Ejemplo n.º 1
0
def test_chained_imputer_no_missing():
    rng = np.random.RandomState(0)
    X = rng.rand(100, 100)
    X[:, 0] = np.nan
    m1 = ChainedImputer(n_imputations=10, random_state=rng)
    m2 = ChainedImputer(n_imputations=10, random_state=rng)
    pred1 = m1.fit(X).transform(X)
    pred2 = m2.fit_transform(X)
    # should exclude the first column entirely
    assert_allclose(X[:, 1:], pred1)
    # fit and fit_transform should both be identical
    assert_allclose(pred1, pred2)
Ejemplo n.º 2
0
def test_chained_imputer_additive_matrix():
    rng = np.random.RandomState(0)
    n = 100
    d = 10
    A = rng.randn(n, d)
    B = rng.randn(n, d)
    X_filled = np.zeros(A.shape)
    for i in range(d):
        for j in range(d):
            X_filled[:, (i + j) % d] += (A[:, i] + B[:, j]) / 2
    # a quarter is randomly missing
    nan_mask = rng.rand(n, d) < 0.25
    X_missing = X_filled.copy()
    X_missing[nan_mask] = np.nan

    # split up data
    n = n // 2
    X_train = X_missing[:n]
    X_test_filled = X_filled[n:]
    X_test = X_missing[n:]

    imputer = ChainedImputer(n_imputations=25,
                             n_burn_in=10,
                             verbose=True,
                             random_state=rng).fit(X_train)
    X_test_est = imputer.transform(X_test)
    assert_allclose(X_test_filled, X_test_est, atol=0.01)
Ejemplo n.º 3
0
def get_results_multiple_imputation_approach2(X_train, X_test, y_train,
                                              y_test):
    m = 5
    multiple_predictions = []
    for i in range(m):
        # Fit the imputer for every i in m
        # Be aware that you fit the imputer on the train data
        # And apply to the test data
        imputer = ChainedImputer(n_burn_in=99, n_imputations=1, random_state=i)
        X_train_imputed = imputer.fit_transform(X_train)
        X_test_imputed = imputer.transform(X_test)

        # Perform the steps you wish to take before fitting the estimator
        # Such as standardization
        scaler = StandardScaler()
        X_train_scaled = scaler.fit_transform(X_train_imputed)
        X_test_scaled = scaler.transform(X_test_imputed)

        # Finally fit the estimator and calculate the predictions for every i
        # in m. Save the predictions.
        estimator = LinearRegression()
        estimator.fit(X_train_scaled, y_train)
        y_predict = estimator.predict(X_test_scaled)
        multiple_predictions.append(y_predict)

    # Average the predictions over the m loops
    # Then calculate the error metric.
    predictions_average = np.mean(multiple_predictions, axis=0)
    mse_approach2 = mse(y_test, predictions_average)

    return mse_approach2
Ejemplo n.º 4
0
def test_chained_imputer_imputation_order(imputation_order):
    rng = np.random.RandomState(0)
    n = 100
    d = 10
    X = sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()
    X[:, 0] = 1  # this column should not be discarded by ChainedImputer

    imputer = ChainedImputer(missing_values=0,
                             n_imputations=1,
                             n_burn_in=1,
                             n_nearest_features=5,
                             min_value=0,
                             max_value=1,
                             verbose=False,
                             imputation_order=imputation_order,
                             random_state=rng)
    imputer.fit_transform(X)
    ordered_idx = [i.feat_idx for i in imputer.imputation_sequence_]
    if imputation_order == 'roman':
        assert np.all(ordered_idx[:d - 1] == np.arange(1, d))
    elif imputation_order == 'arabic':
        assert np.all(ordered_idx[:d - 1] == np.arange(d - 1, 0, -1))
    elif imputation_order == 'random':
        ordered_idx_round_1 = ordered_idx[:d - 1]
        ordered_idx_round_2 = ordered_idx[d - 1:]
        assert ordered_idx_round_1 != ordered_idx_round_2
    elif 'ending' in imputation_order:
        assert len(ordered_idx) == 2 * (d - 1)
Ejemplo n.º 5
0
def get_results_mice_imputation_includingy(X_incomplete, y):
    # Impute incomplete data using the IterativeImputer as a MICEImputer
    # Now using the output variable in the imputation loop
    m = 5
    multiple_imputations = []
    for i in range(m):
        Xy = np.column_stack((X_incomplete, y))
        imputer = ChainedImputer(n_burn_in=99, n_imputations=1, random_state=i)
        imputer.fit(Xy)
        data_imputed = imputer.transform(Xy)

