Ejemplo n.º 1
0
def get_loader(image_dir,
               attr_path,
               selected_attrs,
               crop_size=178,
               image_size=128,
               batch_size=16,
               dataset='CelebA',
               mode='train',
               num_workers=1):
    """Build and return a data loader."""
    transform = []
    if mode == 'train':
        transform.append(T.RandomHorizontalFlip())
    #transform.append(T.CenterCrop(crop_size))
    transform.append(T.Resize((image_size, image_size)))
    transform.append(T.ToTensor())
    transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
    transform = T.Compose(transform)

    if dataset == 'CelebA':
        dataset = CelebA(image_dir, attr_path, selected_attrs, transform, mode)
    elif dataset == 'RaFD':
        dataset = ImageFolder(image_dir, transform)

    data_loader = data.DataLoader(dataset=dataset,
                                  batch_size=batch_size,
                                  shuffle=(mode == 'train'),
                                  num_workers=num_workers)
    return data_loader
Ejemplo n.º 2
0
def my_transform(
        inc_therm=True,
        train=True,
        cam_shape=(2010, 3012),
        therm_shape=(32, 24),
        raw_format=True,
):
    transform = []
    transform.append(MatchSize(cam_shape, therm_shape))
    transform.append(RandomCrop(raw_format=raw_format))
    transform.append(RandomFlip())
    transform.append(ConcatTherm(inc_therm))
    return transform
Ejemplo n.º 3
0
def loadtransform(image_size=128):
    transform = []
    transform.append(T.Resize((image_size, image_size)))
    transform.append(T.ToTensor())
    transform.append(T.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
    transform = T.Compose(transform)
    return transform
    def evaluate_sintel(self,
                        args,
                        n_styles,
                        epochs,
                        n_epochs,
                        emphasis_parameter,
                        sintel_dir="D:/Datasets/MPI-Sintel-complete/",
                        batchsize=16,
                        learning_rate=1e-3,
                        dset='FC2'):
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        out_path = "G:/Code/LBST/eval_sintel/" + self.method + "/"
        raft_model = initRaftModel(args)

        num_domains = 4

        transform = []
        transform.append(transforms.ToTensor())
        transform.append(
            transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))
        transform = transforms.Compose(transform)

        train_dir = os.path.join(sintel_dir, "training", "final")
        train_list = os.listdir(train_dir)
        train_list.sort()

        test_dir = os.path.join(sintel_dir, "test", "final")
        test_list = os.listdir(test_dir)
        test_list.sort()

        #video_list = [os.path.join(train_dir, vid) for vid in train_list]
        #video_list += [os.path.join(test_dir, vid) for vid in test_list]

        video_list = [
            os.path.join(train_dir, "alley_2"),
            os.path.join(train_dir, "market_6"),
            os.path.join(train_dir, "temple_2")
        ]

        #vid_list = train_list + test_list
        vid_list = ["alley_2", "market_6", "temple_2"]

        tcl_st_dict = {}
        tcl_lt_dict = {}

        tcl_st_dict = OrderedDict()
        tcl_lt_dict = OrderedDict()
        dt_dict = OrderedDict()

        #emphasis_parameter = self.vectorize_parameters(emphasis_parameter, n_styles)
        tmp_dir = self.train_dir + dset + '/' + self.method + '/'
        tmp_list = os.listdir(tmp_dir)
        tmp_list.sort()
        #run_id = self.setup_method(run_id, emphasis_parameter.T)

        if self.method == "ruder":
            self.model = FastStyleNet(3 + 1 + 3, n_styles).to(self.device)
            self.pre_style_model = FastStyleNet(3, n_styles).to(self.device)
        else:
            self.model = FastStyleNet(3, n_styles).to(self.device)

        first = True

        for j, vid_dir in enumerate(video_list):
            vid = vid_list[j]

