Ejemplo n.º 1
0
def gps_update(gps, ekf_state, sigmas):
    '''
    Perform a measurement update of the EKF state given a GPS measurement (x,y).

    Returns the updated ekf_state.
    '''

    ###
    # Implement the GPS update.
    ###

    P = ekf_state['P']
    residual = np.transpose([gps - ekf_state['x'][:2]])

    H_mat = np.matrix(np.zeros([2, P.shape[0]]))
    H_mat[0, 0], H_mat[1, 1] = 1, 1
    R_mat = np.diag([sigmas['gps']**2, sigmas['gps']**2])

    S_mat = H_mat * P * H_mat.T + R_mat
    d = (np.matrix(residual)).T * np.matrix(
        slam_utils.invert_2x2_matrix(np.array(S_mat))) * np.matrix(residual)

    if d <= chi2.ppf(0.999, 2):
        Kt = P * H_mat.T * np.matrix(
            slam_utils.invert_2x2_matrix(np.array(S_mat)))
        ekf_state['x'] = ekf_state['x'] + np.squeeze(
            np.array(Kt * np.matrix(residual)))
        ekf_state['x'][2] = slam_utils.clamp_angle(ekf_state['x'][2])
        ekf_state['P'] = slam_utils.make_symmetric(
            np.array((np.matrix(np.eye(P.shape[0])) - Kt * H_mat) * P))

    return ekf_state
def gps_update(gps, ekf_state, sigmas):
    '''
    Perform a measurement update of the EKF state given a GPS measurement (x,y).

    Returns the updated ekf_state.
    '''

    ###
    # Implement the GPS update.
    ###

    P = ekf_state['P'].copy()
    x = ekf_state['x'].copy()
    H = np.zeros([2, x.shape[0]])
    H[:2, :2] = np.array([[1, 0], [0, 1]])
    Q = np.diag([sigmas['gps']**2, sigmas['gps']**2])
    S = H.dot(P).dot(H.T) + Q.T
    K = P.dot(H.T).dot(slam_utils.invert_2x2_matrix(S))
    r = (gps - x[:2]).reshape([2, 1])
    if r.T.dot(slam_utils.invert_2x2_matrix(S)).dot(r) < 13.8:
        x_new = x + K.dot(gps - x[:2])
        cor_new = (np.eye(x.shape[0]) - K.dot(H)).dot(P)
        cor_new = slam_utils.make_symmetric(cor_new)
        ekf_state['P'] = cor_new
        ekf_state['x'] = x_new

    # ekf_state=slam.gps_update(gps, ekf_state, sigmas)

    return ekf_state
def laser_update(trees, assoc, ekf_state, sigmas, params):
    '''
    Perform a measurement update of the EKF state given a set of tree measurements.

    trees is a list of measurements, where each measurement is a tuple (range, bearing, diameter).

    assoc is the data association for the given set of trees, i.e. trees[i] is an observation of the
    ith landmark. If assoc[i] == -1, initialize a new landmark with the function initialize_landmark
    in the state for measurement i. If assoc[i] == -2, discard the measurement as 
    it is too ambiguous to use.

    The diameter component of the measurement can be discarded.

    Returns the ekf_state.
    '''

    ###
    # Implement the EKF update for a set of range, bearing measurements.
    ###
    if np.array(assoc).size == 0:
        return ekf_state

    assoc = np.array(assoc, dtype=np.int)
    dtrees = np.array(trees)[:, :2]
    new_ind = np.where(assoc == -1)[0]
    new_trees = dtrees[new_ind, :]

    prevnum = ekf_state['num_landmarks']
    ekf_state = initialize_landmark(ekf_state, np.array(trees)[new_ind, :])
    newnum = ekf_state['num_landmarks']

    update_ind = np.where(assoc >= 0)[0]
    ekf_state_prev = ekf_state.copy()
    cor_prev = ekf_state_prev['P']
    x_prev = ekf_state_prev['x']

