Ejemplo n.º 1
0
def prepareBED(bed, slamSimBed, minLength):
    utrs = []
    for utr in BedIterator(bed):
        utrs.append(utr)

    utrs.sort(key=lambda x: (x.name, -x.getLength()))

    outBed = open(slamSimBed, "w")

    partList = []
    lastUtr = None
    for utr in utrs:
        if utr.hasStrand() and utr.hasNonEmptyName():
            currentUtr = utr.name
            if currentUtr == lastUtr:
                partList.append(utr)
            else:
                if (not lastUtr is None):
                    printUTR(partList[0], outBed, minLength)
                partList = [utr]
            lastUtr = currentUtr
        else:
            print("Warning: Invalid BED entry found: " + str(utr))

    if (not lastUtr is None):
        printUTR(partList[0], outBed, minLength)

    outBed.close()
Ejemplo n.º 2
0
def simulateTurnOver(bed, turnoverBed, minHalfLife, maxHalfLife):
    turnoverFile = open(turnoverBed, "w")
    for utr in BedIterator(bed):
        print(utr.chromosome,
              utr.start,
              utr.stop,
              utr.name,
              getRndHalfLife(minHalfLife, maxHalfLife),
              utr.strand,
              sep='\t',
              file=turnoverFile)
    turnoverFile.close()
Ejemplo n.º 3
0
def computeTconversions(ref,
                        bed,
                        snpsFile,
                        bam,
                        maxReadLength,
                        minQual,
                        outputCSV,
                        outputBedgraphPlus,
                        outputBedgraphMinus,
                        conversionThreshold,
                        log,
                        mle=False):

    referenceFile = pysam.FastaFile(ref)

    sampleInfo = getSampleInfo(bam)

    slamseqInfo = SlamSeqInfo(bam)
    #readNumber = slamseqInfo.MappedReads
    readNumber = slamseqInfo.FilteredReads

    bedMD5 = md5(bed)

    if (mle):
        fileNameTest = replaceExtension(outputCSV, ".tsv", "_perread")
        fileTest = open(fileNameTest, 'w')
        print("#slamdunk v" + __version__,
              __count_version__,
              "sample info:",
              sampleInfo.Name,
              sampleInfo.ID,
              sampleInfo.Type,
              sampleInfo.Time,
              sep="\t",
              file=fileTest)
        print("#annotation:",
              os.path.basename(bed),
              bedMD5,
              sep="\t",
              file=fileTest)
        #print("utr", "n", "k", file=fileTest)
        print(SlamSeqInterval.Header, file=fileTest)

    fileCSV = open(outputCSV, 'w')
    print("#slamdunk v" + __version__,
          __count_version__,
          "sample info:",
          sampleInfo.Name,
          sampleInfo.ID,
          sampleInfo.Type,
          sampleInfo.Time,
          sep="\t",
          file=fileCSV)
    print("#annotation:",
          os.path.basename(bed),
          bedMD5,
          sep="\t",
          file=fileCSV)
    print(SlamSeqInterval.Header, file=fileCSV)

    snps = SNPtools.SNPDictionary(snpsFile)
    snps.read()

    #Go through one chr after the other
    testFile = SlamSeqBamFile(bam, ref, snps)
    if not testFile.bamVersion == __bam_version__:
        raise RuntimeError("Wrong filtered BAM file version detected (" +
                           testFile.bamVersion + "). Expected version " +
                           __bam_version__ + ". Please rerun slamdunk filter.")

    bedMD5 = md5(bed)
    if slamseqInfo.AnnotationMD5 != bedMD5:
        print(
            "Warning: MD5 checksum of annotation (" + bedMD5 +
            ") does not matched MD5 in filtered BAM files (" +
            slamseqInfo.AnnotationMD5 +
            "). Most probably the annotation filed changed after the filtered BAM files were created.",
            file=log)

    conversionBedGraph = {}

    for utr in BedIterator(bed):
        Tcontent = 0
        slamSeqUtr = SlamSeqInterval(utr.chromosome, utr.start, utr.stop,
                                     utr.strand, utr.name, Tcontent, 0, 0, 0,
                                     0, 0, 0, 0)
        slamSeqUtrMLE = SlamSeqInterval(utr.chromosome, utr.start, utr.stop,
                                        utr.strand, utr.name, Tcontent, 0, 0,
                                        0, 0, 0, 0, 0)
        if (not utr.hasStrand()):
            raise RuntimeError(
                "Input BED file does not contain stranded intervals.")

