def create_video(frames, name, train_step_number, last_index,
                 episode_reward_sum):
    if len(frames):
        tmp4_fname = os.path.join(
            model_base_filedir, "ATARI_step%010d_%s_%06d_%03d.mp4" %
            (train_step_number, name, last_index, episode_reward_sum))
        vwrite(tmp4_fname, np.array(frames, dtype=np.uint8))
Ejemplo n.º 2
0
def play_bson_silhouette(days_folder, start, end, room):
    'G:\HouseData-Sphere\4954\backups'
    day = '{}-{:02}-{:02}'.format(start.year, start.month, start.day)
    bson_path = os.path.join(days_folder, day, 'sphere', 'VID.bson')
    if os.path.exists(bson_path):
        use_bzip = False
    else:
        use_bzip = True
        bson_path += '.bz2'

    bson_data = BsonFile(bson_path)
    room_uid = read_room_uid(os.path.dirname(bson_path), room, use_bzip)
    json_data = []
    for entry in tqdm(bson_data.data):
        entry_time = entry['bt']
        entry_room = entry['uid']
        if entry_room == room_uid and entry_time >= start and entry_time <= end:
            json_data.append(entry)

    silhouettes = [
        bf['e'][0]['v'] for bf in json_data if bf['e'][0]['n'] == 'silhouette'
    ]
    sample = b64_image_to_numpy(silhouettes[0])
    video = np.zeros((len(silhouettes), sample.shape[0], sample.shape[1]),
                     dtype=np.uint8)
    for i, silhouette in enumerate(tqdm(silhouettes)):
        video[i, ...] = b64_image_to_numpy(silhouette)
    video_name = 'bson_{}.mp4'.format(start).replace(':', '.')
    vwrite(video_name, video)
    print('Frames from {} to {} were saved to {}'.format(
        start, end, video_name))
 def extract_data(self):
     from skvideo.io import vwrite
     from os import walk
     for (session_dir, _j, scenes) in list(walk(self.sessions_path)):
         for scene in scenes:
             scene_dict = self.x.extract_signs_from(
                 osp.join(session_dir, scene))
             for key, value in scene_dict.items():
                 vwrite(osp.join(self.videos_path, key + '.mov'), value)
Ejemplo n.º 4
0
def gif(filename, image_list):
    fname, _ = os.path.splitext(filename)
    filename = fname + '.mp4'

    np_images = []
    for m in image_list:
        np_images.append(m.permute(1, 2, 0).numpy() * 255)

    vwrite(filename, np_images, verbosity=0)
    return
Ejemplo n.º 5
0
def write_file(colored_frames, fps, output_type, output_wihout_ext,
               video_number):
    name = "{}_{}{}".format(output_wihout_ext, video_number, output_type) \
        if video_number else "{}{}".format(output_wihout_ext, output_type)
    fps_string = "{:.2f}".format(fps)
    io.vwrite(name,
              colored_frames,
              inputdict={"-framerate": fps_string},
              outputdict={"-r": fps_string})  # WRITE VIDEO
    print("\nwritten to {}".format(name))
Ejemplo n.º 6
0
def read_depth_video(videoname,
                     framesdir,
                     shape=(480, 640, 1),
                     dtype=np.uint16):
    vid_data = read_frame_data(
        **default_read_z16_args(framesdir, shape=shape, dtype=dtype))

    vid_data = grey_to_redblue_codec(np.array(vid_data, dtype=np.long))

