Ejemplo n.º 1
0
def trainabGA(model_name,dataset_name,iter_num):
	# init T,R,SP
	T = getSGGRes(model_name,dataset_name,"train",tasktype)
	R = getGT(model_name,dataset_name,"train",tasktype)
	SP,N = getPfromR(R,dataset_name)
	print("T info: ",len(T),len(T[0]),T[0][0])
	print("R info: ",len(R),len(R[0]),R[0][0])
	device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
	
	# start iteration
	low = [0.0,0.0]
	high = [1e6,1e6]
	
	for i in range(iter_num):
		#ga = GA(func=fitness, n_dim=2, size_pop=4, max_iter=10, \
		#	lb=[0.0, 0.0], ub=[1.0, 1.0], precision=1e-7)
		#ga = GA(func=fitness, n_dim=2, size_pop=6, max_iter=50, \
		#	lb=low, ub=high, precision=1e-7)
		
		#ga = GA(func=fitness, n_dim=2, size_pop=50, max_iter=50, \
		#	lb=low, ub=high, precision=1e-7)
		ga = GA(func=fitnessNDCG, n_dim=2, size_pop=100, max_iter=100, \
			lb=low, ub=high, precision=1e-7)

	
		ga.register(operator_name='selection', operator=selection_tournament, tourn_size=3).\
			register(operator_name='ranking', operator=ranking.ranking). \
    			register(operator_name='crossover', operator=crossover.crossover_2point). \
    			register(operator_name='mutation', operator=mutation.mutation)
		ga.to(device=device)	#GPU
		start_time = time.time()
		best_x, best_y = ga.run()# best_x={alpha,beta},best_y=Q-R
		print("run time: ",time.time() - start_time)
		
		alpha, beta = best_x
		print('iteration ',i,': best alpha and beta: ', alpha,beta)
		print('best_y:', best_y)
		print("sum_ndcg: ",-best_y-0.5*(alpha**2+beta**2))
		if best_y==0:
			print('best {alpha,beta}:',best_x,'best_y',best_y)
			end_cnt = fitnessNDCG(best_x)
			print("detect if zeros: ",end_cnt)
			if end_cnt==0:
				break
		else:
			#R = ReSet(alpha,beta)
			R = addsmallNDCG(alpha,beta,R)
			SP,_ = getPfromR(R,dataset_name)
			cnt_now=fitness(best_x)
			print(i," iter :", cnt_now)

	return best_x
Ejemplo n.º 2
0
def config_ga():
    lb = [1] * (station_count + truck_count - 1)
    ub = [21] * (station_count + truck_count - 1)
    iteration = int(cfg.read_config("iteration_time"))
    ga = GA(func=fitness_fun,
            size_pop=100,
            n_dim=station_count + truck_count - 1,
            max_iter=iteration,
            prob_mut=0.01,
            lb=lb,
            ub=ub,
            precision=[1] * (station_count + truck_count - 1))
    ga.Chrom = generate_new_pop()
    if cfg.read_config("crossover_type") is not None:
        ga.register(operator_name='crossover', operator=customized_crossover). \
            register(operator_name='mutation', operator=customized_mutation)
    # TODO: 排序的策略配置(暂时不考虑)
    return ga
Ejemplo n.º 3
0
def config_ga():
    constraint_eq = [
        lambda x: int(cfg.read_config('bike_total_count')) - sum(x)
    ]
    lb = [0] * station_count
    ub = hub.hub
    iteration = int(cfg.read_config("iteration_time"))
    ga = GA(func=fitness_fun,
            size_pop=300,
            n_dim=station_count,
            max_iter=iteration,
            prob_mut=0.01,
            lb=lb,
            ub=ub,
            constraint_eq=constraint_eq,
            precision=[1] * 20)
    if cfg.read_config("crossover_type") is not None:
        ga.register(operator_name='crossover',
                    operator=crossover.crossover_1point)
    # TODO: 变异和排序的策略配置(暂时不考虑)
    return ga
Ejemplo n.º 4
0
# %% step2: import package and build ga, as usual.
import numpy as np
from sko.GA import GA, GA_TSP

demo_func = lambda x: x[0]**2 + (x[1] - 0.05)**2 + (x[2] - 0.5)**2
ga = GA(func=demo_func,
        n_dim=3,
        size_pop=100,
        max_iter=500,
        lb=[-1, -10, -5],
        ub=[2, 10, 2],
        precision=[1e-7, 1e-7, 1])

# %% step3: register your own operator
ga.register(operator_name='selection',
            operator=selection_tournament,
            tourn_size=3)
# %% Or import the operators scikit-opt already defined.
from sko.operators import ranking, selection, crossover, mutation

ga.register(operator_name='ranking', operator=ranking.ranking). \
    register(operator_name='crossover', operator=crossover.crossover_2point). \
    register(operator_name='mutation', operator=mutation.mutation)
# %% Run ga
best_x, best_y = ga.run()
print('best_x:', best_x, '\n', 'best_y:', best_y)


# %% For advanced users
class MyGA(GA):
    def selection(self, tourn_size=3):