def execute(outputsize): faces_dir_path = "data/train_set/48_48_faces_web_augmented" bkgs_dir_path = "data/train_set/48_48_nonfaces_aflw" target_path = "data/train_set/13" faces_dir=join(target_path,"faces") nonfaces_dir = join(target_path,"nonfaces") os.makedirs(nonfaces_dir) os.makedirs(faces_dir) img_faces = [ f for f in listdir(faces_dir_path) if isfile(join(faces_dir_path,f)) and f.endswith("png") ] img_bkgs = [ f for f in listdir(bkgs_dir_path) if isfile(join(bkgs_dir_path,f)) and f.endswith("jpg") ] for i, img_name in enumerate(img_faces): img_path = join(faces_dir_path,img_name) img = imread(img_path) resized_img = resize(img,outputsize) ubyte_img = img_as_ubyte(resized_img) imsave(join(faces_dir,img_name), ubyte_img) print "processed "+ img_path for i, img_name in enumerate(img_bkgs): img_path = join(bkgs_dir_path,img_name) img = imread(img_path) gray_img = rgb2gray(img) resized_img = resize(gray_img,outputsize) ubyte_img = img_as_ubyte(resized_img) imsave(join(nonfaces_dir,img_name), ubyte_img) print "processed "+ img_path
def convert_to_gray(): bkgs_dir_path = "data/train_set/13/nonfaces" target_path = "data/train_set/13/nonfaces_gray" os.makedirs(target_path) img_bkgs = [ f for f in listdir(bkgs_dir_path) if isfile(join(bkgs_dir_path,f)) and f.endswith("jpg") ] for i, img_name in enumerate(img_bkgs): img_path = join(bkgs_dir_path,img_name) img = imread(img_path) gray_img = rgb2gray(img) imsave(join(target_path,img_name), gray_img)
def execute(outputsize): faces_dir_path = "data/train_set/48_48_faces_web_augmented" bkgs_dir_path = "data/train_set/48_48_nonfaces_aflw" target_path = "data/train_set/13" faces_dir = join(target_path, "faces") nonfaces_dir = join(target_path, "nonfaces") os.makedirs(nonfaces_dir) os.makedirs(faces_dir) img_faces = [ f for f in listdir(faces_dir_path) if isfile(join(faces_dir_path, f)) and f.endswith("png") ] img_bkgs = [ f for f in listdir(bkgs_dir_path) if isfile(join(bkgs_dir_path, f)) and f.endswith("jpg") ] for i, img_name in enumerate(img_faces): img_path = join(faces_dir_path, img_name) img = imread(img_path) resized_img = resize(img, outputsize) ubyte_img = img_as_ubyte(resized_img) imsave(join(faces_dir, img_name), ubyte_img) print "processed " + img_path for i, img_name in enumerate(img_bkgs): img_path = join(bkgs_dir_path, img_name) img = imread(img_path) gray_img = rgb2gray(img) resized_img = resize(gray_img, outputsize) ubyte_img = img_as_ubyte(resized_img) imsave(join(nonfaces_dir, img_name), ubyte_img) print "processed " + img_path
def convert_to_gray(): bkgs_dir_path = "data/train_set/13/nonfaces" target_path = "data/train_set/13/nonfaces_gray" os.makedirs(target_path) img_bkgs = [ f for f in listdir(bkgs_dir_path) if isfile(join(bkgs_dir_path, f)) and f.endswith("jpg") ] for i, img_name in enumerate(img_bkgs): img_path = join(bkgs_dir_path, img_name) img = imread(img_path) gray_img = rgb2gray(img) imsave(join(target_path, img_name), gray_img)
def main(): img = imread("HJoceanSmall.png") # imshow(img) reduced_img = img start_time = time.time() i = 10 while i > 0: seam = find_seam(reduced_img) reduced_img = remove_seam(reduced_img, seam) # imsave(str(i), reduced_img) i = i-1 stop_time = time.time() plot_seam(reduced_img) show() print "Time taken :", stop_time - start_time
def resize_imgs_in_dir(outputsize): img_dir_path = "data/newnonfaces/48_48_non_faces_aflw" target_path = "data/newnonfaces/13/nonfaces" os.makedirs(target_path) img_faces = [ f for f in listdir(img_dir_path) if isfile(join(img_dir_path,f)) and f.endswith("jpg") ] for i, img_name in enumerate(img_faces): img_path = join(img_dir_path,img_name) img = imread(img_path) resized_img = resize(img,outputsize) ubyte_img = img_as_ubyte(resized_img) imsave(join(target_path,img_name), ubyte_img) print "processed "+ img_path
def resize_imgs_in_dir(outputsize): img_dir_path = "data/newnonfaces/48_48_non_faces_aflw" target_path = "data/newnonfaces/13/nonfaces" os.makedirs(target_path) img_faces = [ f for f in listdir(img_dir_path) if isfile(join(img_dir_path, f)) and f.endswith("jpg") ] for i, img_name in enumerate(img_faces): img_path = join(img_dir_path, img_name) img = imread(img_path) resized_img = resize(img, outputsize) ubyte_img = img_as_ubyte(resized_img) imsave(join(target_path, img_name), ubyte_img) print "processed " + img_path
i = img_as_ubyte(i_f2) # To display this image plt.imshow(i, cmap=plt.cm.gray) # For showing gray-scale images #ndim(i) plt.show() # <headingcell level=3> # 2. Importing & displaying using io.imread() and io.imshow() # <codecell> phantom = img_as_ubyte( io.imread( '/Users/chintak/Repositories/scikit-image/skimage/data/phantom.png', as_grey=True)) # 'as_grey=True' ensures that the image is taken as a 2D rather than a 3D array with equal R,G,B values for a point io.imshow(phantom) plt.show() # <headingcell level=2> # EROSION # <rawcell> # Usage : erosion(image, selem, out=None, shift_x=False, shift_y=False) # # Return greyscale morphological erosion of an image. #
import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches from skimage import data from skimage.filters import threshold_otsu from skimage.segmentation import clear_border from skimage.measure import label from skimage.morphology import closing, square, disk from skimage.measure import regionprops from skimage.color import label2rgb import skimage.io._io as io image = io.imread('test.jpg', as_grey=True) # apply threshold thresh = threshold_otsu(image) bw = closing(image > thresh, disk(15)) # remove artifacts connected to image border cleared = bw.copy() clear_border(cleared) # label image regions label_image = label(cleared) borders = np.logical_xor(bw, cleared) label_image[borders] = -1 image_label_overlay = label2rgb(label_image, image=image) fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(6, 6)) ax.imshow(image_label_overlay)
def load_func(fname, **kwargs): kwargs.setdefault('dtype', dtype) return imread(fname, **kwargs)
i_f2 = i_f[:,:,0] # To convert to uint8 data type i = img_as_ubyte(i_f2) # To display this image plt.imshow(i, cmap=plt.cm.gray) # For showing gray-scale images #ndim(i) plt.show() # <headingcell level=3> # 2. Importing & displaying using io.imread() and io.imshow() # <codecell> phantom = img_as_ubyte(io.imread('/Users/chintak/Repositories/scikit-image/skimage/data/phantom.png', as_grey=True)) # 'as_grey=True' ensures that the image is taken as a 2D rather than a 3D array with equal R,G,B values for a point io.imshow(phantom) plt.show() # <headingcell level=2> # EROSION # <rawcell> # Usage : erosion(image, selem, out=None, shift_x=False, shift_y=False) # # Return greyscale morphological erosion of an image. # # Morphological erosion sets a pixel at (i,j) to the **minimum over all pixels