        if utr.start < 0:
            raise RuntimeError(
                "Negativ start coordinate found. Please check the following entry in your BED file: "
                + utr)
        # Retreive reference sequence
        region = utr.chromosome + ":" + str(utr.start + 1) + "-" + str(
            utr.stop)

        if (utr.chromosome in list(referenceFile.references)):
            #print(refRegion,file=sys.stderr)
            # pysam-0.15.0.1
            #refSeq = referenceFile.fetch(region=region).upper()
            refSeq = referenceFile.fetch(reference=utr.chromosome,
                                         start=utr.start,
                                         end=utr.stop).upper()
            if (utr.strand == "-"):
                #refSeq = complement(refSeq[::-1])
                Tcontent = refSeq.count("A")
            else:
                Tcontent = refSeq.count("T")

            slamSeqUtr._Tcontent = Tcontent

        readIterator = testFile.readInRegion(utr.chromosome, utr.start,
                                             utr.stop, utr.strand,
                                             maxReadLength, minQual,
                                             conversionThreshold)

        tcCountUtr = [0] * utr.getLength()
        coverageUtr = [0] * utr.getLength()

        tInReads = []
        tcInRead = []

        countFwd = 0
        tcCountFwd = 0
        countRev = 0
        tCountRev = 0

        multiMapFwd = 0
        multiMapRev = 0

        for read in readIterator:

            # Overwrite any conversions for non-TC reads (reads with < 2 TC conversions)
            if (not read.isTcRead):
                read.tcCount = 0
                read.mismatches = []
                read.conversionRates = 0.0
                read.tcRate = 0.0

            if (read.direction == ReadDirection.Reverse):
                countRev += 1
                if read.tcCount > 0:
                    tCountRev += 1
                if read.isMultimapper:
                    multiMapRev += 1
            else:
                countFwd += 1
                if read.tcCount > 0:
                    tcCountFwd += 1
                if read.isMultimapper:
                    multiMapFwd += 1

            for mismatch in read.mismatches:
                if (mismatch.isTCMismatch(
                        read.direction == ReadDirection.Reverse)
                        and mismatch.referencePosition >= 0
                        and mismatch.referencePosition < utr.getLength()):
                    tcCountUtr[mismatch.referencePosition] += 1

            testN = read.getTcount()
            testk = 0
            for mismatch in read.mismatches:
                if (mismatch.referencePosition >= 0
                        and mismatch.referencePosition < utr.getLength()):
                    if (mismatch.isT(read.direction == ReadDirection.Reverse)):
                        testN += 1
                    if (mismatch.isTCMismatch(
                            read.direction == ReadDirection.Reverse)):
                        testk += 1
            #print(utr.name, read.name, read.direction, testN, testk, read.sequence, sep="\t")
            tInReads.append(testN)
            tcInRead.append(testk)
            #print(utr.name, testN, testk, sep="\t", file=fileTest)

            for i in xrange(read.startRefPos, read.endRefPos):
                if (i >= 0 and i < utr.getLength()):
                    coverageUtr[i] += 1

        if ((utr.strand == "+" and countFwd > 0)
                or (utr.strand == "-" and countRev > 0)):
            tcRateUtr = [
                x * 100.0 / y if y > 0 else 0
                for x, y in zip(tcCountUtr, coverageUtr)
            ]

            readCount = countFwd
            tcReadCount = tcCountFwd
            multiMapCount = multiMapFwd

            if (utr.strand == "-"):
                readCount = countRev
                tcReadCount = tCountRev
                multiMapCount = multiMapRev

            if ((utr.strand == "-" and countFwd > countRev)
                    or (utr.strand == "+" and countRev > countFwd)):
                print(
                    "Warning: " + utr.name + " is located on the " +
                    utr.strand +
                    " strand but read counts are higher for the opposite strand (fwd: "
                    + countFwd + ", rev: " + countRev + ")",
                    file=sys.stderr)

            refSeq = readIterator.getRefSeq()