        # We save only the X imputed data because we do not want to use y to
        # predict y later on.
        X_imputed = data_imputed[:, :-1]
        multiple_imputations.append(X_imputed)

    # Perform linear regression on mice multiple imputed data
    # Estimate beta estimates and their variances
    m_coefs = []
    m_vars = []
    for i in range(m):
        estimator = LinearRegression()
        estimator.fit(multiple_imputations[i], y)
        y_predict = estimator.predict(multiple_imputations[i])
        m_coefs.append(estimator.coef_)
        m_vars.append(
            calculate_variance_of_beta_estimates(y, y_predict,
                                                 multiple_imputations[i]))

    # Calculate the end estimates by applying Rubin's rules.
    Qbar = calculate_Qbar(m_coefs)
    T = calculate_T(m_coefs, m_vars, Qbar)
    mice_errorbar = 1.96 * np.sqrt(T)

    return Qbar, T, mice_errorbar
Ejemplo n.º 6
0
def get_results_mice_imputation(X_incomplete, y):
    # Impute incomplete data using the IterativeImputer to perform multiple
    # imputation. We set n_burn_in at 99 and use only last imputation and
    # loop this procedure m times.
    m = 5
    multiple_imputations = []
    for i in range(m):
        imputer = ChainedImputer(n_burn_in=99, n_imputations=1, random_state=i)
        imputer.fit(X_incomplete)
        X_imputed = imputer.transform(X_incomplete)
        multiple_imputations.append(X_imputed)

    # Perform a model on each of the m imputed datasets
    # Estimate the estimates for each model/dataset
    m_coefs = []
    m_vars = []
    for i in range(m):
        estimator = LinearRegression()
        estimator.fit(multiple_imputations[i], y)
        y_predict = estimator.predict(multiple_imputations[i])
        m_coefs.append(estimator.coef_)
        m_vars.append(
            calculate_variance_of_beta_estimates(y, y_predict,
                                                 multiple_imputations[i]))

    # Calculate the end estimates by applying Rubin's rules.
    Qbar = calculate_Qbar(m_coefs)
    T = calculate_T(m_coefs, m_vars, Qbar)
    mice_errorbar = 1.96 * np.sqrt(T)

    return Qbar, T, mice_errorbar
Ejemplo n.º 7
0
def get_results(dataset):
    X_full, y_full = dataset.data, dataset.target
    n_samples = X_full.shape[0]
    n_features = X_full.shape[1]

    # Estimate the score on the entire dataset, with no missing values
    estimator = RandomForestRegressor(random_state=0, n_estimators=100)
    full_scores = cross_val_score(estimator, X_full, y_full,
                                  scoring='neg_mean_squared_error')

    # Add missing values in 75% of the lines
    missing_rate = 0.75
    n_missing_samples = int(np.floor(n_samples * missing_rate))
    missing_samples = np.hstack((np.zeros(n_samples - n_missing_samples,
                                          dtype=np.bool),
                                 np.ones(n_missing_samples,
                                         dtype=np.bool)))
    rng.shuffle(missing_samples)
    missing_features = rng.randint(0, n_features, n_missing_samples)

    # Estimate the score after replacing missing values by 0
    X_missing = X_full.copy()
    X_missing[np.where(missing_samples)[0], missing_features] = 0
    y_missing = y_full.copy()
    estimator = RandomForestRegressor(random_state=0, n_estimators=100)
    zero_impute_scores = cross_val_score(estimator, X_missing, y_missing,
                                         scoring='neg_mean_squared_error')

