Ejemplo n.º 1
0
    def __init__(self, *args, attrmap=None, **kwargs):
        super().__init__(**kwargs)

        self.attrmap = attrmap
        self.trajectory = Trajectory()
        self.dumpattrs = {}
        self.dumpfiles = list(flatten([glob(f) for f in args[0].split()]))

        if len(self.dumpfiles) == 0:
            raise ValueError('No dump file specified.')

        self.read()
Ejemplo n.º 2
0
class DUMPReader(StructureIO):
    """Class for reading `LAMMPS dump` file format.

    Parameters
    ----------
    *args : :class:`~python:list`
        :class:`~python:list` of one or more LAMMPS dump files.
    attrmap : class:`~python:dict`
        Python :class:`~python:dict` mapping custom dump attributes
        to :class:`~sknano.core.atoms.Atom` attributes.

    Examples
    --------
    Using LAMMPS, one often saves molecular dynamics atom trajectories
    to one or more custom dump files containing per-atom attributes of
    of each atom at a given timestep. Often the per-atom attributes
    are calculated from custom LAMMPS compute commands that one may
    want to map to a specific :class:`~sknano.core.atoms.Atom`
    attribute.

    For example, consider a dump file containing per-atom dump attributes
    *id*, *mol*, *type*, *x*, *y*, *z*, *vx*, *vy*, *vz*, *c_atom_ke*,
    *c_atom_pe*, and *c_atom_CN*, where *c_atom_ke*, *c_atom_pe*, and
    *c_atom_CN* are the LAMMPS *compute-IDs* from custom compute commands
    in a LAMMPS input script, which calculate per-atom values for
    kinetic energy, potential energy, and coordination number, respectively.
    To map these compute-IDs to corresponding
    :class:`~sknano.core.atoms.Atom` attributes
    :attr:`~sknano.core.atom.EnergyAtom.ke`,
    :attr:`~sknano.core.atom.EnergyAtom.pe`,
    and :attr:`~sknano.core.atom.CNAtom.CN`), respectively, one
    would use the following :class:`~python:dict` mapping::

    >>> from sknano.io import DUMPReader
    >>> compute_attrmap = {'c_atom_pe': 'pe', 'c_atom_ke': 'ke',
    ...                    'c_atom_CN': 'CN'}
    >>> dumps = DUMPReader('dump.*', attrmap=compute_attrmap)
    >>> print(repr(dumps.dumpattrs2str()))
    'id mol type x y z vx vy vz c_atom_ke c_atom_pe c_atom_CN'
    >>> print(repr(dumps.atomattrs2str()))
    'id mol type x y z vx vy vz ke pe CN'

    """
    def __init__(self, *args, attrmap=None, **kwargs):
        super().__init__(**kwargs)

        self.attrmap = attrmap
        self.trajectory = Trajectory()
        self.dumpattrs = {}
        self.dumpfiles = list(flatten([glob(f) for f in args[0].split()]))

        if len(self.dumpfiles) == 0:
            raise ValueError('No dump file specified.')

        self.read()

    def __getattr__(self, name):
        try:
            return getattr(self.trajectory, name)
        except AttributeError:
            return super().__getattr__(name)

    def __iter__(self):
        return iter(self.trajectory)

    def __getitem__(self, index):
        return self.trajectory[index]

    def read(self):
        """Read all snapshots from each dump file."""
        for dumpfile in self.dumpfiles:
            with zopen(dumpfile) as f:
                snapshot = self.read_snapshot(f)
                while snapshot is not None:
                    self.trajectory.append(snapshot)
                    print(snapshot.timestep, end=' ')
                    sys.stdout.flush()
                    snapshot = self.read_snapshot(f)
        print()

        self.trajectory.sort(key=attrgetter('timestep'))
        self.trajectory.cull()

        print("read {:d} snapshots".format(self.Nsnaps))

        self.trajectory.time_selection.all()
        self.trajectory.t0_snapshot = self.trajectory[0]

        if self.dumpattrs:
            print('Dumped Atom attributes: {}'.format(self.dumpattrs2str()))
        else:
            print('No dump column assignments')