            # Get number of covered Ts/As in the UTR and compute average conversion rate for all covered Ts/As
            coveredTcount = 0
            avgConversationRate = 0
            coveredPositions = 0
            # Get number of reads on T positions and number of reads with T->C conversions on T positions
            coverageOnTs = 0
            conversionsOnTs = 0

            for position in xrange(0, len(coverageUtr)):

                if (coverageUtr[position] > 0
                        and ((utr.strand == "+" and refSeq[position] == "T") or
                             (utr.strand == "-" and refSeq[position] == "A"))):
                    coveredTcount += 1
                    avgConversationRate += tcRateUtr[position]

                    coverageOnTs += coverageUtr[position]
                    conversionsOnTs += tcCountUtr[position]
                    conversionBedGraph[utr.chromosome + ":" +
                                       str(utr.start + position) + ":" +
                                       str(utr.strand)] = tcRateUtr[position]
                if (coverageUtr[position] > 0):
                    coveredPositions += 1

            if (coveredTcount > 0):
                avgConversationRate = avgConversationRate / coveredTcount
            else:
                avgConversationRate = 0

            # reads per million mapped to the UTR
            readsCPM = 0
            if (readNumber > 0):
                readsCPM = readCount * 1000000.0 / readNumber

            # Convert to SlamSeqInterval and print
            conversionRate = 0
            if (coverageOnTs > 0):
                conversionRate = float(conversionsOnTs) / float(coverageOnTs)
            slamSeqUtr = SlamSeqInterval(utr.chromosome, utr.start, utr.stop,
                                         utr.strand, utr.name, Tcontent,
                                         readsCPM, coverageOnTs,
                                         conversionsOnTs, conversionRate,
                                         readCount, tcReadCount, multiMapCount)
            slamSeqUtrMLE = SlamSeqInterval(
                utr.chromosome, utr.start, utr.stop, utr.strand, utr.name,
                Tcontent, readsCPM, coverageOnTs, conversionsOnTs,
                conversionRate, ",".join(str(x) for x in tInReads),
                ",".join(str(x) for x in tcInRead), multiMapCount)

        print(slamSeqUtr, file=fileCSV)
        if (mle):
            print(slamSeqUtrMLE, file=fileTest)

    fileCSV.close()
    if (mle):
        fileTest.close()

    fileBedgraphPlus = open(outputBedgraphPlus, 'w')
    fileBedgraphMinus = open(outputBedgraphMinus, 'w')

    for position in conversionBedGraph:
        positionData = position.split(":")
        if (positionData[2] == "+"):
            print(positionData[0],
                  positionData[1],
                  int(positionData[1]) + 1,
                  conversionBedGraph[position],
                  file=fileBedgraphPlus)
        else:
            print(positionData[0],
                  positionData[1],
                  int(positionData[1]) + 1,
                  conversionBedGraph[position],
                  file=fileBedgraphMinus)

    fileBedgraphPlus.close()
    fileBedgraphMinus.close()

    if (mle):
        fileNameMLE = replaceExtension(outputCSV, ".tsv", "_mle")
        callR(
            getPlotter("compute_conversion_rate_mle") + " -f " + fileNameTest +
            " -r " + "0.024" + " -o " + fileNameMLE + " &> /dev/null")
Ejemplo n.º 4
0
def computeSNPMaskedRates(ref,
                          bed,
                          snpsFile,
                          bam,
                          maxReadLength,
                          minQual,
                          coverageCutoff,
                          variantFraction,
                          outputCSV,
                          outputPDF,
                          strictTCs,
                          log,
                          printOnly=False,
                          verbose=True,
                          force=False):

    if (not checkStep([bam, ref], [outputCSV], force)):
        print("Skipped computing T->C per UTR with SNP masking for file " +
              bam,
              file=log)
    else:
        fileCSV = open(outputCSV, 'w')

        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()

        #Go through one chr after the other
        testFile = SlamSeqBamFile(bam, ref, snps)

        progress = 0
        for utr in BedIterator(bed):

            if (not utr.hasStrand()):
                raise RuntimeError(
                    "Input BED file does not contain stranded intervals.")

