Ejemplo n.º 1
0
def test_precision_recall_curve_pipeline(pyplot, clf):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
    with pytest.raises(NotFittedError):
        plot_precision_recall_curve(clf, X, y)
    clf.fit(X, y)
    disp = plot_precision_recall_curve(clf, X, y)
    assert disp.estimator_name == clf.__class__.__name__
Ejemplo n.º 2
0
def test_error_bad_response(pyplot, response_method, msg):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)

    class MyClassifier(BaseEstimator, ClassifierMixin):
        def fit(self, X, y):
            self.fitted_ = True
            self.classes_ = [0, 1]
            return self

    clf = MyClassifier().fit(X, y)

    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(clf, X, y, response_method=response_method)
Ejemplo n.º 3
0
def test_plot_precision_recall(pyplot, response_method, with_sample_weight):
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)

    lr = LogisticRegression().fit(X, y)

    if with_sample_weight:
        rng = np.random.RandomState(42)
        sample_weight = rng.randint(0, 4, size=X.shape[0])
    else:
        sample_weight = None

    disp = plot_precision_recall_curve(lr,
                                       X,
                                       y,
                                       alpha=0.8,
                                       response_method=response_method,
                                       sample_weight=sample_weight)

    y_score = getattr(lr, response_method)(X)
    if response_method == 'predict_proba':
        y_score = y_score[:, 1]

    prec, recall, _ = precision_recall_curve(y,
                                             y_score,
                                             sample_weight=sample_weight)
    avg_prec = average_precision_score(y, y_score, sample_weight=sample_weight)

    assert_allclose(disp.precision, prec)
    assert_allclose(disp.recall, recall)
    assert disp.average_precision == pytest.approx(avg_prec)

    assert disp.estimator_name == "LogisticRegression"

    # cannot fail thanks to pyplot fixture
    import matplotlib as mpl  # noqa
    assert isinstance(disp.line_, mpl.lines.Line2D)
    assert disp.line_.get_alpha() == 0.8
    assert isinstance(disp.ax_, mpl.axes.Axes)
    assert isinstance(disp.figure_, mpl.figure.Figure)

    expected_label = "LogisticRegression (AP = {:0.2f})".format(avg_prec)
    assert disp.line_.get_label() == expected_label
    assert disp.ax_.get_xlabel() == "Recall"
    assert disp.ax_.get_ylabel() == "Precision"

    # draw again with another label
    disp.plot(name="MySpecialEstimator")
    expected_label = "MySpecialEstimator (AP = {:0.2f})".format(avg_prec)
    assert disp.line_.get_label() == expected_label
Ejemplo n.º 4
0
def test_plot_precision_recall_curve_estimator_name_multiple_calls(pyplot):
    # non-regression test checking that the `name` used when calling
    # `plot_roc_curve` is used as well when calling `disp.plot()`
    X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
    clf_name = "my hand-crafted name"
    clf = LogisticRegression().fit(X, y)
    disp = plot_precision_recall_curve(clf, X, y, name=clf_name)
    assert disp.estimator_name == clf_name
    pyplot.close("all")
    disp.plot()
    assert clf_name in disp.line_.get_label()
    pyplot.close("all")
    clf_name = "another_name"
    disp.plot(name=clf_name)
    assert clf_name in disp.line_.get_label()
Ejemplo n.º 5
0
def test_precision_recall_curve_string_labels(pyplot):
    # regression test #15738
    cancer = load_breast_cancer()
    X = cancer.data
    y = cancer.target_names[cancer.target]

    lr = make_pipeline(StandardScaler(), LogisticRegression())
    lr.fit(X, y)
    for klass in cancer.target_names:
        assert klass in lr.classes_
    disp = plot_precision_recall_curve(lr, X, y)

    y_pred = lr.predict_proba(X)[:, 1]
    avg_prec = average_precision_score(y, y_pred, pos_label=lr.classes_[1])

    assert disp.average_precision == pytest.approx(avg_prec)
    assert disp.estimator_name == lr.__class__.__name__
Ejemplo n.º 6
0
def test_errors(pyplot):
    X, y_multiclass = make_classification(n_classes=3,
                                          n_samples=50,
                                          n_informative=3,
                                          random_state=0)
    y_binary = y_multiclass == 0

    # Unfitted classifer
    binary_clf = DecisionTreeClassifier()
    with pytest.raises(NotFittedError):
        plot_precision_recall_curve(binary_clf, X, y_binary)
    binary_clf.fit(X, y_binary)

    multi_clf = DecisionTreeClassifier().fit(X, y_multiclass)

    # Fitted multiclass classifier with binary data
    msg = "DecisionTreeClassifier should be a binary classifier"
    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(multi_clf, X, y_binary)

    reg = DecisionTreeRegressor().fit(X, y_multiclass)
    msg = "DecisionTreeRegressor should be a binary classifier"
    with pytest.raises(ValueError, match=msg):
        plot_precision_recall_curve(reg, X, y_binary)