    for i in range(prevnum, newnum):
        z = new_trees[i - prevnum, :]
        zhat, H = laser_measurement_model(ekf_state_prev, i)
        Q = np.diag([sigmas['range']**2, sigmas['bearing']**2])
        K = cor_prev.dot(H.T).dot(
            slam_utils.invert_2x2_matrix(H.dot(cor_prev).dot(H.T) + Q.T))
        ekf_state['x'] += K.dot(z - zhat)
        ekf_state['P'] += -K.dot(H).dot(cor_prev)
    for i in update_ind[::-1]:
        ii = assoc[i]
        z = dtrees[i, :]
        zhat, H = laser_measurement_model(ekf_state_prev, ii)
        Q = np.diag([sigmas['range']**2, sigmas['bearing']**2])
        K = cor_prev.dot(H.T).dot(
            slam_utils.invert_2x2_matrix(H.dot(cor_prev).dot(H.T) + Q.T))
        ekf_state['x'] += K.dot(z - zhat)
        ekf_state['P'] += -K.dot(H).dot(cor_prev)

    return ekf_state
Ejemplo n.º 4
0
def gps_update(gps, ekf_state, sigmas):
    '''
    Perform a measurement update of the EKF state given a GPS measurement (x,y).

    Returns the updated ekf_state.
    '''

    ###
    # Implement the GPS update.
    ###
    P = ekf_state['P']
    dim  = P.shape[0]-2
    H = np.hstack((np.eye(2),np.zeros((2,dim))))
    r = np.transpose([gps - ekf_state['x'][:2]])
    Q = (sigmas['gps']**2)*(np.eye(2))
    S = np.matmul(np.matmul(H,P),H.T) + Q
    S_inv = slam_utils.invert_2x2_matrix(S)
    d = np.matmul(np.matmul(r.T,S_inv),r)
    if d <= chi2.ppf(0.999, 2):
        K = np.matmul(np.matmul(P,H.T),S_inv)
        ekf_state['x'] = ekf_state['x'] + np.squeeze(np.matmul(K,r))
        ekf_state['x'][2] = slam_utils.clamp_angle(ekf_state['x'][2])
        P_temp = np.matmul((np.eye(P.shape[0])- np.matmul(K,H)),P)
        ekf_state['P'] = slam_utils.make_symmetric(P_temp)

    return ekf_state
Ejemplo n.º 5
0
def gps_update(gps, ekf_state, sigmas):
    '''
    Performs a measurement update of the EKF state given a GPS measurement (x,y).

    Returns the updated ekf_state.
    '''

    ###
    x = ekf_state["x"].copy()
    P = ekf_state["P"].copy()

    H = np.zeros([2, len(x)])
    H[0, 0] = 1
    H[1, 1] = 1

    R_t = (sigmas['gps']**2) * np.eye(2)
    S = P[0:2, 0:2] + R_t

    update = gps.reshape(2, 1) - x[0:2].reshape(2, 1)

    inv_S = slam_utils.invert_2x2_matrix(S)
    d = np.dot(np.dot(np.transpose(update), inv_S), update)

    if d < 13.8:
        K = np.dot(P[:, 0:2], inv_S)

        ekf_state['x'] = x + np.dot(K, update).flatten()
        ekf_state['x'][2] = slam_utils.clamp_angle(ekf_state['x'][2])

        ekf_state['P'] = slam_utils.make_symmetric(
            np.dot((np.eye(len(x)) - np.dot(K, H)), P))

    return ekf_state
Ejemplo n.º 6
0
def compute_data_association(ekf_state, measurements, sigmas, params):
    '''
    Computes measurement data association.

    Given a robot and map state and a set of (range,bearing) measurements,
    this function should compute a good data association, or a mapping from 
    measurements to landmarks.