            if utr.start < 0:
                raise RuntimeError(
                    "Negativ start coordinate found. Please check the following entry in your BED file: "
                    + utr)

            readIterator = testFile.readInRegion(utr.chromosome, utr.start,
                                                 utr.stop, utr.strand,
                                                 maxReadLength, minQual)

            unmaskedTCCount = 0
            maskedTCCount = 0
            readCount = 0

            for read in readIterator:

                # Overwrite any conversions for non-TC reads (reads with < 2 TC conversions)
                if (not read.isTcRead and strictTCs):
                    read.tcCount = 0
                    read.mismatches = []
                    read.conversionRates = 0.0
                    read.tcRate = 0.0

                isTC = False
                isTrueTC = False

                for mismatch in read.mismatches:
                    if (mismatch.isTCMismatch(
                            read.direction == ReadDirection.Reverse)
                            and mismatch.referencePosition >= 0
                            and mismatch.referencePosition < utr.getLength()):
                        isTrueTC = True

                    unmasked = False
                    if (read.direction == ReadDirection.Reverse
                            and mismatch.referenceBase == "A"
                            and mismatch.readBase == "G"):
                        unmasked = True
                    elif (read.direction != ReadDirection.Reverse
                          and mismatch.referenceBase == "T"
                          and mismatch.readBase == "C"):
                        unmasked = True

                    if (unmasked and mismatch.referencePosition >= 0
                            and mismatch.referencePosition < utr.getLength()):
                        isTC = True

                readCount += 1

                if (isTC):
                    unmaskedTCCount += 1

                if (isTrueTC):
                    maskedTCCount += 1

            containsSNP = 0

            if (unmaskedTCCount != maskedTCCount):
                containsSNP = 1

            print(utr.name + "\t" + str(readCount) + "\t" +
                  str(unmaskedTCCount) + "\t" + str(maskedTCCount) + "\t" +
                  str(containsSNP),
                  file=fileCSV)

            progress += 1

        fileCSV.close()

    if (not checkStep([outputCSV], [outputPDF], force)):
        print("Skipped computing T->C per UTR position plot for file " + bam,
              file=log)
    else:
        callR(getPlotter("SNPeval") + " -i " + outputCSV + " -c " +
              str(coverageCutoff) + " -v " + str(variantFraction) + " -o " +
              outputPDF,
              log,
              dry=printOnly,
              verbose=verbose)
Ejemplo n.º 5
0
def tcPerUtr(referenceFile,
             utrBed,
             bam,
             minQual,
             maxReadLength,
             outputCSV,
             outputPDF,
             snpsFile,
             log,
             printOnly=False,
             verbose=True,
             force=False):

    if (not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing T->C per UTR position for file " + bam,
              file=log)
    else:

        counter = 0

        totalUtrCountFwd = [0] * utrNormFactor
        totalUtrCountRev = [0] * utrNormFactor

        tcPerPosRev = [0] * utrNormFactor
        tcPerPosFwd = [0] * utrNormFactor

        allPerPosRev = [0] * utrNormFactor
        allPerPosFwd = [0] * utrNormFactor

        snps = SNPtools.SNPDictionary(snpsFile)
        snps.read()

        # Go through one utr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, snps)

        for utr in BedIterator(utrBed):

            readIterator = testFile.readInRegion(utr.chromosome, utr.start,
                                                 utr.stop, utr.strand,
                                                 maxReadLength, minQual)

            tcForwardCounts = [0] * utrNormFactor
            mutForwardCounts = [0] * utrNormFactor
            tcReverseCounts = [0] * utrNormFactor
            mutReverseCounts = [0] * utrNormFactor

            for read in readIterator:

                tcCounts = [0] * utrNormFactor
                mutCounts = [0] * utrNormFactor

                for mismatch in read.mismatches:

                    mismatchPos = mismatch.referencePosition

                    # mismatchPos = read.startRefPos

                    if (utr.strand == "+"):

                        # New try for UTRs (remove + 1
                        if (mismatchPos >= (utr.getLength() - utrNormFactor)
                                and mismatchPos < utr.getLength()):
                            # if (mismatchPos >= (utr.getLength() - utrNormFactor) and mismatchPos < utr.getLength() + 1) :
                            mismatchPos = utrNormFactor - (utr.getLength() -
                                                           mismatchPos)