            #print(vid_dir)

            sintel_dset = SingleSintelVideo(vid_dir, transform)
            loader = data.DataLoader(dataset=sintel_dset,
                                     batch_size=1,
                                     shuffle=False,
                                     num_workers=0)

            for y in range(1, num_domains):
                y_trg = torch.Tensor([y])[0].type(torch.LongTensor).to(device)
                key = vid + "_s" + str(y)
                vid_path = os.path.join(out_path, key)
                if not os.path.exists(vid_path):
                    os.makedirs(vid_path)

                if y == 3:
                    gray = True
                else:
                    gray = False

                tcl_st_vals = []
                tcl_lt_vals = []
                dt_vals = []

                #if n_styles > 1:
                #  run_id = "msid%d_ep%d_bs%d_lr%d" % (n_styles, epochs, batchsize, np.log10(learning_rate))
                #else:
                #  run_id = "sid%d_ep%d_bs%d_lr%d" % (y - 1, epochs, batchsize, np.log10(learning_rate))

                if n_styles > 1:
                    if first:
                        self.model.load_state_dict(
                            torch.load(tmp_dir + '/' + tmp_list[y - 1] +
                                       '/epoch_' + str(n_epochs) + '.pth'))
                        first = False
                else:
                    #print(tmp_dir + '/' + tmp_list[y-1] + '/epoch_' + str(n_epochs) + '.pth')
                    self.model.load_state_dict(
                        torch.load(tmp_dir + '/' + tmp_list[y - 1] +
                                   '/epoch_' + str(n_epochs) + '.pth'))

                if self.method == "ruder":
                    pre_style_path = "G:/Code/LBST/runs/johnson/FC2/johnson/sid" + str(
                        y - 1) + "_ep20_bs16_lr-3_a0_b1_d-4/epoch_19.pth"
                    self.pre_style_model.load_state_dict(
                        torch.load(pre_style_path))

                past_sty_list = []

                for i, imgs in enumerate(tqdm(loader, total=len(loader))):
                    img, img_last, img_past = imgs

                    img = img.to(device)
                    img_last = img_last.to(device)
                    img_past = img_past.to(device)

                    #save_image(img[0], ncol=1, filename="blah.png")
                    if i > 0:
                        ff_last = computeRAFT(raft_model, img_last, img)
                        bf_last = computeRAFT(raft_model, img, img_last)
                        mask_last = fbcCheckTorch(ff_last, bf_last)
                        x_fake_last = past_sty_list[
                            -1]  #self.infer_method((img_last, None, None), y_trg - 1)
                        warp_last = warp(torch.clamp(x_fake_last, 0.0, 1.0),
                                         bf_last)
                    else:
                        mask_last = None
                        warp_last = None
                    #mask, x_warp

                    t_start = time.time()
                    x_fake = self.infer_method((img, mask_last, warp_last),
                                               y_trg - 1)
                    x_fake = torch.clamp(x_fake, 0.0, 1.0)
                    t_end = time.time()

                    past_sty_list.append(x_fake)
                    dt_vals.append((t_end - t_start) * 1000)

                    if i > 0:
                        tcl_st = ((mask_last *
                                   (x_fake - warp_last))**2).mean()**0.5
                        tcl_st_vals.append(tcl_st.cpu().numpy())

                    if i >= 5:
                        ff_past = computeRAFT(raft_model, img_past, img)
                        bf_past = computeRAFT(raft_model, img, img_past)
                        mask_past = fbcCheckTorch(ff_past, bf_past)
                        #torch.clamp(self.infer_method((img_past, None, None), y_trg - 1), 0.0, 1.0)
                        warp_past = warp(past_sty_list[0], bf_past)
                        tcl_lt = ((mask_past *
                                   (x_fake - warp_past))**2).mean()**0.5
                        tcl_lt_vals.append(tcl_lt.cpu().numpy())
                        '''
            print(img.shape)
            print(img_past.shape)
            print(warp_past.shape)
            print(x_fake.shape)
            print(past_sty_list[0].shape)
            
            save_image(denormalize(img[0]), ncol=1, filename="blah1.png")
            save_image(denormalize(img_past[0]), ncol=1, filename="blah2.png")
            save_image(warp_past[0], ncol=1, filename="blah3.png")
            save_image(x_fake[0], ncol=1, filename="blah4.png")
            save_image(past_sty_list[0][0], ncol=1, filename="blah5.png")
            save_image(mask_past*warp_past, ncol=1, filename="blah6.png")
            blah'''