    Returns an array 'assoc' such that:
        assoc[i] == j if measurement i is determined to be an observation of landmark j,
        assoc[i] == -1 if measurement i is determined to be a new, previously unseen landmark, or,
        assoc[i] == -2 if measurement i is too ambiguous to use and should be discarded.
    '''

    if ekf_state["num_landmarks"] == 0:
        # set association to init new landmarks for all measurements
        # assoc = np.zeros((len(measurements),1))
        # assoc = np.asarray([-1])
        return [-1 for m in measurements]

    ###
    # Implement this function.
    ###

    Qt = np.diag([sigmas['range']**2, sigmas['bearing']**2])
    zk = np.asarray(measurements)

    n_landmarks = ekf_state['num_landmarks']
    n_measurements = zk.shape[0]
    M = np.zeros((n_measurements, n_landmarks))

    # Thresholds for classifying as New or Ambiguous Landmarks
    alpha = chi2.ppf(0.95, 2)
    beta = chi2.ppf(0.99, 2)

    for k in range(n_landmarks):
        zhat, H = laser_measurement_model(ekf_state, k)
        S = np.matmul(H, np.matmul(ekf_state['P'], H.T)) + Qt
        Sinv = slam_utils.invert_2x2_matrix(S)
        innovation = zk[:, :2] - zhat.T
        M[:, k] = np.sum(innovation.T * np.matmul(Sinv, innovation.T), axis=0)

    # Augmented Matrix with Cost Matrix
    pairs = slam_utils.solve_cost_matrix_heuristic(
        np.hstack((M, alpha * np.ones((n_measurements, n_measurements)))))
    pairs.sort()
    pairs = np.asarray(pairs)
    assoc = pairs[:, 1]
    assoc = np.where(assoc >= n_landmarks, -1, assoc)

    for i in range(assoc.shape[0]):
        if assoc[i] == -1 and np.any(M[i, :] < beta):
            assoc[i] = -2

    return assoc
Ejemplo n.º 7
0
def laser_update(trees, assoc, ekf_state, sigmas, params):
    '''
    Performs a measurement update of the EKF state given a set of tree measurements.

    trees is a list of measurements, where each measurement is a tuple (range, bearing, diameter).

    assoc is the data association for the given set of trees, i.e. trees[i] is an observation of the
    ith landmark. If assoc[i] == -1, initialize a new landmark with the function initialize_landmark
    in the state for measurement i. If assoc[i] == -2, discard the measurement as 
    it is too ambiguous to use.

    The diameter component of the measurement can be discarded.

    Returns the ekf_state.
    '''

    ###
    assoc = np.asarray(assoc)
    trees = np.asarray(trees)
    n = ekf_state['num_landmarks']
    if assoc.shape[0] != 0:
        new_tree_index = assoc == -1
        new_trees = trees[new_tree_index, :]
        for i in range(new_trees.shape[0]):
            initialize_landmark(ekf_state, new_trees[i, :])

        assoc[new_tree_index] = np.linspace(n, n + new_trees.shape[0] - 1,
                                            new_trees.shape[0])
        Q = np.diag([sigmas['range']**2, sigmas['bearing']**2])
        exisiting_trees_index = assoc > -1

        exisiting_trees = trees[exisiting_trees_index, :]
        landmark_ids = assoc[exisiting_trees_index]

        for i in range(exisiting_trees.shape[0]):
            measure = exisiting_trees[i, 0:2].reshape(2, 1)

            zhat, H = laser_measurement_model(ekf_state, int(landmark_ids[i]))
            P = ekf_state['P'].copy()
            K = np.dot(
                np.dot(P, H.transpose()),
                slam_utils.invert_2x2_matrix(
                    np.dot(np.dot(H, P), H.transpose()) + Q))

            ekf_state['x'] = ekf_state['x'] + np.dot(K, (measure - zhat))[:, 0]
            ekf_state['x'][2] = slam_utils.clamp_angle(ekf_state['x'][2])

            ekf_state['P'] = slam_utils.make_symmetric(
                np.dot((np.eye(P.shape[0]) - np.dot(K, H)), P))

    ###

    return ekf_state
Ejemplo n.º 8
0
def gps_update(gps, ekf_state, sigmas):
    """
    Perform a measurement update of the EKF state given a GPS measurement (x,y)
    Returns the updated ekf_state.
    :param gps:
    :param ekf_state:
    :param sigmas:
    :return:
    """