                            if (mismatch.isTCMismatch(
                                    read.direction == ReadDirection.Reverse)):
                                tcCounts[mismatchPos] += 1
                            else:
                                mutCounts[mismatchPos] += 1
                    else:

                        if (mismatchPos >= 0 and mismatchPos < min(
                                utr.getLength(), utrNormFactor)):
                            if (mismatch.isTCMismatch(
                                    read.direction == ReadDirection.Reverse)):
                                tcCounts[mismatchPos] += 1
                            else:
                                mutCounts[mismatchPos] += 1

                if (read.direction == ReadDirection.Reverse):

                    tcReverseCounts = sumLists(tcReverseCounts, tcCounts)
                    mutReverseCounts = sumLists(mutReverseCounts, mutCounts)

                    start = max(
                        0,
                        min(min(utr.getLength(), utrNormFactor),
                            read.startRefPos))
                    end = max(
                        0,
                        min(min(utr.getLength(), utrNormFactor),
                            read.endRefPos))

                    for i in range(start, end):

                        totalUtrCountRev[i] += 1

                else:

                    tcForwardCounts = sumLists(tcForwardCounts, tcCounts)
                    mutForwardCounts = sumLists(mutForwardCounts, mutCounts)

                    start = min(
                        utr.getLength(),
                        max(utr.getLength() - utrNormFactor, read.startRefPos))
                    end = min(
                        utr.getLength(),
                        max(utr.getLength() - utrNormFactor, read.endRefPos))

                    for i in range(start, end):
                        normPos = utrNormFactor - (utr.getLength() - i)
                        totalUtrCountFwd[normPos] += 1

            tcPerPosFwd = sumLists(tcPerPosFwd, tcForwardCounts)
            allPerPosFwd = sumLists(allPerPosFwd, mutForwardCounts)

            tcPerPosRev = sumLists(tcPerPosRev, tcReverseCounts)
            allPerPosRev = sumLists(allPerPosRev, mutReverseCounts)

            counter += 1

            if (verbose and counter % 10000 == 0):
                print("Handled " + str(counter) + " UTRs.", file=log)

        foTC = open(outputCSV, "w")

        print("# slamdunk tcperutr v" + __version__, file=foTC)

        reverseAllPerPosRev = allPerPosRev[::-1]
        reverseTcPerPosRev = tcPerPosRev[::-1]
        reverseTotalUtrCountRev = totalUtrCountRev[::-1]

        for i in range(0, utrNormFactor):
            print(allPerPosFwd[i],
                  reverseAllPerPosRev[i],
                  tcPerPosFwd[i],
                  reverseTcPerPosRev[i],
                  totalUtrCountFwd[i],
                  reverseTotalUtrCountRev[i],
                  sep='\t',
                  file=foTC)
        foTC.close()

    if (not checkStep([outputCSV], [outputPDF], force)):
        print("Skipped computing T->C per UTR position plot for file " + bam,
              file=log)
    else:
        callR(getPlotter("conversion_per_read_position") + " -u -i " +
              outputCSV + " -o " + outputPDF,
              log,
              dry=printOnly,
              verbose=verbose)
Ejemplo n.º 6
0
def statsComputeOverallRatesPerUTR(referenceFile,
                                   bam,
                                   minBaseQual,
                                   strictTCs,
                                   outputCSV,
                                   outputPDF,
                                   utrBed,
                                   maxReadLength,
                                   log,
                                   printOnly=False,
                                   verbose=True,
                                   force=False):

    sampleInfo = getSampleInfo(bam)

    slamseqInfo = SlamSeqInfo(bam)

    if (not checkStep([bam, referenceFile], [outputCSV], force)):
        print("Skipped computing overall rates for file " + bam, file=log)
    else:

        # Go through one chr after the other
        testFile = SlamSeqBamFile(bam, referenceFile, None)

        # UTR stats for MultiQC
        utrStats = dict()

        plotConversions = [
            'A>T',
            'A>G',
            'A>C',
            'C>A',
            'C>G',
            'C>T',
            'G>A',
            'G>C',
            'G>T',
            'T>A',
            'T>G',
            'T>C',
        ]

        for conversion in plotConversions:
            utrStats[conversion] = list()

        f = tempfile.NamedTemporaryFile(delete=False)

        for utr in BedIterator(utrBed):

            readIterator = testFile.readInRegion(utr.chromosome, utr.start,
                                                 utr.stop, utr.strand,
                                                 maxReadLength, minBaseQual)