                        past_sty_list.pop(0)

                    filename = os.path.join(vid_path, "frame_%04d.png" % i)
                    save_image(x_fake[0], ncol=1, filename=filename, gray=gray)

                tcl_st_dict["TCL-ST_" + key] = float(
                    np.array(tcl_st_vals).mean())
                tcl_lt_dict["TCL-LT_" + key] = float(
                    np.array(tcl_lt_vals).mean())
                dt_dict["DT_" + key] = float(np.array(dt_vals).mean())

        save_dict_as_json("TCL-ST", tcl_st_dict, out_path, num_domains)
        save_dict_as_json("TCL-LT", tcl_lt_dict, out_path, num_domains)
        save_dict_as_json("DT", dt_dict, out_path, num_domains)
Ejemplo n.º 5
0
def orthorectify_from_vps_and_lines(im_array, im, hvps, hvp_groups, zenith,
                                    z_group, lines, n_lines_min, K,
                                    horizon_line, PLOT):

    n_hvp = hvps.shape[0]
    width = im_array.shape[1]
    height = im_array.shape[0]
    n_imR = -1
    imR = [[] for i in range(n_hvp)]
    maskR = [[] for i in range(n_hvp)]
    # new item
    crop_imR = [[] for i in range(n_hvp)]

    transform = [{} for i in range(n_hvp)]

    vp_association = -1 * np.ones(len(lines))
    vp_association[z_group] = 0
    for i in range(len(hvp_groups)):
        vp_association[hvp_groups[i]] = i + 1
    if len(K) != 0:
        Ki = np.linalg.inv(K)
        pp = np.array([K[0, 2], K[1, 2]])
        pp_zen_line = line_hmg_from_two_points(pp, zenith)
        vp_zen = np.array([zenith[0], zenith[1], 1])
        y = Ki.dot(vp_zen)
        y = y / np.linalg.norm(y)
        if horizon_line.dot(vp_zen) < 0:
            y = -y

    idmax = np.array([-1.0, -1.0])
    idmin = np.array([-1.0, -1.0])

    for i in range(n_hvp):
        #if PLOT:
        im_bundle_line = im.copy()

        hvp = np.array([hvps[i, 0], hvps[i, 1]])
        vp_zen_line = line_hmg_from_two_points(hvp, zenith)
        if vp_zen_line[0] < 0:
            vp_zen_line = -vp_zen_line

        zen_line_normal = vp_zen_line[0:2]
        zen_line_normal = zen_line_normal / np.linalg.norm(zen_line_normal)
        proj_min = np.array([1.0, 1.0])
        proj_max = np.array([-1.0, -1.0])
        n_lines_zen = np.array([0.0, 0.0])

        centroid = np.zeros([lines.shape[0], 2])
        lines_dir = np.zeros([lines.shape[0], 2])

        for j in range(lines.shape[0]):
            centroid[j, 0] = (lines[j, 0] + lines[j, 2]) / 2
            centroid[j, 1] = (lines[j, 1] + lines[j, 3]) / 2
            lines_dir[j, 0] = lines[j, 0] - lines[j, 2]
            lines_dir[j, 1] = lines[j, 1] - lines[j, 3]
            lines_dir[j] = lines_dir[j] / np.linalg.norm(lines_dir[j])
            bundle_dir = centroid[j, :] - zenith
            bundle_dir = bundle_dir / np.linalg.norm(bundle_dir)
            proj = np.dot(zen_line_normal, bundle_dir)