    # measurement noise
    gps_noise = sigmas['gps']

    # check validity
    r = gps.reshape((2, 1)) - ekf_state['x'][:2].copy().reshape((2, 1))
    S = slam_utils.make_symmetric(ekf_state['P'][0:2, 0:2].copy() + 10e-6)
    d = np.dot(np.dot(r.T, slam_utils.invert_2x2_matrix(S)), r)
    if d > 13.8:
        return ekf_state

    ### Kalman Gain ###
    x = ekf_state['x'][0:3].copy().reshape((3, 1))
    P = ekf_state['P'][0:3, 0:3].copy()

    H = np.asarray([[1, 0, 0], [0, 1, 0]])
    Q = np.diag((gps_noise**2, gps_noise**2))

    # Kalman Gain update
    K_t = np.dot(P, H.T)
    K_t = np.dot(K_t,
                 slam_utils.invert_2x2_matrix(np.dot(np.dot(H, P), H.T) + Q))

    ### Measurement Model ###
    # update mu and sigma based on measurement
    x_t = x + np.dot(K_t, r)
    P_t = np.dot(np.identity(3) - np.dot(K_t, H), P)
    ekf_state['x'][0:3] = x_t.reshape(-1)
    ekf_state['P'][0:3, 0:3] = slam_utils.make_symmetric(P_t)

    return ekf_state
Ejemplo n.º 9
0
def compute_data_association(ekf_state, measurements, sigmas, params):
    '''
    Computes measurement data association.

    Given a robot and map state and a set of (range,bearing) measurements,
    this function should compute a good data association, or a mapping from 
    measurements to landmarks.

    Returns an array 'assoc' such that:
        assoc[i] == j if measurement i is determined to be an observation of landmark j,
        assoc[i] == -1 if measurement i is determined to be a new, previously unseen landmark, or,
        assoc[i] == -2 if measurement i is too ambiguous to use and should be discarded.
    '''

    if ekf_state["num_landmarks"] == 0:
        # set association to init new landmarks for all measurements
        return [-1 for m in measurements]

    ###
    P = ekf_state["P"].copy()
    n = ekf_state['num_landmarks']

    m = len(measurements)
    cost_matrix = np.zeros([m, n + 1])
    cost_matrix[:, n] = chi2.ppf(0.99, 2)

    R = np.diag([sigmas['range']**2, sigmas['bearing']**2])

    for i in range(n):
        zhat, H = laser_measurement_model(ekf_state, i)

        S = np.dot(np.dot(H, P), H.transpose()) + R
        inv_S = slam_utils.invert_2x2_matrix(S)
        for j in range(m):
            update = np.asarray(measurements[j][0:2]) - zhat.flatten()
            cost_matrix[j, i] = np.dot(np.dot(update.transpose(), inv_S),
                                       update)

    result = slam_utils.solve_cost_matrix_heuristic(cost_matrix)

    assoc = [0] * m
    for i, j in result:
        if j < ekf_state["num_landmarks"]:
            assoc[i] = j
        else:
            if min(cost_matrix[i, 0:]) < chi2.ppf(0.99, 2):
                assoc[i] = -2
            else:
                assoc[i] = -1

    return assoc
Ejemplo n.º 10
0
def compute_data_association(ekf_state, measurements, sigmas, params):
    '''
    Computes measurement data association.

    Given a robot and map state and a set of (range,bearing) measurements,
    this function should compute a good data association, or a mapping from
    measurements to landmarks.

    Returns an array 'assoc' such that:
        assoc[i] == j if measurement i is determined to be an observation of landmark j,
        assoc[i] == -1 if measurement i is determined to be a new, previously unseen landmark, or,
        assoc[i] == -2 if measurement i is too ambiguous to use and should be discarded.
    '''

    if ekf_state["num_landmarks"] == 0:
        return [-1 for m in measurements]

    n_lmark = ekf_state['num_landmarks']
    n_scans = len(measurements)
    M = np.zeros((n_scans, n_lmark))
    Q_t = np.array([[sigmas['range']**2, 0], [0, sigmas['bearing']**2]])

    alpha = chi2.ppf(0.95, 2)
    beta = chi2.ppf(0.99, 2)
    A = alpha*np.ones((n_scans, n_scans))

    for i in range(n_lmark):
        zhat, H = laser_measurement_model(ekf_state, i)
        S = np.matmul(H, np.matmul(ekf_state['P'],H.T)) + Q_t
        Sinv = slam_utils.invert_2x2_matrix(S)
        for j in range(n_scans):
            temp_z = measurements[j][:2]
            res = temp_z - np.squeeze(zhat)
            M[j, i] = np.matmul(res.T, np.matmul(Sinv, res))