        if 'x' not in self.dumpattrs or 'y' not in self.dumpattrs or \
                'z' not in self.dumpattrs:
            print('dump scaling status unknown')
        elif self.Nsnaps > 0:
            if self.scale_original:
                self.unscale()
            elif self.scale_original is None:
                print('dump scaling status unknown')
            else:
                print('dump is already unscaled')

    def read_snapshot(self, f):
        try:
            snapshot = Snapshot(self.trajectory)
            f.readline()
            snapshot.timestep = int(f.readline().strip().split()[0])
            f.readline()
            snapshot.Natoms = int(f.readline().strip())
            snapshot.atom_selection = np.zeros(snapshot.Natoms, dtype=bool)

            item = f.readline().strip()
            try:
                snapshot.boxstr = item.split('BOUNDS')[1].strip()
            except IndexError:
                snapshot.boxstr = ''

            snapshot.triclinic = False
            snapshot.bounding_box = Cuboid()

            if 'xy' in snapshot.boxstr:
                snapshot.triclinic = True

            for dim, tilt_factor in zip(('x', 'y', 'z'), ('xy', 'xz', 'yz')):
                bounds = f.readline().strip().split()
                setattr(snapshot, dim + 'lo', float(bounds[0]))
                setattr(snapshot, dim + 'hi', float(bounds[1]))
                setattr(snapshot.bounding_box, dim + 'min',
                        getattr(snapshot, dim + 'lo'))
                setattr(snapshot.bounding_box, dim + 'max',
                        getattr(snapshot, dim + 'hi'))
                try:
                    setattr(snapshot, tilt_factor, float(bounds[2]))
                except IndexError:
                    setattr(snapshot, tilt_factor, 0.0)

            if not self.dumpattrs:
                xflag = yflag = zflag = None
                attrs = f.readline().strip().split()[2:]
                for i, attr in enumerate(attrs):
                    if attr in ('x', 'xu', 'xs', 'xsu'):
                        self.dumpattrs['x'] = i
                        if attr in ('x', 'xu'):
                            xflag = False
                        else:
                            xflag = True
                    elif attr in ('y', 'yu', 'ys', 'ysu'):
                        self.dumpattrs['y'] = i
                        if attr in ('y', 'yu'):
                            yflag = False
                        else:
                            yflag = True
                    elif attr in ('z', 'zu', 'zs', 'zsu'):
                        self.dumpattrs['z'] = i
                        if attr in ('z', 'zu'):
                            zflag = False
                        else:
                            zflag = True
                    else:
                        self.dumpattrs[attr] = i

                self.scale_original = None
                if all([flag is False for flag in (xflag, yflag, zflag)]):
                    self.scale_original = False
                if all([flag for flag in (xflag, yflag, zflag)]):
                    self.scale_original = True

                self.atomattrs = \
                    sorted(self.dumpattrs, key=self.dumpattrs.__getitem__)

                self.attr_dtypes = [attr_dtypes[attr] if attr in attr_dtypes
                                    else float for attr in self.atomattrs]

                if self.attrmap is not None:
                    self.remap_atomattr_names(self.attrmap)
                    self.attrmap = None

                self.unknown_attrs = \
                    {attr: self.atomattrs.index(attr) for
                     attr in set(self.atomattrs) - set(dir(Atom()))}

                [self.atomattrs.remove(attr) for attr in self.unknown_attrs]
            else:
                f.readline()

            snapshot.atomattrs = self.atomattrs
            snapshot.attr_dtypes = self.attr_dtypes

            atoms = \
                np.zeros((snapshot.Natoms, len(self.atomattrs)), dtype=float)
            for n in range(snapshot.Natoms):
                line = [float(value) for col, value in
                        enumerate(f.readline().strip().split())
                        if col not in self.unknown_attrs.values()]
                atoms[n] = line

            snapshot.atoms = atoms
            return snapshot

        except IndexError:
            return None

    def remap_atomattr_names(self, attrmap):
        """Rename attributes in the :attr:`DUMPReader.atomattrs` list.

        Parameters
        ----------
        attrmap : :class:`~python:dict`
            :class:`~python:dict` mapping atom attribute name to new
            attribute name.

