Ejemplo n.º 1
0
    def _create_penalty_objects(self):
        # using this function se we don't need to add anything extra to the stokeSLE struct

        velocityField = self._velocityField
        pressureField = self._pressureField
        stokesSLE = self._stokesSLE
        # create junk force vectors -- we provide no assembly terms for these so they are 0 vectors.
        self._vmfvector = sle.AssembledVector(velocityField,
                                              stokesSLE._eqNums[velocityField])
        self._junkfvector = sle.AssembledVector(
            pressureField, stokesSLE._eqNums[pressureField])

        # and matrices
        self._vmmatrix = sle.AssembledMatrix(stokesSLE._velocitySol,
                                             stokesSLE._velocitySol,
                                             rhs=self._vmfvector)
        self._mmatrix = sle.AssembledMatrix(stokesSLE._pressureSol,
                                            stokesSLE._pressureSol,
                                            rhs=self._junkfvector)

        # create assembly terms
        self._pressMassMatTerm = sle.MatrixAssemblyTerm_NA__NB__Fn(
            integrationSwarm=uw.swarm.GaussIntegrationSwarm(
                velocityField.mesh),
            fn=1.0,
            assembledObject=self._mmatrix,
            mesh=velocityField._mesh)

        # attach terms to live solver struct
        self._cself.vmForceVec = self._vmfvector._cself
        self._cself.vmStiffMat = self._vmmatrix._cself
        self._cself.jForceVec = self._junkfvector._cself
        self._cself.mStiffMat = self._mmatrix._cself
Ejemplo n.º 2
0
    def __init__(self,
                 velocityField,
                 pressureField,
                 fn_viscosity,
                 fn_bodyforce=None,
                 fn_one_on_lambda=None,
                 fn_lambda=None,
                 fn_source=None,
                 voronoi_swarm=None,
                 conditions=[],
                 _removeBCs=True,
                 _fn_viscosity2=None,
                 _fn_director=None,
                 fn_stresshistory=None,
                 _fn_stresshistory=None,
                 **kwargs):

        # DEPRECATION ERROR
        if fn_lambda != None:
            raise TypeError(
                "The parameter 'fn_lambda' has been deprecated. It has been replaced by 'fn_one_on_lambda', a simpler input parameter."
            )

        if _fn_stresshistory:
            raise TypeError(
                "The parameter '_fn_stresshistory' has been updated to 'fn_stresshistory'."
            )

        if not isinstance(velocityField, uw.mesh.MeshVariable):
            raise TypeError(
                "Provided 'velocityField' must be of 'MeshVariable' class.")
        if velocityField.nodeDofCount != velocityField.mesh.dim:
            raise ValueError(
                "Provided 'velocityField' must be a vector field of same dimensionality as its mesh."
            )
        self._velocityField = velocityField
        if not isinstance(pressureField, uw.mesh.MeshVariable):
            raise TypeError(
                "Provided 'pressureField' must be of 'MeshVariable' class.")
        if pressureField.nodeDofCount != 1:
            raise ValueError(
                "Provided 'pressureField' must be a scalar field (ie pressureField.nodeDofCount==1)."
            )
        self._pressureField = pressureField

        _fn_viscosity = uw.function.Function.convert(fn_viscosity)
        if not isinstance(_fn_viscosity, uw.function.Function):
            raise TypeError(
                "Provided 'fn_viscosity' must be of or convertible to 'Function' class."
            )
        if _fn_viscosity2:
            _fn_viscosity2 = uw.function.Function.convert(_fn_viscosity2)
            if not isinstance(_fn_viscosity2, uw.function.Function):
                raise TypeError(
                    "Provided 'fn_viscosity2' must be of or convertible to 'Function' class."
                )

        if not isinstance(_removeBCs, bool):
            raise TypeError("Provided '_removeBCs' must be of type bool.")
        self._removeBCs = _removeBCs

        if _fn_director:
            _fn_director = uw.function.Function.convert(_fn_director)
            if not isinstance(_fn_director, uw.function.Function):
                raise TypeError(
                    "Provided 'fn_director' must be of or convertible to 'Function' class."
                )