    skio.vwrite(join(VIDDIR, videoname), vid_data)
Ejemplo n.º 7
0
 def extract(self):
     from skvideo.io import vwrite
     from os import walk
     for (session_dir, _j, scenes) in list(walk(self.sessions_path)):
         for scene in scenes:
             scene_dict = self.x.extract_signs_from(
                 osp.join(session_dir, scene))
             for key, value in scene_dict.items():
                 vwrite(osp.join(self.videos_path, key), value)
     a = osp.join(self.my_path, 'extracted')
     open(a, 'w').close()
Ejemplo n.º 8
0
def _to_supervisely(dataset, output):
    try:
        import supervisely_lib as sly
        from skvideo.io import vwrite
    except ModuleNotFoundError:
        raise ModuleNotInstalledException("supervisely")
    schema_dict = dataset.schema.dict_
    for key, schem in schema_dict.items():
        if isinstance(schem, Image):
            project_type = "images"
            extension = "jpeg"
            break
        elif isinstance(schem, Video):
            project_type = "videos"
            extension = "mp4"
            break
    else:
        raise Exception
    mode = sly.OpenMode.CREATE
    if project_type == "images":
        _project = sly.Project
    elif project_type == "videos":
        _project = sly.VideoProject
    else:
        raise Exception
    pr = _project(output, mode)
    meta = pr.meta
    meta._project_type = project_type
    # probably here we can create multiple datasets
    out_ds = pr.create_dataset(output)
    try:
        fn_key = "filename"
        dataset[fn_key]
    except KeyError:
        fn_key = None
        zeroes = len(str(len(dataset)))
    for idx, view in enumerate(dataset):
        obj = view[key].compute()
        if fn_key:
            fn = view[fn_key].compute()
        else:
            fn = f"{idx:0{zeroes}}"
        fn = "{}.{}".format(fn, extension)
        # strangely supervisely prevents from using this method on videos
        try:
            out_ds.add_item_np(fn, obj)
        except RuntimeError:
            # fix with in-memory file
            path = "{}/{}".format(out_ds.item_dir, fn)
            vwrite(path, obj)
            out_ds._item_to_ann[fn] = fn + ".json"
            out_ds.set_ann(fn, out_ds._get_empty_annotaion(path))
    pr.set_meta(meta)
    return pr
Ejemplo n.º 9
0
def frames_tensor_to_video(frames_tensor, video_write_path):
    """
    Writes a tensor of frames of size [n_frames x n_channels x height x width]
    to a video file at video_write_path.

    Args:
        frames_tensor (PyTorch Variable / tensor or numpy array): tensor of frames
        video_write_path (str): path to write the video
    """
    assert type(video_write_path) == str, 'Video write path must be a string.'
    frames_tensor = convert_tensor(frames_tensor)
    vid.vwrite(video_write_path, frames_tensor)
Ejemplo n.º 10
0
 def video(self):
     BIG_MAP_TIME = np.zeros((self.TIME_DURATION, self.X, self.Y))
     for i in range(self.TIME_DURATION):
         A = tuple(map(tuple, self.DATA[0][i].T))
         P = tuple(map(tuple, self.DATA[1][i].T))
         BIG_MAP_TIME[i][A] = 100
         BIG_MAP_TIME[i][P] = 200
     # export to video
     self.VIDEO = BIG_MAP_TIME
     FILENAME = os.getcwd(
     ) + os.path.sep + 'OUT' + os.path.sep + 'MAP_LYFE.mp4'
     skio.vwrite(FILENAME, self.VIDEO)
Ejemplo n.º 11
0
def save_summary(src_video, label, out_video):
    logging.info(f'loading {src_video}')
    video = vread(src_video)
    summary = video[np.where(label)]

    logging.info(f'writing {out_video}')
    vwrite(out_video,
           summary,
           outputdict={
               '-vcodec': 'libx264',
               '-crf': '20',
               '-pix_fmt': 'yuv420p'
           })
Ejemplo n.º 12
0
def save_images_to_gif(images, save_path):
    '''
        Input: images: Batch_Size x 3 x H x W [Torch.Tensor]
    '''
    os.makedirs(os.path.dirname(save_path), exist_ok=True)
    images = images.clamp(min=0, max=1.0)
    imgs = images.detach().cpu().numpy().transpose((0, 2, 3, 1)) * 255
    imgs = imgs.astype('uint8')

    imageio.imwrite(save_path.replace('.gif', '.png'), imgs[0])
    imageio.mimsave(save_path, imgs)

    vwrite(save_path.replace('.gif', '.mp4'), imgs, outputdict={'-r': '30'})
Ejemplo n.º 13
0
def arr2vid(arr, path, fps = '20', speed_mult = '2'):
    assert(len(arr.shape) == 4)

    # Compress output vid? makes writing to a video signifigantly faster
    compress = False

    speed = 'setpts=' + speed_mult + '*PTS'
    if compress:
        outdict = {'-r': fps, '-vcodec' : 'libx265', '-crf' : '30', '-filter:v' : speed}
    else:
        outdict = {'-r': fps, '-filter:v' : speed}
        
    skv.vwrite(path, arr, outputdict = outdict)
Ejemplo n.º 14
0
def images2avi(images, vidfile):

    # save video
    skv.vwrite(vidfile,
               images,
               inputdict={
                   '-vcodec': 'rawvideo',
                   '-pix_fmt': 'rgb24'
               },
               outputdict={
                   '-vcodec': 'rawvideo',
                   '-pix_fmt': 'rgb24'
               })
Ejemplo n.º 15
0
def predict_video(num_frame, device, video_idx):