    M_new = np.hstack((M, A))
    pairs = slam_utils.solve_cost_matrix_heuristic(M_new)
    pairs.sort()

    pairs = list(map(lambda x:(x[0],-1) if x[1]>=n_lmark else (x[0],x[1]),pairs))
    assoc = list(map(lambda x:x[1],pairs))

    for i in range(len(assoc)):
        if assoc[i] == -1:
            for j in range(M.shape[1]):
                if M[i, j] < beta:
                    assoc[i] = -2
                    break

    return assoc
Ejemplo n.º 11
0
def laser_update(trees, assoc, ekf_state, sigmas, params):
    """
    The diameter component of the measurement can be discarded
    :param trees: a list of measurements, where each measurement is a tuple (range, bearing, diameter)
    :param assoc: the data association for the given set of trees, i.e. trees[i] is an observation of the
    ith landmark. If assoc[i] == -1, initialize a new landmark with the function initialize_landmark
    in the state for measurement i. If assoc[i] == -2, discard the measurement as it is too ambiguous to use
    :param ekf_state:
    :param sigmas:
    :param params:
    :return:
    Returns the ekf_state
    """

    # measurement noise
    range_noise = sigmas['range']
    bearing_noise = sigmas['bearing']

    Q = np.diag((range_noise**2, bearing_noise**2))

    for i in range(len(trees)):
        # add state with new landmark
        if assoc[i] == -1:
            ekf_state = initialize_landmark(ekf_state, trees[i])
        # discard ambiguous measurement
        elif assoc[i] == -2:
            continue
        # update state with existing landmark
        else:
            landmark_id = assoc[i]
            z_t, H = laser_measurement_model(ekf_state, landmark_id)
            x = ekf_state['x']
            P = ekf_state['P']
            N = len(ekf_state['x'])

            # Kalman Gain update
            K_t = np.dot(P, H.T)
            K_t = np.dot(
                K_t,
                slam_utils.invert_2x2_matrix(np.dot(np.dot(H, P), H.T) + Q))

            z = np.asarray([trees[i][0], trees[i][1]]).reshape((2, 1))
            ekf_state['x'] = x + np.dot(K_t, (z - z_t)).reshape(-1)
            ekf_state['P'] = np.dot(np.identity(N) - np.dot(K_t, H), P)

        ekf_state['x'][2] = slam_utils.clamp_angle(ekf_state['x'][2])
        ekf_state['P'] = slam_utils.make_symmetric(ekf_state['P'] + 10e-6)

    return ekf_state
def compute_data_association(ekf_state, measurements, sigmas, params):
    '''
    Computes measurement data association.

    Given a robot and map state and a set of (range,bearing) measurements,
    this function should compute a good data association, or a mapping from 
    measurements to landmarks.

    Returns an array 'assoc' such that:
        assoc[i] == j if measurement i is determined to be an observation of landmark j,
        assoc[i] == -1 if measurement i is determined to be a new, previously unseen landmark, or,
        assoc[i] == -2 if measurement i is too ambiguous to use and should be discarded.
    '''

    if ekf_state["num_landmarks"] == 0:
        # set association to init new landmarks for all measurements
        return [-1 for m in measurements]