            # Init
            totalRates = [0] * 25

            readCount = 0
            for read in readIterator:

                if (not read.isTcRead and strictTCs and read.tcCount > 0):
                    pass
                else:

                    # Compute rates for current read
                    rates = read.conversionRates

                    # Add rates from read to total rates
                    totalRates = sumLists(totalRates, rates)
                    readCount += 1

            print(utr.name,
                  utr.chromosome,
                  utr.start,
                  utr.stop,
                  utr.strand,
                  readCount,
                  "\t".join(str(x) for x in totalRates),
                  sep="\t",
                  file=f)

            # Process rates for MultiQC
            # Copied directly, too lazy to do it properly now

            utrDict = {}

            conversionSum = 0

            A_A = totalRates[0]
            conversionSum = +A_A
            A_C = totalRates[1]
            conversionSum = +A_C
            A_G = totalRates[2]
            conversionSum = +A_G
            A_T = totalRates[3]
            conversionSum = +A_T

            C_A = totalRates[5]
            conversionSum = +C_A
            C_C = totalRates[6]
            conversionSum = +C_C
            C_G = totalRates[7]
            conversionSum = +C_G
            C_T = totalRates[8]
            conversionSum = +C_T

            G_A = totalRates[10]
            conversionSum = +G_A
            G_C = totalRates[11]
            conversionSum = +G_C
            G_G = totalRates[12]
            conversionSum = +G_G
            G_T = totalRates[13]
            conversionSum = +G_T

            T_A = totalRates[15]
            conversionSum = +T_A
            T_C = totalRates[16]
            conversionSum = +T_C
            T_G = totalRates[17]
            conversionSum = +T_G
            T_T = totalRates[18]
            conversionSum = +T_T

            if utr.strand == "-":

                A_A, T_T = T_T, A_A
                G_G, C_C = C_C, G_G
                A_C, T_G = T_G, A_C
                A_G, T_C = T_C, A_G
                A_T, T_A = T_A, A_T
                C_A, G_T = G_T, C_A
                C_G, G_C = G_C, C_G
                C_T, G_A = G_A, C_T

            if conversionSum > 0:

                Asum = A_A + A_C + A_G + A_T
                Csum = C_A + C_C + C_G + C_T
                Gsum = G_A + G_C + G_G + G_T
                Tsum = T_A + T_C + T_G + T_T

                if Asum > 0:
                    A_T = A_T / float(Asum) * 100
                    A_G = A_G / float(Asum) * 100
                    A_C = A_C / float(Asum) * 100
                else:
                    A_T = 0
                    A_G = 0
                    A_C = 0
                if Csum > 0:
                    C_A = C_A / float(Csum) * 100
                    C_G = C_G / float(Csum) * 100
                    C_T = C_T / float(Csum) * 100
                else:
                    C_A = 0
                    C_G = 0
                    C_T = 0
                if Gsum > 0:
                    G_A = G_A / float(Gsum) * 100
                    G_C = G_C / float(Gsum) * 100
                    G_T = G_T / float(Gsum) * 100
                else:
                    G_A = 0
                    G_C = 0
                    G_T = 0
                if Tsum > 0:
                    T_A = T_A / float(Tsum) * 100
                    T_G = T_G / float(Tsum) * 100
                    T_C = T_C / float(Tsum) * 100
                else:
                    T_A = 0
                    T_G = 0
                    T_C = 0

                utrStats['A>T'].append(A_T)
                utrStats['A>G'].append(A_G)
                utrStats['A>C'].append(A_C)

                utrStats['C>A'].append(C_A)
                utrStats['C>G'].append(C_G)
                utrStats['C>T'].append(C_T)

                utrStats['G>A'].append(G_A)
                utrStats['G>T'].append(G_T)
                utrStats['G>C'].append(G_C)

                utrStats['T>A'].append(T_A)
                utrStats['T>G'].append(T_G)
                utrStats['T>C'].append(T_C)

