Ejemplo n.º 1
0
 def testModelVariables(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         alexnet.alexnet_v2(inputs, num_classes)
         expected_names = [
             'alexnet_v2/conv1/weights',
             'alexnet_v2/conv1/biases',
             'alexnet_v2/conv2/weights',
             'alexnet_v2/conv2/biases',
             'alexnet_v2/conv3/weights',
             'alexnet_v2/conv3/biases',
             'alexnet_v2/conv4/weights',
             'alexnet_v2/conv4/biases',
             'alexnet_v2/conv5/weights',
             'alexnet_v2/conv5/biases',
             'alexnet_v2/fc6/weights',
             'alexnet_v2/fc6/biases',
             'alexnet_v2/fc7/weights',
             'alexnet_v2/fc7/biases',
             'alexnet_v2/fc8/weights',
             'alexnet_v2/fc8/biases',
         ]
         model_variables = [v.op.name for v in slim.get_model_variables()]
         self.assertSetEqual(set(model_variables), set(expected_names))
Ejemplo n.º 2
0
 def testForward(self):
     batch_size = 1
     height, width = 224, 224
     with self.test_session() as sess:
         inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = alexnet.alexnet_v2(inputs)
         sess.run(tf.global_variables_initializer())
         output = sess.run(logits)
         self.assertTrue(output.any())
Ejemplo n.º 3
0
 def testBuild(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = alexnet.alexnet_v2(inputs, num_classes)
         self.assertEquals(logits.op.name, 'alexnet_v2/fc8/squeezed')
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, num_classes])
Ejemplo n.º 4
0
 def testFullyConvolutional(self):
     batch_size = 1
     height, width = 300, 400
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = alexnet.alexnet_v2(inputs,
                                        num_classes,
                                        spatial_squeeze=False)
         self.assertEquals(logits.op.name, 'alexnet_v2/fc8/BiasAdd')
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, 4, 7, num_classes])
Ejemplo n.º 5
0
 def testEvaluation(self):
     batch_size = 2
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         eval_inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False)
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, num_classes])
         predictions = tf.argmax(logits, 1)
         self.assertListEqual(predictions.get_shape().as_list(),
                              [batch_size])
Ejemplo n.º 6
0
 def testGlobalPool(self):
     batch_size = 1
     height, width = 256, 256
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = alexnet.alexnet_v2(inputs,
                                        num_classes,
                                        spatial_squeeze=False,
                                        global_pool=True)
         self.assertEquals(logits.op.name, 'alexnet_v2/fc8/BiasAdd')
         self.assertListEqual(logits.get_shape().as_list(),
                              [batch_size, 1, 1, num_classes])
Ejemplo n.º 7
0
 def testEndPoints(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         _, end_points = alexnet.alexnet_v2(inputs, num_classes)
         expected_names = [
             'alexnet_v2/conv1', 'alexnet_v2/pool1', 'alexnet_v2/conv2',
             'alexnet_v2/pool2', 'alexnet_v2/conv3', 'alexnet_v2/conv4',
             'alexnet_v2/conv5', 'alexnet_v2/pool5', 'alexnet_v2/fc6',
             'alexnet_v2/fc7', 'alexnet_v2/fc8'
         ]
         self.assertSetEqual(set(end_points.keys()), set(expected_names))
Ejemplo n.º 8
0
 def testTrainEvalWithReuse(self):
     train_batch_size = 2
     eval_batch_size = 1
     train_height, train_width = 224, 224
     eval_height, eval_width = 300, 400
     num_classes = 1000
     with self.test_session():
         train_inputs = tf.random_uniform(
             (train_batch_size, train_height, train_width, 3))
         logits, _ = alexnet.alexnet_v2(train_inputs)
         self.assertListEqual(logits.get_shape().as_list(),
                              [train_batch_size, num_classes])
         tf.get_variable_scope().reuse_variables()
         eval_inputs = tf.random_uniform(
             (eval_batch_size, eval_height, eval_width, 3))
         logits, _ = alexnet.alexnet_v2(eval_inputs,
                                        is_training=False,
                                        spatial_squeeze=False)
         self.assertListEqual(logits.get_shape().as_list(),
                              [eval_batch_size, 4, 7, num_classes])
         logits = tf.reduce_mean(logits, [1, 2])
         predictions = tf.argmax(logits, 1)
         self.assertEquals(predictions.get_shape().as_list(),
                           [eval_batch_size])
Ejemplo n.º 9
0
 def testNoClasses(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = None
     with self.test_session():
         inputs = tf.random_uniform((batch_size, height, width, 3))
         net, end_points = alexnet.alexnet_v2(inputs, num_classes)
         expected_names = [
             'alexnet_v2/conv1', 'alexnet_v2/pool1', 'alexnet_v2/conv2',
             'alexnet_v2/pool2', 'alexnet_v2/conv3', 'alexnet_v2/conv4',
             'alexnet_v2/conv5', 'alexnet_v2/pool5', 'alexnet_v2/fc6',
             'alexnet_v2/fc7'
         ]
         self.assertSetEqual(set(end_points.keys()), set(expected_names))
         self.assertTrue(net.op.name.startswith('alexnet_v2/fc7'))
         self.assertListEqual(net.get_shape().as_list(),
                              [batch_size, 1, 1, 4096])