            if vp_association[j] == 0:
                for s in range(2):
                    if np.dot(zen_line_normal, bundle_dir) * np.power(
                            -1, s + 1) > 0:
                        n_lines_zen[s] = n_lines_zen[s] + 1
                        if proj > proj_max[s]:
                            proj_max[s] = proj
                            idmax[s] = j
                        if proj < proj_min[s]:
                            proj_min[s] = proj
                            idmin[s] = j
        for s in range(2):
            if n_lines_zen[s] >= n_lines_min:
                centroid_min = centroid[int(idmin[s]), 0:2]
                centroid_max = centroid[int(idmax[s]), 0:2]
                dist_min = line_size(
                    np.array(
                        [hvp[0], hvp[1], centroid_min[0], centroid_min[1]]))
                dist_max = line_size(
                    np.array(
                        [hvp[0], hvp[1], centroid_max[0], centroid_max[1]]))
                if dist_min < dist_max:
                    middle = np.zeros(2)
                    middle[0] = (hvp[0] + centroid_max[0]) / 2
                    middle[1] = (hvp[1] + centroid_max[1]) / 2
                    dist_middle = line_size(np.hstack([hvp, middle]))
                    if dist_min < dist_middle and dist_middle < dist_max:
                        centroid_min = middle.copy()
                else:
                    middle = np.zeros(2)
                    middle[0] = (hvp[0] + centroid_min[0]) / 2
                    middle[1] = (hvp[1] + centroid_min[1]) / 2
                    dist_middle = line_size(np.hstack([hvp, middle]))
                    if dist_max < dist_middle and dist_middle < dist_min:
                        centroid_max = middle.copy()

                lzmin = line_hmg_from_two_points(zenith, centroid_min)
                lzmax = line_hmg_from_two_points(zenith, centroid_max)
                lzmin_V = np.zeros(2)
                lzmin_V[0] = centroid_min[0] - zenith[0]
                lzmin_V[1] = centroid_min[1] - zenith[1]
                lzmin_V = lzmin_V / np.linalg.norm(lzmin_V)

                lzmax_V = np.zeros(2)
                lzmax_V[0] = centroid_max[0] - zenith[0]
                lzmax_V[1] = centroid_max[1] - zenith[1]
                lzmax_V = lzmax_V / np.linalg.norm(lzmax_V)
                hvp_amin = 2 * np.pi
                hvp_amax = -2 * np.pi
                n_lines_hvp = 0
                idmax2 = 0
                for j in range(lines.shape[0]):
                    if vp_association[j] == i + 1:
                        if np.dot(vp_zen_line,
                                  np.array([lines[j, 0], lines[j, 1], 1.0])
                                  ) * np.power(-1, s + 1) > 0 and np.dot(
                                      vp_zen_line,
                                      np.array([lines[j, 2], lines[j, 3], 1.0])
                                  ) * np.power(-1, s + 1) > 0 and np.abs(
                                      np.dot(lines_dir[j], lzmin_V)) < np.cos(
                                          np.pi / 8) and np.abs(
                                              np.dot(lines_dir[j],
                                                     lzmax_V)) < np.cos(
                                                         np.pi / 8):

                            n_lines_hvp = n_lines_hvp + 1
                            boundle_line = np.array([
                                hvps[i, 0], hvps[i, 1], centroid[j, 0],
                                centroid[j, 1]
                            ])

                            if PLOT:
                                draw = ImageDraw.Draw(im_bundle_line)
                                pt1 = (boundle_line[0], boundle_line[1])
                                pt2 = (boundle_line[2], boundle_line[3])
                                draw.line((pt1, pt2),
                                          fill=tuple([0, 255, 0]),
                                          width=2)