        if fn_stresshistory:
            fn_stresshistory = uw.function.Function.convert(fn_stresshistory)
            if not isinstance(fn_stresshistory, uw.function.Function):
                raise TypeError(
                    "Provided 'fn_stresshistory' must be of or convertible to 'Function' class."
                )

        self._fn_minus_one_on_lambda = None
        if fn_one_on_lambda != None:
            self._fn_minus_one_on_lambda = uw.function.Function.convert(
                -1.0 * fn_one_on_lambda)
            if not isinstance(self._fn_minus_one_on_lambda,
                              uw.function.Function):
                raise ValueError(
                    "Provided 'fn_minus_one_on_lambda' must be of, or convertible to, the 'Function' class."
                )

        if fn_source != None:
            self._fn_source = uw.function.Function.convert(fn_source)
            if not isinstance(self._fn_source, uw.function.Function):
                raise ValueError(
                    "Provided 'fn_source' must be of, or convertible to, the 'Function' class."
                )

        if not fn_bodyforce:
            if velocityField.mesh.dim == 2:
                fn_bodyforce = (0., 0.)
            else:
                fn_bodyforce = (0., 0., 0.)
        _fn_bodyforce = uw.function.Function.convert(fn_bodyforce)

        if voronoi_swarm and not isinstance(voronoi_swarm, uw.swarm.Swarm):
            raise TypeError(
                "Provided 'voronoi_swarm' must be of 'Swarm' class.")
        self._swarm = voronoi_swarm
        if voronoi_swarm and velocityField.mesh.elementType == 'Q2':
            import warnings
            warnings.warn(
                "Voronoi integration may yield unsatisfactory results for Q2 mesh."
            )

        mesh = velocityField.mesh

        if not isinstance(conditions, (list, tuple)):
            conditionslist = []
            conditionslist.append(conditions)
            conditions = conditionslist
        for cond in conditions:
            # set the bcs on here
            if not isinstance(cond, uw.conditions.SystemCondition):
                raise TypeError(
                    "Provided 'conditions' must be 'SystemCondition' objects.")
            elif type(cond) == uw.conditions.DirichletCondition:
                if cond.variable == self._velocityField:
                    libUnderworld.StgFEM.FeVariable_SetBC(
                        self._velocityField._cself, cond._cself)
                elif cond.variable == self._pressureField:
                    libUnderworld.StgFEM.FeVariable_SetBC(
                        self._pressureField._cself, cond._cself)
                else:
                    raise ValueError(
                        "Provided condition does not appear to correspond to the system unknowns."
                    )

        self._conditions = conditions

        self._eqNums = dict()
        self._eqNums[velocityField] = sle.EqNumber(self._velocityField,
                                                   self._removeBCs)
        self._eqNums[pressureField] = sle.EqNumber(self._pressureField,
                                                   self._removeBCs)

        # create solutions vectors and load fevariable values onto them for best first guess
        self._velocitySol = sle.SolutionVector(velocityField,
                                               self._eqNums[velocityField])
        self._pressureSol = sle.SolutionVector(pressureField,
                                               self._eqNums[pressureField])
        libUnderworld.StgFEM.SolutionVector_LoadCurrentFeVariableValuesOntoVector(
            self._velocitySol._cself)
        libUnderworld.StgFEM.SolutionVector_LoadCurrentFeVariableValuesOntoVector(
            self._pressureSol._cself)

        # create force vectors
        self._fvector = sle.AssembledVector(velocityField,
                                            self._eqNums[velocityField])
        self._hvector = sle.AssembledVector(pressureField,
                                            self._eqNums[pressureField])

        # and matrices
        self._kmatrix = sle.AssembledMatrix(self._velocitySol,
                                            self._velocitySol,
                                            rhs=self._fvector)
        self._gmatrix = sle.AssembledMatrix(self._velocitySol,
                                            self._pressureSol,
                                            rhs=self._fvector,
                                            rhs_T=self._hvector)
        self._preconditioner = sle.AssembledMatrix(self._pressureSol,
                                                   self._pressureSol,
                                                   rhs=self._hvector)

