Ejemplo n.º 1
0
def test_predict_2_classes():
    """
    Simple sanity check on a 2 classes dataset.
    Make sure it predicts the correct result on simple datasets.
    """
    clf = logistic.LogisticRegression().fit(X, Y1)
    assert_array_equal(clf.predict(X), Y1)
    assert_array_equal(clf.predict_proba(X).argmax(axis=1), Y1)

    clf = logistic.LogisticRegression(C=100).fit(X, Y1)
    assert_array_equal(clf.predict(X), Y1)
    assert_array_equal(clf.predict_proba(X).argmax(axis=1), Y1)

    clf = logistic.LogisticRegression(fit_intercept=False).fit(X, Y1)
    assert_array_equal(clf.predict(X), Y1)
    assert_array_equal(clf.predict_proba(X).argmax(axis=1), Y1)
Ejemplo n.º 2
0
def test_inconsistent_input():
    """Test that an exception is raised when input to predict is inconsistent"""
    X_ = np.random.random((5, 10))
    y_ = np.ones(X_.shape[0])
    assert_raises(ValueError,
                  logistic.LogisticRegression().fit(X_, y_).predict,
                  np.random.random((3, 12)))
Ejemplo n.º 3
0
def test_predict_iris():
    """Test logisic regression with the iris dataset"""

    clf = logistic.LogisticRegression().fit(iris.data, iris.target)

    pred = clf.predict(iris.data)
    assert np.mean(pred == iris.target) > .95

    pred = clf.predict_proba(iris.data).argmax(axis=1)
    assert np.mean(pred == iris.target) > .95
Ejemplo n.º 4
0
def test_predict_3_classes():
    clf = logistic.LogisticRegression(C=10).fit(X, Y2)
    assert_array_equal(clf.predict(X), Y2)
    assert_array_equal(clf.predict_proba(X).argmax(axis=1), Y2)
Ejemplo n.º 5
0
def test_error():
    """
    test for appropriate exception on errors
    """
    assert_raises(ValueError, logistic.LogisticRegression(C=-1).fit, X, Y1)