Ejemplo n.º 1
0
def test_lda_default_prior_params():
    # default prior parameter should be `1 / topics`
    # and verbose params should not affect result
    n_components, X = _build_sparse_mtx()
    prior = 1. / n_components
    lda_1 = LatentDirichletAllocation(n_components=n_components,
                                      doc_topic_prior=prior,
                                      topic_word_prior=prior, random_state=0)
    lda_2 = LatentDirichletAllocation(n_components=n_components,
                                      random_state=0)
    topic_distr_1 = lda_1.fit_transform(X)
    topic_distr_2 = lda_2.fit_transform(X)
    assert_almost_equal(topic_distr_1, topic_distr_2)
Ejemplo n.º 2
0
def test_lda_score(method):
    # Test LDA score for batch training
    # score should be higher after each iteration
    n_components, X = _build_sparse_mtx()
    lda_1 = LatentDirichletAllocation(n_components=n_components,
                                      max_iter=1, learning_method=method,
                                      total_samples=100, random_state=0)
    lda_2 = LatentDirichletAllocation(n_components=n_components,
                                      max_iter=10, learning_method=method,
                                      total_samples=100, random_state=0)
    lda_1.fit_transform(X)
    score_1 = lda_1.score(X)

    lda_2.fit_transform(X)
    score_2 = lda_2.score(X)
    assert score_2 >= score_1
Ejemplo n.º 3
0
def test_lda_fit_transform(method):
    # Test LDA fit_transform & transform
    # fit_transform and transform result should be the same
    rng = np.random.RandomState(0)
    X = rng.randint(10, size=(50, 20))
    lda = LatentDirichletAllocation(n_components=5, learning_method=method,
                                    random_state=rng)
    X_fit = lda.fit_transform(X)
    X_trans = lda.transform(X)
    assert_array_almost_equal(X_fit, X_trans, 4)
Ejemplo n.º 4
0
def test_lda_transform():
    # Test LDA transform.
    # Transform result cannot be negative and should be normalized
    rng = np.random.RandomState(0)
    X = rng.randint(5, size=(20, 10))
    n_components = 3
    lda = LatentDirichletAllocation(n_components=n_components,
                                    random_state=rng)
    X_trans = lda.fit_transform(X)
    assert (X_trans > 0.0).any()
    assert_array_almost_equal(np.sum(X_trans, axis=1),
                              np.ones(X_trans.shape[0]))