Ejemplo n.º 1
0
def inception_resnet_v2_arg_scope(weight_decay=0.00004,
                                  batch_norm_decay=0.9997,
                                  batch_norm_epsilon=0.001,
                                  activation_fn=tf.nn.relu):
    """Returns the scope with the default parameters for inception_resnet_v2.

  Args:
    weight_decay: the weight decay for weights variables.
    batch_norm_decay: decay for the moving average of batch_norm momentums.
    batch_norm_epsilon: small float added to variance to avoid dividing by zero.
    activation_fn: Activation function for conv2d.

  Returns:
    a arg_scope with the parameters needed for inception_resnet_v2.
  """
    # Set weight_decay for weights in conv2d and fully_connected layers.
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        biases_regularizer=slim.l2_regularizer(weight_decay)):

        batch_norm_params = {
            'decay': batch_norm_decay,
            'epsilon': batch_norm_epsilon,
            'fused': None,  # Use fused batch norm if possible.
        }
        # Set activation_fn and parameters for batch_norm.
        with slim.arg_scope([slim.conv2d],
                            activation_fn=activation_fn,
                            normalizer_fn=slim.batch_norm,
                            normalizer_params=batch_norm_params) as scope:
            return scope
Ejemplo n.º 2
0
def alexnet_v2_arg_scope(weight_decay=0.0005):
  with slim.arg_scope([slim.conv2d, slim.fully_connected],
                      activation_fn=tf.nn.relu,
                      biases_initializer=tf.constant_initializer(0.1),
                      weights_regularizer=slim.l2_regularizer(weight_decay)):
    with slim.arg_scope([slim.conv2d], padding='SAME'):
      with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc:
        return arg_sc
Ejemplo n.º 3
0
def overfeat_arg_scope(weight_decay=0.0005):
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        activation_fn=tf.nn.relu,
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        biases_initializer=tf.zeros_initializer()):
        with slim.arg_scope([slim.conv2d], padding='SAME'):
            with slim.arg_scope([slim.max_pool2d], padding='VALID') as arg_sc:
                return arg_sc
Ejemplo n.º 4
0
def resnet_arg_scope(weight_decay=0.0001,
                     batch_norm_decay=0.997,
                     batch_norm_epsilon=1e-5,
                     batch_norm_scale=True,
                     activation_fn=tf.nn.relu,
                     use_batch_norm=True):
  """Defines the default ResNet arg scope.

  TODO(gpapan): The batch-normalization related default values above are
    appropriate for use in conjunction with the reference ResNet models
    released at https://github.com/KaimingHe/deep-residual-networks. When
    training ResNets from scratch, they might need to be tuned.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    batch_norm_decay: The moving average decay when estimating layer activation
      statistics in batch normalization.
    batch_norm_epsilon: Small constant to prevent division by zero when
      normalizing activations by their variance in batch normalization.
    batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the
      activations in the batch normalization layer.
    activation_fn: The activation function which is used in ResNet.
    use_batch_norm: Whether or not to use batch normalization.

  Returns:
    An `arg_scope` to use for the resnet models.
  """
  batch_norm_params = {
      'decay': batch_norm_decay,
      'epsilon': batch_norm_epsilon,
      'scale': batch_norm_scale,
      'updates_collections': tf.GraphKeys.UPDATE_OPS,
      'fused': None,  # Use fused batch norm if possible.
  }

  with slim.arg_scope(
      [slim.conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=slim.variance_scaling_initializer(),
      activation_fn=activation_fn,
      normalizer_fn=slim.batch_norm if use_batch_norm else None,
      normalizer_params=batch_norm_params):
    with slim.arg_scope([slim.batch_norm], **batch_norm_params):
      # The following implies padding='SAME' for pool1, which makes feature
      # alignment easier for dense prediction tasks. This is also used in
      # https://github.com/facebook/fb.resnet.torch. However the accompanying
      # code of 'Deep Residual Learning for Image Recognition' uses
      # padding='VALID' for pool1. You can switch to that choice by setting
      # slim.arg_scope([slim.max_pool2d], padding='VALID').
      with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
        return arg_sc
Ejemplo n.º 5
0
def lenet_arg_scope(weight_decay=0.0):
  """Defines the default lenet argument scope.

  Args:
    weight_decay: The weight decay to use for regularizing the model.

  Returns:
    An `arg_scope` to use for the inception v3 model.
  """
  with slim.arg_scope(
      [slim.conv2d, slim.fully_connected],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
      activation_fn=tf.nn.relu) as sc:
    return sc
Ejemplo n.º 6
0
def vgg_arg_scope(weight_decay=0.0005):
    """Defines the VGG arg scope.

  Args:
    weight_decay: The l2 regularization coefficient.

  Returns:
    An arg_scope.
  """
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        activation_fn=tf.nn.relu,
                        weights_regularizer=slim.l2_regularizer(weight_decay),
                        biases_initializer=tf.zeros_initializer()):
        with slim.arg_scope([slim.conv2d], padding='SAME') as arg_sc:
            return arg_sc
Ejemplo n.º 7
0
def osvos_arg_scope(weight_decay=0.0002):
    """Defines the OSVOS arg scope.
	Args:
	weight_decay: The l2 regularization coefficient.
	Returns:
	An arg_scope.
	"""
    with slim.arg_scope(
        [slim.conv2d, slim.convolution2d_transpose],
            activation_fn=tf.nn.relu,
            weights_initializer=tf.random_normal_initializer(stddev=0.001),
            weights_regularizer=slim.l2_regularizer(weight_decay),
            biases_initializer=tf.zeros_initializer(),
            biases_regularizer=None,
            padding='SAME') as arg_sc:
        return arg_sc
Ejemplo n.º 8
0
def inception_arg_scope(weight_decay=0.00004,
                        use_batch_norm=True,
                        batch_norm_decay=0.9997,
                        batch_norm_epsilon=0.001,
                        activation_fn=tf.nn.relu):
    """Defines the default arg scope for inception models.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    use_batch_norm: "If `True`, batch_norm is applied after each convolution.
    batch_norm_decay: Decay for batch norm moving average.
    batch_norm_epsilon: Small float added to variance to avoid dividing by zero
      in batch norm.
    activation_fn: Activation function for conv2d.

  Returns:
    An `arg_scope` to use for the inception models.
  """
    batch_norm_params = {
        # Decay for the moving averages.
        'decay': batch_norm_decay,
        # epsilon to prevent 0s in variance.
        'epsilon': batch_norm_epsilon,
        # collection containing update_ops.
        'updates_collections': tf.GraphKeys.UPDATE_OPS,
        # use fused batch norm if possible.
        'fused': None,
    }
    if use_batch_norm:
        normalizer_fn = slim.batch_norm
        normalizer_params = batch_norm_params
    else:
        normalizer_fn = None
        normalizer_params = {}
    # Set weight_decay for weights in Conv and FC layers.
    with slim.arg_scope([slim.conv2d, slim.fully_connected],
                        weights_regularizer=slim.l2_regularizer(weight_decay)):
        with slim.arg_scope(
            [slim.conv2d],
                weights_initializer=slim.variance_scaling_initializer(),
                activation_fn=activation_fn,
                normalizer_fn=normalizer_fn,
                normalizer_params=normalizer_params) as sc:
            return sc