                                pt1 = (lines[j, 0], lines[j, 1])
                                pt2 = (lines[j, 2], lines[j, 3])
                                draw.line((pt1, pt2),
                                          fill=tuple([0, 0, 255]),
                                          width=2)

                            a = -line_angle2(boundle_line)
                            if a < hvp_amin:
                                hvp_amin = a
                                idmin2 = j
                            else:
                                if a > hvp_amax:
                                    hvp_amax = a
                                    idmax2 = j

                if n_lines_hvp >= n_lines_min:
                    n_imR = n_imR + 1
                    if n_imR > len(transform) - 1:
                        transform.append({})
                        imR.append([])
                        maskR.append([])
                        crop_imR.append([])
                    transform[n_imR]["K"] = K
                    if len(K) > 0:
                        vp = np.array([hvps[i, 0], hvps[i, 1], 1.0])
                        x = Ki.dot(vp)
                        x = x / np.linalg.norm(x)
                        if (np.dot(pp_zen_line, vp) < 0
                                and np.dot(horizon_line, vp_zen) < 0) or (
                                    np.dot(pp_zen_line, vp) > 0
                                    and np.dot(horizon_line, vp_zen) > 0):
                            x = -x
                        if (np.dot(pp_zen_line, vp) < 0
                                and np.dot(horizon_line, vp_zen) < 0 and s == 0
                            ) or (np.dot(pp_zen_line, vp) > 0
                                  and np.dot(horizon_line, vp_zen) < 0
                                  and s == 1) or (
                                      np.dot(pp_zen_line, vp) > 0
                                      and np.dot(horizon_line, vp_zen) > 0
                                      and s == 0) or (
                                          np.dot(pp_zen_line, vp) < 0
                                          and np.dot(horizon_line, vp_zen) > 0
                                          and s == 1):
                            x = -x
                        z = np.cross(x, y)
                        transform[n_imR]["R"] = np.array([x, y, z]).T
                        transform[n_imR]["H"] = K.dot(
                            np.linalg.inv(transform[n_imR]["R"])).dot(Ki)
                    else:
                        lhmin = line_hmg_from_two_points(
                            hvps[i], centroid[idmin2])
                        lhmax = line_hmg_from_two_points(
                            hvps[i], centroid[idmax2])
                        c = np.zeros([4, 2])
                        c[0] = line_hmg_intersect(lhmin, lzmin)
                        c[1] = line_hmg_intersect(lhmax, lzmin)
                        c[2] = line_hmg_intersect(lhmax, lzmax)
                        c[3] = line_hmg_intersect(lhmin, lzmax)
                        sc = np.sort(c[:, 0])
                        id = np.argsort(c[:, 0])
                        idul = id[1 - int(c[id[0], 1] < c[id[1], 1])]
                        idll = id[1 - int(c[id[0], 1] > c[id[1], 1])]
                        up = ((idll + 1) == np.mod(idul + 1, 4) + 1)
                        idc = idul

                        corners = np.zeros([2, 4])
                        for j in range(4):
                            corners[:, j] = c[idc]
                            if up:
                                idc = np.mod(idc + 1, 4)
                            else:
                                idc = idc - 1
                                if idc == -1:
                                    idc = 3
                        if PLOT:
                            draw = ImageDraw.Draw(im_bundle_line)
                            pt1 = (zenith[0], zenith[1])
                            pt2 = (centroid_min[0], centroid_min[1])
                            draw.line((pt1, pt2),
                                      fill=tuple([255, 0, 0]),
                                      width=2)

                            pt1 = (zenith[0], zenith[1])
                            pt2 = (centroid_max[0], centroid_max[1])
                            draw.line((pt1, pt2),
                                      fill=tuple([255, 0, 0]),
                                      width=2)

                            pt1 = (hvps[i, 0], hvps[i, 1])
                            pt2 = (centroid[idmin2, 0], centroid[idmin2, 1])
                            draw.line((pt1, pt2),
                                      fill=tuple([255, 0, 0]),
                                      width=2)