    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    device = torch.device(device)
    model_parameters = torch.load('../model/new_video_vangogh' +
                                  str(video_idx) + '.pth')
    path = '../../2019_NCL_Brand_Essence_Good_to_be_Free.mp4'
    model = transferNet.TransferNet()
    model.load_state_dict(model_parameters)

    model.to(device)
    cap = cv2.VideoCapture(path)
    # fourcc = cv2.VideoWriter_fourcc(*args.fourcc)
    # out_writer = cv2.VideoWriter("../outputImage/outputvideo_new.avi",
    #                       fourcc, 24.0, (640, 480))
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    frame_lst = []
    count = 0
    while (True):

        torch.cuda.empty_cache()

        ret, frame = cap.read()
        count = count + 1

        print(count)
        if ret and count <= num_frame:

            current_frame = torch.Tensor(frame.transpose(2, 0, 1)) / 255.
            normalized = normalize(current_frame, mean, std)
            torch.cuda.empty_cache()
            new_frame = normalized.reshape((1, *normalized.shape)).to(device)

            out = model(new_frame)
            new_out = recover_image(out[1].data.cpu().numpy())
            # out_writer.write(new_out)
            # new_out = new_out.reshape((1, *new_out.shape))
            frame_lst.append(new_out)
        else:
            break
    cap.release()
    # out_writer.release()
    cv2.destroyAllWindows()
    out_video = np.concatenate(frame_lst)
    io.vwrite("../outputImage/new_video_vangogh" + str(video_idx) + ".mp4",
              out_video,
              outputdict={'-pix_fmt': 'yuv420p'})
Ejemplo n.º 16
0
def required_video(video_info):

    try:
        video_path = video_info[0]
        print(video_path)
        start_time = video_info[1]
        end_time = video_info[2]
        capture = cv2.VideoCapture(video_path)
        fps = capture.get(cv2.CAP_PROP_FPS)
        video = vread(video_path)
        video = video[math.floor(start_time * fps):math.floor(end_time * fps)]
        vwrite(videos_required_path + video_path.split('/')[-1], video)
    except:
        f = open(log_file, 'a')
        f.write(video_path + '\n')
        f.close()
Ejemplo n.º 17
0
 def create_video(self):
     '''
     composes video from .fformat files, requires ffmpeg
     '''
     fileList = glob.glob(os.path.join(self.directory, '*' + self.format))
     total_movie = []
     fileList.sort(key=lambda x: os.path.basename(x))
     print("Merging up the files. This might take a moment...")
     for filename in fileList:
         print(filename)
         img = ski.imread(filename)
         for i in range(self.framerate):
             total_movie.append(img)
     total_movie = np.array(total_movie)
     skv.vwrite(os.path.join(self.directory, 'movie.mkv'), total_movie)
     self.do_cleanup(fileList)
Ejemplo n.º 18
0
def play_clip(frames):
    # torch.Tensor -> Numpy
    np_frames = np.transpose(frames.numpy(), (0, 2, 3, 1)) * 255
    np_frames = np_frames.astype(np.uint8)

    # write frames to temp file
    temp_file = tempfile.NamedTemporaryFile(suffix='.mp4')
    sk.vwrite(temp_file.name, np_frames)

    # play video clip
    cmd = 'ffplay -i ' + temp_file.name + ' -loop 0'
    os.system(cmd)

    # close & delete temp file
    temp_file.close()

    return
Ejemplo n.º 19
0
def dataset_to_mp4(s, m, mp4_path):
    """Converts the given series to an mp4 video. If the mask is given, adds an outline around each neuron.

    # Arguments
        s: imaging series as a (time x height x width) numpy array.
        m: neuron masks as a (no. neurons x height x width) numpy array.
        mp4_path: path where the mp4 file should be saved.

    # Returns
        Nothing

    """

    from skvideo.io import vwrite
    logger = logging.getLogger(funcname())
    logger.info('Preparing video %s.' % mp4_path)

    s = s.astype(np.float32)
    s = (s - np.min(s)) / (np.max(s) - np.min(s)) * 255

    # If mask is given make a color video with neurons outlined.
    if m is not None:
        video = np.zeros(s.shape + (3, ), dtype=np.uint8)
        video[:, :, :, 0] = s
        video[:, :, :, 1] = s
        video[:, :, :, 2] = s