        """
        for k, v in attrmap.items():
            try:
                self.atomattrs[self.atomattrs.index(k)] = v
            except ValueError:
                pass

    def scale(self):
        """Scale cartesian coordinates to fractional coordinates."""
        xi = self.dumpattrs['x']
        yi = self.dumpattrs['y']
        zi = self.dumpattrs['z']
        for snapshot in self.trajectory:
            atoms = snapshot.get_atoms(asarray=True)
            if atoms is not None:
                xlo = snapshot.xlo
                xhi = snapshot.xhi
                ylo = snapshot.ylo
                yhi = snapshot.yhi
                zlo = snapshot.zlo
                zhi = snapshot.zhi
                lx = xhi - xlo
                ly = yhi - ylo
                lz = zhi - zlo
                xy = snapshot.xy
                xz = snapshot.xz
                yz = snapshot.yz

                if np.allclose([xy, xz, yz], np.zeros(3)):
                    atoms[:, xi] = (atoms[:, xi] - snapshot.xlo) / lx
                    atoms[:, yi] = (atoms[:, yi] - snapshot.ylo) / ly
                    atoms[:, zi] = (atoms[:, zi] - snapshot.zlo) / lz
                else:
                    xlo = xlo - min((0.0, xy, xz, xy + xz))
                    xhi = xhi - max((0.0, xy, xz, xy + xz))
                    lx = xhi - xlo

                    ylo = ylo - min((0.0, yz))
                    yhi = yhi - max((0.0, yz))
                    ly = yhi - ylo

                    atoms[:, xi] = (atoms[:, xi] - snapshot.xlo) / lx + \
                        (atoms[:, yi] - snapshot.ylo) * xy / (lx * ly) + \
                        (atoms[:, zi] - snapshot.zlo) * (yz * xy - ly * xz) / \
                        (lx * ly * lz)
                    atoms[:, yi] = (atoms[:, yi] - snapshot.ylo) / ly + \
                        (atoms[:, zi] - snapshot.zlo) * yz / (ly * lz)
                    atoms[:, zi] = (atoms[:, zi] - snapshot.zlo) / lz

    def unscale(self):
        """Unscale fractional coordinates to cartesian coordinates."""
        xi = self.dumpattrs['x']
        yi = self.dumpattrs['y']
        zi = self.dumpattrs['z']
        for snapshot in self.trajectory:
            atoms = snapshot.get_atoms(asarray=True)
            if atoms is not None:
                xlo = snapshot.xlo
                xhi = snapshot.xhi
                ylo = snapshot.ylo
                yhi = snapshot.yhi
                zlo = snapshot.zlo
                zhi = snapshot.zhi
                lx = xhi - xlo
                ly = yhi - ylo
                lz = zhi - zlo
                xy = snapshot.xy
                xz = snapshot.xz
                yz = snapshot.yz
                if np.allclose([xy, xz, yz], np.zeros(3)):
                    atoms[:, xi] = snapshot.xlo + atoms[:, xi] * lx
                    atoms[:, yi] = snapshot.ylo + atoms[:, yi] * ly
                    atoms[:, zi] = snapshot.zlo + atoms[:, zi] * lz
                else:
                    xlo = xlo - min((0.0, xy, xz, xy + xz))
                    xhi = xhi - max((0.0, xy, xz, xy + xz))
                    lx = xhi - xlo

                    ylo = ylo - min((0.0, yz))
                    yhi = yhi - max((0.0, yz))
                    ly = yhi - ylo

                    atoms[:, xi] = snapshot.xlo + atoms[:, xi] * lx + \
                        atoms[:, yi] * xy + atoms[:, zi] * xz
                    atoms[:, yi] = snapshot.ylo + atoms[:, yi] * ly + \
                        atoms[:, zi] * yz
                    atoms[:, zi] = snapshot.zlo + atoms[:, zi] * lz

    def atomattrs2str(self):
        """Return a space-separated string of parsed atom attributes."""
        return ' '.join(self.atomattrs)

    def dumpattrs2str(self):
        """Return a space-separated string of the dumped atom attributes."""
        return ' '.join(sorted(self.dumpattrs, key=self.dumpattrs.__getitem__))
Ejemplo n.º 3
0
def test1():
    traj = Trajectory()
    assert_equal(traj.Nsnaps, 0)
    print(traj)