        f.close()

        fo = open(outputCSV, "w")

        print("# slamdunk utrrates v" + __version__, file=fo)

        print("# Median-Conversions=", end="", file=fo)

        first = True
        for conversion in plotConversions:
            if (not first):
                print(',', file=fo, end="")
            else:
                first = False
            print(conversion + ":" + str(np.median(utrStats[conversion])),
                  file=fo,
                  end="")
        print(file=fo)

        print("Name",
              "Chr",
              "Start",
              "End",
              "Strand",
              "ReadCount",
              sep="\t",
              end="\t",
              file=fo)
        for i in range(0, 5):
            for j in range(0, 5):
                print(toBase[i].upper() + "_" + toBase[j].upper(),
                      end="",
                      file=fo)
                if (i != 4 or j != 4):
                    print("\t", end="", file=fo)
        print(file=fo)

        with open(f.name, "rb") as valueFile:
            fo.write(valueFile.read())

        fo.close()

    if (not checkStep([bam, referenceFile], [outputPDF], force)):
        print("Skipped computing global rate pdfs for file " + bam, file=log)
    else:
        f = tempfile.NamedTemporaryFile(delete=False)
        print(sampleInfo.Name, outputCSV, sep='\t', file=f)
        f.close()

        callR(getPlotter("globalRatePlotter") + " -f " + f.name + " -O " +
              outputPDF,
              log,
              dry=printOnly,
              verbose=verbose)
Ejemplo n.º 7
0
def getTotalUtrLength(bed12File):
    totalUtrLength = 0
    for utr in BedIterator(bed12File):
        totalUtrLength += utr.getLength()
    return totalUtrLength
Ejemplo n.º 8
0
def parseUtrBedFile(bed):
    utrs = {}
    for utr in BedIterator(bed):
        utrs[utr.name] = utr
    return utrs
Ejemplo n.º 9
0
def prepareUTRs(bed, bed12, bed12Fasta, referenceFasta, readLength,
                polyALength, explv, snpRate, vcfFile):

    # Read utrs from BED file
    utrs = parseUtrBedFile(bed)

    vcf = open(vcfFile, "w")
    print("##fileformat=VCFv4.1", file=vcf)
    print("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO", file=vcf)

    bedFile = BedTool(bed)

    bedFasta = bedFile.sequence(fi=referenceFasta, s=True, name=True)

    f = tempfile.NamedTemporaryFile(mode='w', delete=False)

    for line in bedFasta.print_sequence().splitlines():
        if (line[0] == ">"):
            print(line.split("::")[0], file=f)
        else:
            print(line.rstrip(), file=f)

    f.close()

    bed12FastaFile = open(bed12Fasta, "w")
    utrName = None
    with open(f.name, 'r') as f:
        for line in f:
            if (line[0] == ">"):
                print(line.rstrip(), file=bed12FastaFile)
                utrName = line.rstrip()[1:]
            else:
                print(simulateUTR(line.rstrip(), utrs[utrName], polyALength,
                                  snpRate, vcf).rstrip(),
                      file=bed12FastaFile)
    bed12FastaFile.close()
    vcf.close()

    bed12File = open(bed12, "w")

    totalLength = 0

    minFragmentLength = 150
    maxFragmentLength = 450
    for utr in BedIterator(bed):

        fragmentLength = random.randrange(minFragmentLength, maxFragmentLength,
                                          1)  #+ readLength
        fragmentLength = min(fragmentLength, utr.getLength())

        start = max(0, utr.getLength() - fragmentLength)
        end = utr.getLength()  #- readLength

        totalLength += (end - start)
        #         min(utr.getLength() + readLength / 4, fragmentLength + readLength / 4)
        print(utr.name,
              start,
              end,
              utr.name,
              utr.score,
              "+",
              start,
              end,
              "255,0,0",
              "1", (end - start),
              0,
              sep="\t",
              file=bed12File)

    bed12File.close()

    output = shell(
        getRNASeqReadSimulator("genexplvprofile.py") + " --geometric 1 " +
        bed12 + " 2> /dev/null > " + explv)
    if len(output.strip()) > 5:
        print(output)

    return totalLength