        outlines = np.zeros(s.shape[1:] + (3, ), )
        for i in range(m.shape[0]):
            reg = one(list(zip(*np.where(m[i] == 1))))
            outlines += reg.mask(dims=m.shape[1:],
                                 fill=None,
                                 stroke='white',
                                 background='black')

        yy, xx, _ = np.where(outlines != 0)
        video[:, yy, xx, :] = [102, 255, 255]

    else:
        video = s.astype(np.uint8)

    vwrite(mp4_path, video)
    logger.info('Saved video %s.' % mp4_path)
Ejemplo n.º 20
0
def write_images():

    root = '../UCF-14/'

    classes = open('../dataset/classInd_14.txt', 'r')
    var1 = {}
    for line in classes:
        words = line.split(" ")
        var1[words[1].split("\n")[0]] = words[0]

    for path, subdirs, files in os.walk(root):
        for filename in files:
            print filename
            if ".DS_Store" not in filename:
                folder = 'images' + '/' + filename.split('.')[0] + '/'
                if not os.path.isdir(folder):
                    os.mkdir(folder)
                else:
                    shutil.rmtree(folder)
                    os.mkdir(folder)
                try:
                    cnt = 0
                    full_path = path + '/' + filename
                    cap = vreader(full_path)
                    fcnt = 1

                    for frame in cap:
                        vid_name = filename.split('.')[0]
                        img_path = folder + vid_name + '_{}.jpg'.format(cnt +
                                                                        1)
                        img_name = vid_name + '_{}'.format(cnt + 1)
                        if fcnt % 5 == 0:
                            vwrite(img_path, frame)
                            cnt = cnt + 1
                        fcnt += 1

                    if cnt:
                        with open("count.txt", "w") as txt:
                            text = str(cnt) + " " + img_name.split(
                                '.')[0] + "\n"
                            txt.write(text)
                except (RuntimeError, TypeError, NameError):
                    print "Some Error happened"
    def save_images(self, webpage, visuals, image_path, aspect_ratio=1.0):
        image_dir = webpage.get_image_dir()
        short_path = ntpath.basename(image_path[0])
        name = os.path.splitext(short_path)[0]

        webpage.add_header(name)
        ims = []
        txts = []
        links = []

        if self.no_img:
            for label, im in visuals.items():
                self.save_to_mat(webpage, name, label, im)
        else:
            for label, im in visuals.items():
                self.save_to_mat(webpage, name, label, im)  # save a matfile
                if self.video_mode:
                    vid_name = '%s_%s.mp4' % (name, label)
                    vid_path = os.path.join(image_dir, vid_name)
                    # video_numpy = util.rescale_vid(video_numpy, 2)
                    vwrite(vid_path, im, inputdict=self.ffmpeg_params)
                    ims.append(vid_name)
                    links.append(vid_path)
                else:
                    image_name = '%s_%s.png' % (name, label)
                    save_path = os.path.join(image_dir, image_name)
                    h, w, _ = im.shape
                    if aspect_ratio > 1.0:
                        #                         im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic')
                        im = np.array(
                            Image.fromarray(im).resize(
                                (h, int(w * aspect_ratio)), Image.BICUBIC))
                    if aspect_ratio < 1.0:
                        #                         im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic')
                        im = np.array(
                            Image.fromarray(im).resize(
                                (int(h / aspect_ratio), w), Image.BICUBIC))
                    util.save_image(im, save_path)
                    ims.append(image_name)
                    links.append(image_name)

                txts.append(label)
            webpage.add_images(ims, txts, links, width=self.win_size)
Ejemplo n.º 22
0
def make_video_frames(datadir, outdir):
    # train video data
    for i in range(10000):
        if not os.path.exists(os.path.join(outdir, 'video%s' % i)):
            os.makedirs(os.path.join(outdir, 'video%s' % i))
        filename = ('video%s.mp4' % i)
        videopath = os.path.join(datadir, filename)
        cap = sk.vreader(videopath)

        metadata = sk.ffprobe(videopath)
        # print json.dumps(metadata["video"], indent=4)
        """
        fps : @r_frame_rate
        length : @duration
        frames : @nb_frames
        """
        length = float(
            json.dumps(metadata["video"]["@duration"]).replace('"', ''))
        frames = float(
            json.dumps(metadata["video"]["@nb_frames"]).replace('"', ''))
        fps = int(frames / length)

        print('%sth video' % i)
        print('length : %d / frames : %d / fps : %d' % (length, frames, fps))

        cent = np.linspace(0, length, 7)[1:-1]
        for x in range(len(cent)):
            cent[x] = int(cent[x])
        frames = cent * fps

