Ejemplo n.º 1
0
    def metric_info(self, preds, trues):
        fps, tps = _binary_clf_curve(trues, preds)
        if len(fps) > 2:
            optimal_idxs = np.where(np.r_[True, np.logical_or(np.diff(fps, 2), np.diff(tps, 2)), True])[0]
            fps = fps[optimal_idxs]
            tps = tps[optimal_idxs]

        tps = np.r_[0, tps]
        fps = np.r_[0, fps]

        if fps[-1] <= 0:
            logger = getLogger()
            logger.warning("No negative samples in y_true, " "false positive value should be meaningless")
            fpr = np.repeat(np.nan, fps.shape)
        else:
            fpr = fps / fps[-1]

        if tps[-1] <= 0:
            logger = getLogger()
            logger.warning("No positive samples in y_true, " "true positive value should be meaningless")
            tpr = np.repeat(np.nan, tps.shape)
        else:
            tpr = tps / tps[-1]

        result = sk_auc(fpr, tpr)
        return result
Ejemplo n.º 2
0
def auc_(trues, preds):
    r"""AUC_ (also known as Area Under Curve) is used to evaluate the two-class model, referring to
    the area under the ROC curve

    .. _AUC: https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve

    Note:
        This metric does not calculate group-based AUC which considers the AUC scores
        averaged across users. It is also not limited to k. Instead, it calculates the
        scores on the entire prediction results regardless the users.

    .. math::
        \mathrm {AUC} = \frac{\sum\limits_{i=1}^M rank_{i}
        - \frac {{M} \times {(M+1)}}{2}} {{{M} \times {N}}}

    :math:`M` is the number of positive samples.
    :math:`N` is the number of negative samples.
    :math:`rank_i` is the ascending rank of the ith positive sample.

    """
    fps, tps = _binary_clf_curve(trues, preds)

    if len(fps) > 2:
        optimal_idxs = np.where(
            np.r_[True,
                  np.logical_or(np.diff(fps, 2), np.diff(tps, 2)), True])[0]
        fps = fps[optimal_idxs]
        tps = tps[optimal_idxs]

    tps = np.r_[0, tps]
    fps = np.r_[0, fps]

    if fps[-1] <= 0:
        logger = getLogger()
        logger.warning("No negative samples in y_true, "
                       "false positive value should be meaningless")
        fpr = np.repeat(np.nan, fps.shape)
    else:
        fpr = fps / fps[-1]

    if tps[-1] <= 0:
        logger = getLogger()
        logger.warning("No positive samples in y_true, "
                       "true positive value should be meaningless")
        tpr = np.repeat(np.nan, tps.shape)
    else:
        tpr = tps / tps[-1]

    return sk_auc(fpr, tpr)
Ejemplo n.º 3
0
def plot_roc_score(label_test, score,name):
    x, y, _ = roc_curve(label_test, score)
    roc_auc = sk_auc(x, y)
    
    plt.figure()
    lw = 2
    plt.plot(x, y, color='darkorange',
             lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic')
    plt.legend(loc="lower right")
    # name = re.sub('.tsv','_roc.png',name)
    name = name+'/roc.png'
    plt.savefig(name)
    return
Ejemplo n.º 4
0
def get_auc(fp, tp, adjusted=False):
    """Calculate AUC from the FP and TP arrays of an ROC curve."""
    auc_val = sk_auc(fp, tp)
    if adjusted:
        auc_val -= 0.5
    return auc_val
# ax = plt.gca()
# ax.axes.spines['right'].set_visible(False)
# ax.axes.spines['top'].set_visible(False)
# fig.set_figwidth(8)
# fig.set_figheight(6)
# plt.savefig("figure/igg_native_roc.pdf", bbox_inches='tight')

print("Drawing PR")
fig = plt.figure()
for group in datasets:
    prec, rec, _ = precision_recall_curve(true_positive_mask, datasets[group])
    plt.step(rec,
             prec,
             alpha=0.8,
             label="%s (%0.3f AUC)" %
             (' '.join(group.split("_")).title(), sk_auc(rec, prec)))

plt.xlim(-0.01, 1)
plt.ylim(0, 1.01)
plt.legend()
plt.xlabel("Recall", fontsize=16)
plt.ylabel("Precision", fontsize=16)
plt.title("Precision-Recall Curve", fontsize=18)
ax = plt.gca()
ax.axes.spines['right'].set_visible(False)
ax.axes.spines['top'].set_visible(False)
fig.set_figwidth(8)
fig.set_figheight(6)
plt.savefig("figure/igg_native_prec_rec.pdf", bbox_inches='tight')