        # create assembly terms which always use gauss integration
        gaussSwarm = uw.swarm.GaussIntegrationSwarm(self._velocityField.mesh)
        self._gradStiffMatTerm = sle.GradientStiffnessMatrixTerm(
            integrationSwarm=gaussSwarm, assembledObject=self._gmatrix)
        self._preCondMatTerm = sle.PreconditionerMatrixTerm(
            integrationSwarm=gaussSwarm, assembledObject=self._preconditioner)

        # for the following terms, we will use voronoi if that has been requested
        # by the user, else use gauss again.
        intswarm = gaussSwarm

        if self._swarm:
            intswarm = self._swarm._voronoi_swarm
            # need to ensure voronoi is populated now, as assembly terms will call
            # initial test functions which may require a valid voronoi swarm
            self._swarm._voronoi_swarm.repopulate()

        self._constitMatTerm = sle.ConstitutiveMatrixTerm(
            integrationSwarm=intswarm,
            assembledObject=self._kmatrix,
            fn_visc1=_fn_viscosity,
            fn_visc2=_fn_viscosity2,
            fn_director=_fn_director)

        self._forceVecTerm = sle.VectorAssemblyTerm_NA__Fn(
            integrationSwarm=intswarm,
            assembledObject=self._fvector,
            fn=_fn_bodyforce)

        if fn_source:
            self._cforceVecTerm = sle.VectorAssemblyTerm_NA__Fn(
                integrationSwarm=intswarm,
                assembledObject=self._hvector,
                fn=self.fn_source)

        for cond in self._conditions:
            if isinstance(cond, uw.conditions.NeumannCondition):
                #NOTE many NeumannConditions can be used but the _sufaceFluxTerm only records the last
                self._surfaceFluxTerm = sle.VectorSurfaceAssemblyTerm_NA__Fn__ni(
                    assembledObject=self._fvector,
                    surfaceGaussPoints=
                    3,  # increase to resolve stress bc fluctuations
                    nbc=cond)
        if self._fn_minus_one_on_lambda != None:
            # add matrix and associated assembly term for compressible stokes formulation
            # a mass matrix goes into the lower right block of the stokes system coeff matrix
            self._mmatrix = sle.AssembledMatrix(self._pressureSol,
                                                self._pressureSol,
                                                rhs=self._hvector)
            # -1. as per Hughes, The Finite Element Method, 1987, Table 4.3.1, [M]

            self._compressibleTerm = sle.MatrixAssemblyTerm_NA__NB__Fn(
                integrationSwarm=intswarm,
                assembledObject=self._mmatrix,
                mesh=self._velocityField.mesh,
                fn=self._fn_minus_one_on_lambda)

        if fn_stresshistory != None:
            self._NA_j__Fn_ijTerm = sle.VectorAssemblyTerm_NA_j__Fn_ij(
                integrationSwarm=intswarm,
                assembledObject=self._fvector,
                fn=fn_stresshistory)

        super(Stokes, self).__init__(**kwargs)
Ejemplo n.º 3
0
    def __init__(self,
                 velocityField,
                 pressureField,
                 fn_viscosity,
                 fn_bodyforce=None,
                 fn_lambda=None,
                 voronoi_swarm=None,
                 conditions=[],
                 _removeBCs=True,
                 _fn_viscosity2=None,
                 _fn_director=None,
                 _fn_stresshistory=None,
                 **kwargs):

        if not isinstance(velocityField, uw.mesh.MeshVariable):
            raise TypeError(
                "Provided 'velocityField' must be of 'MeshVariable' class.")
        if velocityField.nodeDofCount != velocityField.mesh.dim:
            raise ValueError(
                "Provided 'velocityField' must be a vector field of same dimensionality as its mesh."
            )
        self._velocityField = velocityField
        if not isinstance(pressureField, uw.mesh.MeshVariable):
            raise TypeError(
                "Provided 'pressureField' must be of 'MeshVariable' class.")
        if pressureField.nodeDofCount != 1:
            raise ValueError(
                "Provided 'pressureField' must be a scalar field (ie pressureField.nodeDofCount==1)."
            )
        self._pressureField = pressureField