    # Estimate the score after imputation (mean strategy) of the missing values
    X_missing = X_full.copy()
    X_missing[np.where(missing_samples)[0], missing_features] = 0
    y_missing = y_full.copy()
    estimator = Pipeline([("imputer", SimpleImputer(missing_values=0,
                                                    strategy="mean")),
                          ("forest", RandomForestRegressor(random_state=0,
                                                           n_estimators=100))])
    mean_impute_scores = cross_val_score(estimator, X_missing, y_missing,
                                         scoring='neg_mean_squared_error')

    # Estimate the score after chained imputation of the missing values
    estimator = Pipeline([("imputer", ChainedImputer(missing_values=0,
                                                     random_state=0)),
                          ("forest", RandomForestRegressor(random_state=0,
                                                           n_estimators=100))])
    chained_impute_scores = cross_val_score(estimator, X_missing, y_missing,
                                            scoring='neg_mean_squared_error')

    return ((full_scores.mean(), full_scores.std()),
            (zero_impute_scores.mean(), zero_impute_scores.std()),
            (mean_impute_scores.mean(), mean_impute_scores.std()),
            (chained_impute_scores.mean(), chained_impute_scores.std()))
Ejemplo n.º 8
0
def test_imputation_shape():
    # Verify the shapes of the imputed matrix for different strategies.
    X = np.random.randn(10, 2)
    X[::2] = np.nan

    for strategy in ['mean', 'median', 'most_frequent', "constant"]:
        imputer = SimpleImputer(strategy=strategy)
        X_imputed = imputer.fit_transform(sparse.csr_matrix(X))
        assert X_imputed.shape == (10, 2)
        X_imputed = imputer.fit_transform(X)
        assert X_imputed.shape == (10, 2)

        chained_imputer = ChainedImputer(initial_strategy=strategy)
        X_imputed = chained_imputer.fit_transform(X)
        assert X_imputed.shape == (10, 2)
Ejemplo n.º 9
0
def test_chained_imputer_rank_one():
    rng = np.random.RandomState(0)
    d = 100
    A = rng.rand(d, 1)
    B = rng.rand(1, d)
    X = np.dot(A, B)
    nan_mask = rng.rand(d, d) < 0.5
    X_missing = X.copy()
    X_missing[nan_mask] = np.nan

    imputer = ChainedImputer(n_imputations=5,
                             n_burn_in=5,
                             verbose=True,
                             random_state=rng)
    X_filled = imputer.fit_transform(X_missing)
    assert_allclose(X_filled, X, atol=0.001)
Ejemplo n.º 10
0
def test_chained_imputer_transform_stochasticity():
    rng = np.random.RandomState(0)
    n = 100
    d = 10
    X = sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()

    imputer = ChainedImputer(missing_values=0,
                             n_imputations=1,
                             n_burn_in=1,
                             random_state=rng)
    imputer.fit(X)

    X_fitted_1 = imputer.transform(X)
    X_fitted_2 = imputer.transform(X)

    # sufficient to assert that the means are not the same
    assert np.mean(X_fitted_1) != pytest.approx(np.mean(X_fitted_2))
Ejemplo n.º 11
0
def test_chained_imputer_clip():
    rng = np.random.RandomState(0)
    n = 100
    d = 10
    X = sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()

    imputer = ChainedImputer(missing_values=0,
                             n_imputations=1,
                             n_burn_in=1,
                             min_value=0.1,
                             max_value=0.2,
                             random_state=rng)

    Xt = imputer.fit_transform(X)
    assert_allclose(np.min(Xt[X == 0]), 0.1)
    assert_allclose(np.max(Xt[X == 0]), 0.2)
    assert_allclose(Xt[X != 0], X[X != 0])
Ejemplo n.º 12
0
def get_results_single_imputation(X_train, X_test, y_train, y_test):
    # Apply imputation
    imputer = ChainedImputer(n_burn_in=99, n_imputations=1, random_state=0)
    X_train_imputed = imputer.fit_transform(X_train)
    X_test_imputed = imputer.transform(X_test)