                            pt1 = (hvps[i, 0], hvps[i, 1])
                            pt2 = (centroid[idmax2, 0], centroid[idmax2, 1])
                            draw.line((pt1, pt2),
                                      fill=tuple([255, 0, 0]),
                                      width=2)

                            # pt1 = (200, 200)
                            # pt2 = (800, 1400)
                            # draw.line((pt1, pt2), fill=tuple([0, 0, 0]), width=10)

                            lhmin = line_hmg_from_two_points(
                                hvps[i], centroid[idmin2])
                            lhmax = line_hmg_from_two_points(
                                hvps[i], centroid[idmax2])

                            draw.polygon(xy=[
                                tuple(corners[:, 0]),
                                tuple(corners[:, 1]),
                                tuple(corners[:, 2]),
                                tuple(corners[:, 3]),
                                tuple(corners[:, 0])
                            ],
                                         outline=tuple([0, 0, 0]))
                            name = './tmp/im_bundle_line_' + str(i) + '.jpg'
                            im_bundle_line.save(name)
                        BW = poly2mask(corners[1], corners[0], [height, width])
                        # skimage.io.imsave('tmp/polygon.jpg', BW)
                        M = np.sum(corners, 1) / 4
                        A = np.sum(BW)
                        AR = (np.sqrt(
                            np.sum(np.power(
                                (corners[:, 0] - corners[:, 1]), 2))
                        ) + np.sqrt(
                            np.sum(np.power(
                                (corners[:, 2] - corners[:, 3]), 2))
                        )) / (np.sqrt(
                            np.sum(np.power(
                                (corners[:, 1] - corners[:, 2]), 2))
                        ) + np.sqrt(
                            np.sum(np.power(
                                (corners[:, 3] - corners[:, 0]), 2))))
                        w = np.sqrt(A / AR)
                        h = AR * w
                        pointsR = np.array([[
                            M[0] - w / 2, M[0] - w / 2, M[0] + w / 2,
                            M[0] + w / 2
                        ],
                                            [
                                                M[1] - h / 2, M[1] + h / 2,
                                                M[1] + h / 2, M[1] - h / 2
                                            ]]).T
                        points = corners[:, 0:4].T.copy()
                        tform = skimage.transform.estimate_transform(
                            'projective', points, pointsR)
                        transform[n_imR]['H'] = tform.params
                        transform[n_imR]['R'] = np.array([])

                    [imR[n_imR], transform[n_imR]['imref'],
                     final_transform] = orthorectify(im_array,
                                                     transform[n_imR]['H'],
                                                     vp_zen_line, s)
                    transform[n_imR]['final_transform'] = final_transform
                    if len(transform[n_imR]['imref']) != 0:
                        imwhite = np.ones(
                            [im_array.shape[0], im_array.shape[1]])
                        maskR[n_imR] = skimage.transform.warp(
                            imwhite,
                            final_transform,
                            output_shape=transform[n_imR]['imref'][0])

                    if len(K) > 0:
                        crop_imR[n_imR] = imR[n_imR]
                    else:
                        if len(final_transform) != 0:
                            inv_final_transform = np.linalg.inv(
                                final_transform)
                            tmp1 = inv_final_transform.dot(
                                np.array([points[0, 0], points[0, 1], 1.0]))
                            tmp1 = tmp1 / tmp1[2]

                            tmp2 = inv_final_transform.dot(
                                np.array([points[2, 0], points[2, 1], 1.0]))
                            tmp2 = tmp2 / tmp2[2]

                            crop_imR[n_imR] = imR[n_imR][
                                int(tmp1[1]):int(tmp2[1]),
                                int(tmp1[0]):int(tmp2[0]), :]

        # if PLOT:
        #     name = './tmp/im_bundle_line_' + str(i) + '.jpg'
        #     im_bundle_line.save(name)

    return imR, maskR, transform, crop_imR