        _fn_viscosity = uw.function.Function.convert(fn_viscosity)
        if not isinstance(_fn_viscosity, uw.function.Function):
            raise TypeError(
                "Provided 'fn_viscosity' must be of or convertible to 'Function' class."
            )
        if _fn_viscosity2:
            _fn_viscosity2 = uw.function.Function.convert(_fn_viscosity2)
            if not isinstance(_fn_viscosity2, uw.function.Function):
                raise TypeError(
                    "Provided 'fn_viscosity2' must be of or convertible to 'Function' class."
                )

        if not isinstance(_removeBCs, bool):
            raise TypeError("Provided '_removeBCs' must be of type bool.")
        self._removeBCs = _removeBCs

        if _fn_director:
            _fn_director = uw.function.Function.convert(_fn_director)
            if not isinstance(_fn_director, uw.function.Function):
                raise TypeError(
                    "Provided 'fn_director' must be of or convertible to 'Function' class."
                )

        if _fn_stresshistory:
            _fn_stresshistory = uw.function.Function.convert(_fn_stresshistory)
            if not isinstance(_fn_stresshistory, uw.function.Function):
                raise TypeError(
                    "Provided '_fn_stresshistory' must be of or convertible to 'Function' class."
                )

        if fn_lambda != None:
            fn_lambda = uw.function.Function.convert(fn_lambda)
            if not isinstance(fn_lambda, uw.function.Function):
                raise ValueError(
                    "Provided 'fn_lambda' must be of, or convertible to, the 'Function' class."
                )

        if not fn_bodyforce:
            if velocityField.mesh.dim == 2:
                fn_bodyforce = (0., 0.)
            else:
                fn_bodyforce = (0., 0., 0.)
        _fn_bodyforce = uw.function.Function.convert(fn_bodyforce)

        if voronoi_swarm and not isinstance(voronoi_swarm, uw.swarm.Swarm):
            raise TypeError(
                "Provided 'voronoi_swarm' must be of 'Swarm' class.")
        self._swarm = voronoi_swarm
        if voronoi_swarm and velocityField.mesh.elementType == 'Q2':
            import warnings
            warnings.warn(
                "Voronoi integration may yield unsatisfactory results for Q2 mesh."
            )

        mesh = velocityField.mesh

        if not isinstance(conditions, (list, tuple)):
            conditionslist = []
            conditionslist.append(conditions)
            conditions = conditionslist
        for cond in conditions:
            # set the bcs on here
            if not isinstance(cond, uw.conditions.SystemCondition):
                raise TypeError(
                    "Provided 'conditions' must be 'SystemCondition' objects.")
            elif type(cond) == uw.conditions.DirichletCondition:
                if cond.variable == self._velocityField:
                    libUnderworld.StgFEM.FeVariable_SetBC(
                        self._velocityField._cself, cond._cself)
                if cond.variable == self._pressureField:
                    libUnderworld.StgFEM.FeVariable_SetBC(
                        self._pressureField._cself, cond._cself)

        self._conditions = conditions

        self._eqNums = dict()
        self._eqNums[velocityField] = sle.EqNumber(self._velocityField,
                                                   self._removeBCs)
        self._eqNums[pressureField] = sle.EqNumber(self._pressureField,
                                                   self._removeBCs)

        # create solutions vectors and load fevariable values onto them for best first guess
        self._velocitySol = sle.SolutionVector(velocityField,
                                               self._eqNums[velocityField])
        self._pressureSol = sle.SolutionVector(pressureField,
                                               self._eqNums[pressureField])
        libUnderworld.StgFEM.SolutionVector_LoadCurrentFeVariableValuesOntoVector(
            self._velocitySol._cself)
        libUnderworld.StgFEM.SolutionVector_LoadCurrentFeVariableValuesOntoVector(
            self._pressureSol._cself)

