine bands. As written, keeps all 'TRUE'
    combined = working_image[0].copy()
    for i in range(1, nbands):
        combined = combined * working_image[i]

    working_image = combined.copy()
    if verbose is True:
        print("Thresholding complete")

    ## Mask, filtering, smoothing
    try:
        working_image = working_image * draw_mask(working_image, **mask_args)
        if verbose is True:
            print("Image masked")
    except:
        if mask_args is not 'skip':
            warn("Skipping mask")
    pass

    try:
        working_image = noise_removal(working_image, **noise_removal_args)
        if verbose is True:
            print("Smoothing and noise removal complete")
    except:
        if noise_removal_args is not 'skip':
            warn("Skipping noise removal")
        pass

    try:
        working_image = morphology_filter(working_image, **morphology_filter_args)
        if verbose is True:
            print("Morphology filtering complete")
    except:
        if morphology_filter_args is not 'skip':
            warn("Skipping morphology filter")
        pass

    try:
        working_image = fill_gaps(working_image, **fill_gaps_args)
        if verbose is True:
            print("Smoothing and gap filling complete")
    except:
        if fill_gaps_args is not 'skip':
            warn("Skipping gap filling and smoothing")
        pass

    ## skeleton, length-width, diameter filters
    skel_dict = skeleton_with_distance(working_image)
    if verbose is True:
        print("Skeletonization complete")

    try:
        lw_dict = length_width_filter(skel_dict, **lw_filter_args)
        if verbose is True:
            print("Length:width filtering complete")
    except:
        lw_dict = skel_dict.copy()
        if lw_filter_args is not 'skip':
            warn("Skipping length-width filter")
        pass

    try:
        diam_dict = diameter_filter(lw_dict, **diam_filter_args).copy()
        if verbose is True:
            print("Diameter filter complete")
    except:
        if diam_filter_args is not 'skip':
            warn("Skipping diameter filter")
        pass

    ## Summarize
    if diameter_bins is None or diameter_bins is 'skip':
        summary_df = summarize_geometry(skel_dict['geometry'], image_name)

    else:
        diam_out, summary_df = bin_by_diameter(skel_dict['length'],
                                               skel_dict['diameter'],
                                               diameter_bins,
                                               image_name)
        skel_dict['diameter'] = diam_out

    out = {'geometry' : summary_df,
           'objects'  : skel_dict['objects'],
           'length'   : skel_dict['length'],
           'diameter' : skel_dict['diameter']}

    if verbose is True:
        print("Done")

    return(out)