Ejemplo n.º 1
0
def _create_tfrecord_dataset(tmpdir):
    if not gfile.Exists(tmpdir):
        gfile.MakeDirs(tmpdir)

    data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)

    keys_to_features = {
        'image/encoded':
        parsing_ops.FixedLenFeature(shape=(),
                                    dtype=dtypes.string,
                                    default_value=''),
        'image/format':
        parsing_ops.FixedLenFeature(shape=(),
                                    dtype=dtypes.string,
                                    default_value='jpeg'),
        'image/class/label':
        parsing_ops.FixedLenFeature(shape=[1],
                                    dtype=dtypes.int64,
                                    default_value=array_ops.zeros(
                                        [1], dtype=dtypes.int64))
    }

    items_to_handlers = {
        'image': tfexample_decoder.Image(),
        'label': tfexample_decoder.Tensor('image/class/label'),
    }

    decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                 items_to_handlers)

    return dataset.Dataset(data_sources=data_sources,
                           reader=io_ops.TFRecordReader,
                           decoder=decoder,
                           num_samples=100,
                           items_to_descriptions=None)
Ejemplo n.º 2
0
    def testDecodeExampleWithTensor(self):
        tensor_shape = (2, 3, 1)
        np_array = np.random.rand(2, 3, 1)

        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'image/depth_map': self._EncodedFloatFeature(np_array),
            }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example,
                                                   shape=[])

            keys_to_features = {
                'image/depth_map':
                parsing_ops.FixedLenFeature(
                    tensor_shape,
                    dtypes.float32,
                    default_value=array_ops.zeros(tensor_shape))
            }

            items_to_handlers = {
                'depth': tfexample_decoder.Tensor('image/depth_map')
            }

            decoder = tfexample_decoder.TFExampleDecoder(
                keys_to_features, items_to_handlers)
            [tf_depth] = decoder.decode(serialized_example, ['depth'])
            depth = tf_depth.eval()

        self.assertAllClose(np_array, depth)
Ejemplo n.º 3
0
    def testDecodeExampleWithFixLenTensorWithShape(self):
        np_array = np.array([[1, 2, 3], [4, 5, 6]])

        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'labels': self._EncodedInt64Feature(np_array),
            }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example,
                                                   shape=[])
            keys_to_features = {
                'labels':
                parsing_ops.FixedLenFeature(np_array.shape,
                                            dtype=dtypes.int64),
            }
            items_to_handlers = {
                'labels': tfexample_decoder.Tensor('labels',
                                                   shape=np_array.shape),
            }
            decoder = tfexample_decoder.TFExampleDecoder(
                keys_to_features, items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()
            self.assertAllEqual(labels, np_array)
Ejemplo n.º 4
0
    def testDecodeExampleWithStringTensor(self):
        tensor_shape = (2, 3, 1)
        np_array = np.array([[['ab'], ['cd'], ['ef']],
                             [['ghi'], ['jkl'], ['mnop']]])

        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'labels': self._BytesFeature(np_array),
            }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example,
                                                   shape=[])
            keys_to_features = {
                'labels':
                parsing_ops.FixedLenFeature(tensor_shape,
                                            dtypes.string,
                                            default_value=constant_op.constant(
                                                '',
                                                shape=tensor_shape,
                                                dtype=dtypes.string))
            }
            items_to_handlers = {
                'labels': tfexample_decoder.Tensor('labels'),
            }
            decoder = tfexample_decoder.TFExampleDecoder(
                keys_to_features, items_to_handlers)
            [tf_labels] = decoder.decode(serialized_example, ['labels'])
            labels = tf_labels.eval()

            labels = labels.astype(np_array.dtype)
            self.assertTrue(np.array_equal(np_array, labels))
Ejemplo n.º 5
0
    def testDecodeExampleMultiShapeKeyTensor(self):
        np_image = np.random.rand(2, 3, 1).astype('f')
        np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]])
        height, width, depth = np_labels.shape

        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'image': self._EncodedFloatFeature(np_image),
                'image/shape': self._EncodedInt64Feature(
                    np.array(np_image.shape)),
                'labels': self._EncodedInt64Feature(np_labels),
                'labels/height': self._EncodedInt64Feature(np.array([height])),
                'labels/width': self._EncodedInt64Feature(np.array([width])),
                'labels/depth': self._EncodedInt64Feature(np.array([depth])),
            }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example,
                                                   shape=[])
            keys_to_features = {
                'image': parsing_ops.VarLenFeature(dtype=dtypes.float32),
                'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels/height': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels/width': parsing_ops.VarLenFeature(dtype=dtypes.int64),
                'labels/depth': parsing_ops.VarLenFeature(dtype=dtypes.int64),
            }
            items_to_handlers = {
                'image':
                tfexample_decoder.Tensor('image', shape_keys='image/shape'),
                'labels':
                tfexample_decoder.Tensor('labels',
                                         shape_keys=[
                                             'labels/height', 'labels/width',
                                             'labels/depth'
                                         ]),
            }
            decoder = tfexample_decoder.TFExampleDecoder(
                keys_to_features, items_to_handlers)
            [tf_image, tf_labels] = decoder.decode(serialized_example,
                                                   ['image', 'labels'])
            self.assertAllEqual(tf_image.eval(), np_image)
            self.assertAllEqual(tf_labels.eval(), np_labels)
Ejemplo n.º 6
0
def get_split_genome(name, root_dir, reader_class=tf.TFRecordReader):
  """Produces data split.