    ###
    # Implement this function.
    ###
    cor = ekf_state['P']
    num_obs = len(measurements)
    measurements = np.array(measurements)[:, :2]
    assoc = np.full([
        num_obs,
    ], -2)
    num_mark = ekf_state['num_landmarks']
    M = np.zeros([num_obs, num_mark])
    Q = np.diag([sigmas['range']**2, sigmas['bearing']**2])
    for i in range(num_mark):

        zhat, H = laser_measurement_model(ekf_state, i)
        S = H.dot(cor).dot(H.T) + Q.T
        for j in range(num_obs):
            r = (measurements[j, :] - zhat).reshape([2, 1])
            M[j, i] = r.T.dot(slam_utils.invert_2x2_matrix(S)).dot(r)
    if num_mark >= num_obs:
        pos = np.array(slam_utils.solve_cost_matrix_heuristic(M.copy()))
        posx = pos[:, 0]
        posy = pos[:, 1]
        value = M[posx, posy]
        ind_update = np.where(value >= 9.2103)
        ind_discard = np.where((value > 5.9915) & (value < 9.2103))
        pos[ind_update, 1] = -1
        pos[ind_discard, 1] = -2
        assoc[pos[:, 0]] = pos[:, 1]
    else:
        A1 = np.full([num_obs, num_obs], 5.99)
        A2 = np.full([num_obs, num_obs], 9.21)

        M_exp1 = np.concatenate([M, A1], axis=1)
        M_exp2 = np.concatenate([M, A2], axis=1)
        pos1 = np.array(slam_utils.solve_cost_matrix_heuristic(M_exp1.copy()))
        pos2 = np.array(slam_utils.solve_cost_matrix_heuristic(M_exp2.copy()))
        posx1 = pos1[:, 0]
        posy1 = pos1[:, 1]
        posx2 = pos2[:, 0]
        posy2 = pos2[:, 1]
        assoc[posx1[posy1 < num_mark]] = posy1[posy1 < num_mark]
        assoc[posx2[posy2 >= num_mark]] = -1

    # assoc=slam.compute_data_association(ekf_state, measurements, sigmas, params)

    return assoc
Ejemplo n.º 13
0
def compute_data_association(ekf_state, measurements, sigmas, params):
    """
    Computes measurement data association.
    Given a robot and map state and a set of (range,bearing) measurements,
    this function should compute a good data association, or a mapping from
    measurements to landmarks.
    :param ekf_state:
    :param measurements:
    :param sigmas:
    :param params:
    :return:
    Returns an array 'assoc' such that:
        assoc[i] == j if measurement i is determined to be an observation of landmark j,
        assoc[i] == -1 if measurement i is determined to be a new, previously unseen landmark, or,
        assoc[i] == -2 if measurement i is too ambiguous to use and should be discarded.
    """

    if ekf_state["num_landmarks"] == 0:
        # set association to init new landmarks for all measurements
        return [-1 for _ in measurements]

    range_noise = sigmas['range']
    bearing_noise = sigmas['bearing']
    Q = np.diag((range_noise**2, bearing_noise**2))

    n_measurements = len(measurements)
    n_landmarks = ekf_state["num_landmarks"]
    P = ekf_state['P'].copy()
    assoc = [-2 for _ in range(n_measurements)]
    M = np.zeros((n_measurements, n_landmarks))

    for i in range(n_landmarks):
        z_t, H = laser_measurement_model(ekf_state, i)

        for j in range(n_measurements):

            z = np.asarray(measurements[j][0:2]).reshape((2, 1))
            r = z - z_t
            S = np.dot(np.dot(H, P), H.T) + Q
            d = np.dot(np.dot(r.T, slam_utils.invert_2x2_matrix(S)), r)
            M[j, i] = d

    # threshold for ambiguity
    alpha = chi2.ppf(0.95, df=2)
    A = alpha * np.ones((n_measurements, n_measurements))
    M_new = np.concatenate((M, A), axis=1)
    result = slam_utils.solve_cost_matrix_heuristic(M_new)
    result = np.asarray(result)

    update_index = result[:, 1] < n_landmarks
    result_update = result[update_index]

    for i in range(len(result_update)):
        assoc[result_update[i, 0]] = result_update[i, 1]

    remain_index = ~update_index

    for i in range(len(M)):
        if (remain_index[i]
                and np.min(M[result[i, 0], :]) >= chi2.ppf(0.9999999, df=2)):
            assoc[result[i, 0]] = -1
        elif (remain_index[i]
              and np.min(M[result[i, 0], :]) < chi2.ppf(0.9999999, df=2)):
            assoc[result[i, 0]] = -2

    return assoc