        # create force vectors
        self._fvector = sle.AssembledVector(velocityField,
                                            self._eqNums[velocityField])
        self._hvector = sle.AssembledVector(pressureField,
                                            self._eqNums[pressureField])

        # and matrices
        self._kmatrix = sle.AssembledMatrix(self._velocitySol,
                                            self._velocitySol,
                                            rhs=self._fvector)
        self._gmatrix = sle.AssembledMatrix(self._velocitySol,
                                            self._pressureSol,
                                            rhs=self._fvector,
                                            rhs_T=self._hvector)
        self._preconditioner = sle.AssembledMatrix(self._pressureSol,
                                                   self._pressureSol,
                                                   rhs=self._hvector)
        if fn_lambda != None:
            self._mmatrix = sle.AssembledMatrix(self._pressureSol,
                                                self._pressureSol,
                                                rhs=self._hvector)

        # create assembly terms which always use gauss integration
        gaussSwarm = uw.swarm.GaussIntegrationSwarm(self._velocityField.mesh)
        self._gradStiffMatTerm = sle.GradientStiffnessMatrixTerm(
            integrationSwarm=gaussSwarm, assembledObject=self._gmatrix)
        self._preCondMatTerm = sle.PreconditionerMatrixTerm(
            integrationSwarm=gaussSwarm, assembledObject=self._preconditioner)

        # for the following terms, we will use voronoi if that has been requested
        # by the user, else use gauss again.
        intswarm = gaussSwarm
        if self._swarm:
            intswarm = self._swarm._voronoi_swarm
            # need to ensure voronoi is populated now, as assembly terms will call
            # initial test functions which may require a valid voronoi swarm
            self._swarm._voronoi_swarm.repopulate()

        self._constitMatTerm = sle.ConstitutiveMatrixTerm(
            integrationSwarm=intswarm,
            assembledObject=self._kmatrix,
            fn_visc1=_fn_viscosity,
            fn_visc2=_fn_viscosity2,
            fn_director=_fn_director)
        self._forceVecTerm = sle.VectorAssemblyTerm_NA__Fn(
            integrationSwarm=intswarm,
            assembledObject=self._fvector,
            fn=_fn_bodyforce)
        for cond in self._conditions:
            if isinstance(cond, uw.conditions.NeumannCondition):
                #NOTE many NeumannConditions can be used but the _sufaceFluxTerm only records the last
                self._surfaceFluxTerm = sle.VectorSurfaceAssemblyTerm_NA__Fn__ni(
                    assembledObject=self._fvector,
                    surfaceGaussPoints=
                    3,  # increase to resolve stress bc fluctuations
                    nbc=cond)
        if fn_lambda != None:
            # some logic for constructing the lower-right [2,2] matrix in the stokes system
            # [M] = [Na * 1.0/fn_lambda * Nb], where in our formulation Na and Nb are the pressure shape functions.
            # see 4.3.21 of Hughes, Linear static and dynamic finite element analysis

            # If fn_lambda is negligable, ie <1.0e-8, then we set the entry to 0.0, ie, incompressible
            # otherwise we provide 1.0/lambda to [M]

            logicFn = uw.function.branching.conditional([(fn_lambda > 1.0e-8,
                                                          1.0 / fn_lambda),
                                                         (True, 0.)])

            self._compressibleTerm = sle.MatrixAssemblyTerm_NA__NB__Fn(
                integrationSwarm=intswarm,
                assembledObject=self._mmatrix,
                mesh=self._velocityField.mesh,
                fn=logicFn)

        if _fn_stresshistory != None:
            self._vepTerm = sle.VectorAssemblyTerm_VEP__Fn(
                integrationSwarm=intswarm,
                assembledObject=self._fvector,
                fn=_fn_stresshistory)

        super(Stokes, self).__init__(**kwargs)