  Args:
    name: split name
    root_dir: dataset directory
    reader_class: reader class

  Returns:
    Dataset
  """

  file_pattern = os.path.join(root_dir, 'VG-%s_*' % name)

  num_samples = SST_COUNTS[name]

  keys_to_features = {
      'image/encoded': tf.FixedLenFeature(
          (), tf.string, default_value=''),
      'image/format': tf.FixedLenFeature(
          (), tf.string, default_value='jpeg'),
      'image/shape': tf.VarLenFeature(dtype=tf.int64),
      'image/relations/num': tf.VarLenFeature(dtype=tf.int64),
      'image/relations/predicates_raw': tf.FixedLenFeature((), tf.string),
      'image/relations/predicates': tf.VarLenFeature(dtype=tf.int64),
      'image/relations/predicates_label': tf.VarLenFeature(dtype=tf.int64),
      'image/relations/bboxes': tf.VarLenFeature(dtype=tf.int64),
      'image/relations/objects': tf.VarLenFeature(dtype=tf.int64),
      'image/relations/subjects': tf.VarLenFeature(dtype=tf.int64),
  }

  items_to_handlers = {
      'image': tfexample_decoder.Image('image/encoded'),
      'shape': tfexample_decoder.Tensor('image/shape'),
      'num_relations': tfexample_decoder.Tensor('image/relations/num'),
      'predicates_raw': tfexample_decoder.Tensor('image/relations/'
                                                 'predicates_raw'),
      'predicates': tfexample_decoder.Tensor('image/relations/predicates'),
      'predicates_label': tfexample_decoder.Tensor('image/relations/predicates_label'),
      'bboxes': tfexample_decoder.Tensor('image/relations/bboxes'),
      'objects': tfexample_decoder.Tensor('image/relations/objects'),
      'subjects': tfexample_decoder.Tensor('image/relations/subjects')
  }

  decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                               items_to_handlers)

  return dataset.Dataset(
      data_sources=file_pattern,
      reader=reader_class,
      decoder=decoder,
      num_samples=num_samples,
      items_to_descriptions={})
Ejemplo n.º 7
0
    def testDecodeExampleWithBackupHandlerLookup(self):

        example1 = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'image/object/class/text':
                self._BytesFeature(np.array(['cat', 'dog', 'guinea pig'])),
                'image/object/class/label':
                self._EncodedInt64Feature(np.array([42, 10, 900]))
            }))
        example2 = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'image/object/class/text':
                self._BytesFeature(np.array(['cat', 'dog', 'guinea pig'])),
            }))
        example3 = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'image/object/class/label':
                self._EncodedInt64Feature(np.array([42, 10, 901]))
            }))
        # 'dog' -> 0, 'guinea pig' -> 1, 'cat' -> 2
        table = lookup_ops.index_table_from_tensor(
            constant_op.constant(['dog', 'guinea pig', 'cat']))
        keys_to_features = {
            'image/object/class/text':
            parsing_ops.VarLenFeature(dtypes.string),
            'image/object/class/label':
            parsing_ops.VarLenFeature(dtypes.int64),
        }
        backup_handler = tfexample_decoder.BackupHandler(
            handler=tfexample_decoder.Tensor('image/object/class/label'),
            backup=tfexample_decoder.LookupTensor('image/object/class/text',
                                                  table))
        items_to_handlers = {
            'labels': backup_handler,
        }
        decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                     items_to_handlers)
        obtained_class_ids_each_example = []
        with self.test_session() as sess:
            sess.run(lookup_ops.tables_initializer())
            for example in [example1, example2, example3]:
                serialized_example = array_ops.reshape(
                    example.SerializeToString(), shape=[])
                obtained_class_ids_each_example.append(
                    decoder.decode(serialized_example)[0].eval())

        self.assertAllClose([42, 10, 900], obtained_class_ids_each_example[0])
        self.assertAllClose([2, 0, 1], obtained_class_ids_each_example[1])
        self.assertAllClose([42, 10, 901], obtained_class_ids_each_example[2])
Ejemplo n.º 8
0
    def testDecodeExampleWithInt64Tensor(self):
        np_array = np.random.randint(1, 10, size=(2, 3, 1))

        example = example_pb2.Example(features=feature_pb2.Features(
            feature={
                'array': self._EncodedInt64Feature(np_array),
            }))

        serialized_example = example.SerializeToString()

        with self.test_session():
            serialized_example = array_ops.reshape(serialized_example,
                                                   shape=[])
            keys_to_features = {
                'array': parsing_ops.FixedLenFeature(np_array.shape,
                                                     dtypes.int64)
            }
            items_to_handlers = {
                'array': tfexample_decoder.Tensor('array'),
            }
            decoder = tfexample_decoder.TFExampleDecoder(
                keys_to_features, items_to_handlers)
            [tf_array] = decoder.decode(serialized_example, ['array'])
            self.assertAllEqual(tf_array.eval(), np_array)