    # Standardize data
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train_imputed)
    X_test_scaled = scaler.transform(X_test_imputed)

    # Perform estimation and prediction
    estimator = LinearRegression()
    estimator.fit(X_train_scaled, y_train)
    y_predict = estimator.predict(X_test_scaled)
    mse_single = mse(y_test, y_predict)

    return mse_single
Ejemplo n.º 13
0
def get_results_chained_imputation(X_incomplete, y):
    # Impute incomplete data with IterativeImputer using single imputation
    # We set n_burn_in at 99 and use only the last imputation
    imputer = ChainedImputer(n_burn_in=99, n_imputations=1)
    imputer.fit(X_incomplete)
    X_imputed = imputer.transform(X_incomplete)

    # Perform linear regression on chained single imputed data
    # Estimate beta estimates and their variances
    estimator = LinearRegression()
    estimator.fit(X_imputed, y)
    y_predict = estimator.predict(X_imputed)

    # Save the beta estimates, the variance of these estimates and 1.96 *
    # standard error of the estimates
    chained_coefs = estimator.coef_
    chained_vars = calculate_variance_of_beta_estimates(
        y, y_predict, X_imputed)
    chained_errorbar = 1.96 * np.sqrt(chained_vars)

    return chained_coefs, chained_vars, chained_errorbar
Ejemplo n.º 14
0
def test_chained_imputer_predictors(predictor):
    rng = np.random.RandomState(0)

    n = 100
    d = 10
    X = sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()

    imputer = ChainedImputer(missing_values=0,
                             n_imputations=1,
                             n_burn_in=1,
                             predictor=predictor,
                             random_state=rng)
    imputer.fit_transform(X)

    # check that types are correct for predictors
    hashes = []
    for triplet in imputer.imputation_sequence_:
        assert triplet.predictor
        hashes.append(id(triplet.predictor))

    # check that each predictor is unique
    assert len(set(hashes)) == len(hashes)
Ejemplo n.º 15
0
def test_chained_imputer_transform_recovery(rank):
    rng = np.random.RandomState(0)
    n = 100
    d = 100
    A = rng.rand(n, rank)
    B = rng.rand(rank, d)
    X_filled = np.dot(A, B)
    # half is randomly missing
    nan_mask = rng.rand(n, d) < 0.5
    X_missing = X_filled.copy()
    X_missing[nan_mask] = np.nan

    # split up data in half
    n = n // 2
    X_train = X_missing[:n]
    X_test_filled = X_filled[n:]
    X_test = X_missing[n:]

    imputer = ChainedImputer(n_imputations=10,
                             n_burn_in=10,
                             verbose=True,
                             random_state=rng).fit(X_train)
    X_test_est = imputer.transform(X_test)
    assert_allclose(X_test_filled, X_test_est, rtol=1e-5, atol=0.1)
Ejemplo n.º 16
0
def test_chained_imputer_missing_at_transform(strategy):
    rng = np.random.RandomState(0)
    n = 100
    d = 10
    X_train = rng.randint(low=0, high=3, size=(n, d))
    X_test = rng.randint(low=0, high=3, size=(n, d))

    X_train[:, 0] = 1  # definitely no missing values in 0th column
    X_test[0, 0] = 0  # definitely missing value in 0th column

    imputer = ChainedImputer(missing_values=0,
                             n_imputations=1,
                             n_burn_in=1,
                             initial_strategy=strategy,
                             random_state=rng).fit(X_train)
    initial_imputer = SimpleImputer(missing_values=0,
                                    strategy=strategy).fit(X_train)

    # if there were no missing values at time of fit, then imputer will
    # only use the initial imputer for that feature at transform
    assert np.all(
        imputer.transform(X_test)[:,
                                  0] == initial_imputer.transform(X_test)[:,
                                                                          0])