        idx = 0
        filenum = 0
        for frame in cap:
            if idx in frames:
                frame = cv2.resize(frame, dsize=(224, 224))
                sk.vwrite(outdir + '/video%s/frame%s.png' % (i, filenum),
                          frame)
                filenum += 1
            idx += 1

        if i % 1000 == 0:
            print('%sth video processed...' % i)
def main():
    sess = tf.Session()
    in_image = tf.placeholder(tf.float32, [None, 16, None, None, 4])
    gt_image = tf.placeholder(tf.float32, [None, 16, None, None, 3])
    out_image = []
    out_image += network(in_image),
    out_image += network(in_image, 3, prefix='1'),
    out_image += network(in_image, 2, prefix='2'),
    out_image += network(in_image, 3, 16, prefix='3'),
    from skvideo.io import vread, vwrite
    import numpy as np
    vid = np.load('./0_data/raw/test_data/gt_input/001_00_0001.npy')
    vid = np.expand_dims(np.float32(np.minimum((vid[:16, :256, :256, :] / vid.mean() / 5), 1.0)), axis=0)
    sess.run(tf.global_variables_initializer())
    for i, out in enumerate(out_image):
        print out.shape
        output = sess.run(out, feed_dict={in_image: vid})
        output = (np.minimum(output, 1.0) * 255).astype('uint8')
        print output[0].shape
        vwrite(str(i) + '.mp4', output[0])
Ejemplo n.º 24
0
def np_array_to_mp4(array, file_name):
    """
	
	Parameters
	----------
	array : np.ndarray
		Video data.  Dimensions = (t, y, x, color)
	file_name : str
		Name of mp4 file to write the data to
		
	Examples
	--------
	Example 1:: # black and white
		
		import numpy as np
		array = np.random.random(size=(50, 480, 680, 1)) * 255
		array = array.astype(np.uint8)
		file_name="outputvideo_BW.mp4"
		np_array_to_mp4(array,file_name=file_name)
		
	Example 2:: # color
		
		import numpy as np
		array = np.random.random(size=(50, 480, 680, 3)) * 255
		array = array.astype(np.uint8)
		file_name="outputvideo_color.mp4"
		np_array_to_mp4(array,file_name=file_name)

	References
	----------
	*  http://www.scikit-video.org/stable/io.html

	"""

    import skvideo.io as _skio

    print("work in progress")
    if not file_name.endswith('.mp4'):
        file_name += '.mp4'

    _skio.vwrite(file_name, array)
Ejemplo n.º 25
0
def main():
    filename = 'videos/walking.MOV'
    video = io.vread(filename, as_grey=True)

    depths = []
    for i in range(70, 340):
        filename = 'imgs/{}_cam-depth_array_.png'.format(i)
        d = cv2.imread(filename, -1)
        d = cv2.GaussianBlur(d, (9, 7), 0)
        depths.append(d)

    imgs = []
    offset = 5
    failure = 0
    for i, frame in enumerate(video):
        print(i)
        frame = frame[:, :, 0]
        if i < offset:
            res = np.zeros(frame.shape)
            res2 = np.zeros(frame.shape)
            res3 = np.zeros(frame.shape)
        else:
            try:
                detector = Detector(video[i - offset], frame,
                                    depths[i - offset], depths[i])
                res = detector.detect()
                kp1, kp2, matches = detector.match()
                res2 = detector.detect_2D(kp1, kp2, matches)
                res3 = detector.detect_3D(kp1, kp2, matches)
            except:
                failure += 1
                res = np.zeros(frame.shape)
                res2 = np.zeros(frame.shape)
                res3 = np.zeros(frame.shape)

        top = np.hstack((frame, res))
        bottom = np.hstack((res2, res3))
        img = np.vstack((top, bottom))
        imgs.append(img)
    print("failure: ", failure)
    io.vwrite('walking_detected.MOV', imgs)
Ejemplo n.º 26
0
def generate_video(base_dir,
                   step_number,
                   frames,
                   reward,
                   name='',
                   results=[]):  #, resize=True):
    print('converting to np array uint8')
    frames_for_video = np.array(frames).astype(np.uint8)
    if len(frames_for_video[0].shape) == 2:
        name += 'gray'
    else:
        name += 'color'
    mp4_fname = os.path.join(
        base_dir,
        "ATARI_step%010d_r%04d_%s.mp4" % (step_number, int(reward), name))