native_path = "analysis/results/igg-native-fit-prior.db"
def auc(expected, found):
    fpr, tpr, thresholds = roc_curve(expected, found)
    return sk_auc(fpr, tpr)
Ejemplo n.º 7
0
Archivo: auc.py Proyecto: angel1288/ai
    postive_cnt = sum(labels)
    negative_cnt = len(labels) - postive_cnt
    total_case = postive_cnt * negative_cnt
    pos_histogram = [0 for _ in range(n_bins)]
    neg_histogram = [0 for _ in range(n_bins)]
    bin_width = 1.0 / n_bins
    for i in range(len(labels)):
        nth_bin = int(preds[i]/bin_width)
        if labels[i] == 1:
            pos_histogram[nth_bin] += 1
        else:
            neg_histogram[nth_bin] += 1
    accumulated_neg = 0
    satisfied_pair = 0
    for i in range(n_bins):
        satisfied_pair += (pos_histogram[i]*accumulated_neg +
                           pos_histogram[i]*neg_histogram[i]*0.5)
        accumulated_neg += neg_histogram[i]

    return satisfied_pair / float(total_case)


if __name__ == '__main__':

    y = np.array([1, 0, 0, 0, 1, 0, 1, 0])
    pred = np.array([0.9, 0.8, 0.3, 0.1, 0.4, 0.9, 0.66, 0.7])

    fpr, tpr, thresholds = roc_curve(y, pred, pos_label=1)
    print("sklearn:", sk_auc(fpr, tpr))
    print("reimplementation:", auc(y, pred))
plt.ylabel("TPR", fontsize=16)
plt.xlim(-0.01, 1)
plt.ylim(0, 1.01)
plt.title("ROC Curve", fontsize=18)
ax = plt.gca()
plt.legend(loc=4)
ax.axes.spines['right'].set_visible(False)
ax.axes.spines['top'].set_visible(False)
plt.savefig("figure/serum_roc.pdf", bbox_inches='tight')


print("Drawing PR")
plt.figure()
for group in datasets:
    prec, rec, _ = precision_recall_curve(true_positive_mask, datasets[group])
    plt.step(rec, prec, alpha=0.8, label="%s (%0.3f AUC)" % (' '.join(group.split("_")).title(), sk_auc(
             rec, prec)))
plt.legend()
plt.xlabel("Recall", fontsize=16)
plt.ylabel("Precision", fontsize=16)
plt.title("Precision-Recall Curve", fontsize=18)
ax = plt.gca()
ax.axes.spines['right'].set_visible(False)
ax.axes.spines['top'].set_visible(False)
plt.savefig("figure/serum_prec_rec.pdf", bbox_inches='tight')


print "Generating Tetra-antennary Plot"
labeler = plotting.NGlycanLabelProducer(
    glypy.GlycanComposition.parse("{Fuc^Me:1; Hex^Me:7; HexNAc^Me:6; Neu5NAc^Me:1}$C1H4"))
color_cycle = iter(("red", "green", "blue", "orange")).next
Ejemplo n.º 9
0
def get_F1_event(label, pred):
    '''
     Get F1-Event
    :param label: binary ground truth label
    :param pred:  prediction
    :return: met a structure of F1E metric
    '''
    gt_segs, n_gt_segs = get_segs(
        label
    )  # n_gt_segs is the number of true events in whole video sequence
    bin_pred = pred > 0
    bin_pred = bin_pred.astype(np.int32)
    pred_segs, n_pred_segs = get_segs(
        bin_pred
    )  # pred_segs is the number of detected events in the whole video sequence
    gt_frames = np.where(label > 0)[0]
    pred_frames = np.where(pred > 0)[0]
    ths = np.arange(0, 1.01, 0.01)
    # init
    n_th = ths.size
    TPP = np.zeros(n_th)  # TP for precision
    TPR = np.zeros(n_th)  # TP for recall
    # Compute overlap score for GT
    olScoreGt = np.zeros(n_gt_segs)
    for i in range(0, n_gt_segs):
        seg = gt_segs[i]
        olScoreGt[i] = np.intersect1d(
            seg, pred_frames
        ).size / seg.size  # each segment part have one calculate

    # Compute overlap score for predicted segments
    olScorePr = np.zeros(n_pred_segs)
    for i in range(n_pred_segs):
        seg = pred_segs[i]
        olScorePr[i] = np.intersect1d(seg, gt_frames).size / seg.size
    # compute TP and recall and precision
    for iOl in range(n_th):
        TPR[iOl] = np.sum(olScoreGt >= ths[iOl])
        TPP[iOl] = np.sum(olScorePr >= ths[iOl])
    ER = TPR / n_gt_segs  # ER is the ratio of correctly detected events over the true events.
    EP = TPP / n_pred_segs  # EP is the ratio of correctly detected events over the detected events.
    # Compute f1-Event
    F1E_curve = 2 * ER * EP / (ER + EP)

    # Compute AUC under the F1E curve
    x = np.concatenate((np.array([0]), ths, np.array([1])), axis=0)
    y = np.concatenate((np.array([1]), F1E_curve, np.array([0])))
    # auc = AUC(x, y)
    auc = sk_auc(x, y, reorder=False)
    if np.isnan(auc):
        raise ValueError("AUC is NaN,(no true event exists)")
    # get output
    met = Map()
    met.f1EventCurve = F1E_curve
    met.thresholds = ths
    met.TP_recall = TPR
    met.TP_precision = TPP
    met.olScoreGt = olScoreGt
    met.olScorePr = olScorePr
    met.nGtSeg = n_gt_segs
    met.nPrSeg = n_pred_segs
    met.auc = auc
    return met