    for i in range(0, len(frames_for_video), 500):
        end = min(i + 500, len(frames_for_video))
        gname = mp4_fname.replace('.mp4', '%05d.mp4' % i)
        print("WRITING video", gname, len(frames_for_video))
        vwrite(mp4_fname, frames_for_video[i:end])
Ejemplo n.º 27
0
def read_mesh_video(videoname,
                    framesdir,
                    shape=(480, 640),
                    dtypergb=np.uint8,
                    dtypedepth=np.uint16):
    rgb_data = read_frame_data(framesdir,
                               framenofunction=rgb_std_naming_frameno,
                               shape=shape + (3, ),
                               dtype=dtypergb,
                               framesregex="\d+\.rgb") * 0.5
    depth_data = read_frame_data(framesdir,
                                 framenofunction=z16_std_naming_frameno,
                                 shape=shape + (1, ),
                                 dtype=dtypedepth,
                                 framesregex="\d+\.z16") * 0.5

    depth_data = grey_to_redblue_codec(np.array(depth_data, dtype=np.long))

    vid_data = depth_data + rgb_data

    skio.vwrite(join(VIDDIR, videoname), vid_data)
 def convert_videos(self, square_size, save_folder, reduce_frames=True):
     
     x_paths = self.get_paths()
     failed = []
     
     for row in x_paths.itertuples():
         filepath = row.filepath
         obf_id = row.Index
         
         # load
         video = skv.vread(filepath, as_grey=False)
         
         self.height = video.shape[1]
         self.width = video.shape[2]
         
         # fill video if neccessary
         if video.shape[0] < self.num_frames:
             video = self._fill_video(video) 
         
         # reduce
         if reduce_frames:
             frames = np.arange(0, video.shape[0], 2)
             try:
                 video = video[frames, :, :] #.squeeze() 
                 
             except IndexError:
                 if verbose:
                     print("FAILED TO REDUCE:", filepath)
                 print("id:\t", obf_id)
                 failed.append(obf_id)
                 
         #reshape
         video = np.asarray([imresize(x, (224, 224, 3), interp='bilinear') for x in video])
         
         #save
         save_path = os.path.join(save_folder, obf_id)
         skv.vwrite(save_path, video)
        
     return failed
Ejemplo n.º 29
0
def plot_trajectory_on_video(vid_path, out_path, ball_trajectory, radius=10):
    """
    Mark each detected ball with a red circle in a video
    :param vid_path: path to the input video
    :param out_path: path where to save the video
    :param ball_trajectory: array of ball detections (as outputted by detect_ball function)
    :param radius: radius of the circle marking the ball
    """
    cap = cv2.VideoCapture(vid_path)
    arr = []
    i = 0
    count = 0
    while True:
        ret, img = cap.read()
        if ret == False:
            break
        ori_img = img.copy()
        out_img = img.copy()
        if count < len(ball_trajectory) and ball_trajectory[count, 2] == i:
            scale = int(255 / (count + 1))
            for j in range(count + 1):
                weight = count - j
                # print(j, weight*scale)
                center = tuple(ball_trajectory[j, :2].astype(int))
                img = cv2.circle(ori_img,
                                 center,
                                 int(radius),
                                 [255, weight * scale, weight * scale],
                                 thickness=2)
                # print(j, weight, anti_weight)
            count += 1
        #plt.figure(figsize = (10,10))
        #plt.imshow(img[30:, 20:])
        #plt.show()
        i += 1
        # append multiple times to have slow motion like video
        for _ in range(5):
            arr.append(img[30:, 20:])
    io.vwrite(out_path, arr)
Ejemplo n.º 30
0
def test_from_supervisely_video():
    import supervisely_lib as sly
    from skvideo.io import vwrite

    data_path = "./data/test_supervisely/video_from"
    if os.path.exists(data_path):
        shutil.rmtree(data_path)
    project_name = "minuscule_videos/"
    project_path = os.path.join(data_path, project_name)
    project = sly.VideoProject(project_path, sly.OpenMode.CREATE)
    project.meta._project_type = "videos"
    item_name = "item.mp4"
    np.random.seed(0)
    for name in ["foofoo", "bar"]:
        ds = project.create_dataset(name)
        item_path = os.path.join(ds.item_dir, item_name)
        vwrite(item_path,
               (np.random.rand(len(name), 2, 2, 3) * 255).astype("uint8"))
        ds._item_to_ann[item_name] = item_name + ".json"
        ds.set_ann(item_name, ds._get_empty_annotaion(item_path))
    project.set_meta(project.meta)
    trans = hub.Dataset.from_supervisely(os.path.join(data_path, project_name))