Ejemplo n.º 1
0
  def to_flow(self, fl):
    spec = self.spec

    # Specify the encoder.
    lstm_embeddings = [e.weight.data.numpy() for e in self.lstm_embeddings]
    lex = LexicalEncoder(fl, spec, lstm_embeddings, self.lr_lstm, self.rl_lstm)

    # Write the specification to the flow.
    spec.to_flow(fl)

    # Adds a flow variable that will store raw indices for the given feature.
    def index_vars(bldr, feature_spec):
      return bldr.var(name=feature.name, dtype="int32", shape=[1, feature.num])

    # Adds flow variables and ops for the given fixed feature.
    # The output variable of the feature is added as an input to 'concat_op'.
    def write_fixed_feature(feature, bag, bldr, concat_op):
      indices = index_vars(bldr, feature)
      s = bag.weight.size()
      embedding = bldr.var(name=feature.name + "_embedding", shape=[s[0], s[1]])
      embedding.data = bag.weight.data.numpy()

      name = feature.name + '/GatherSum'
      embedded = bldr.gather_sum(embedding, indices, name=name)
      concat_op.add_input(embedded)

    # Finishes the concatenation op assuming all inputs have been added.
    def finish_concat_op(bldr, op):
      op.add_attr("N", len(op.inputs))
      axis = bldr.const(1, "int32")
      op.add_input(axis)

    # Specify the FF trunk = FF feature vector + hidden layer computation.
    ff = builder.Builder(fl, "ff_trunk")
    ff_input = ff.var(name="input", shape=[1, spec.ff_input_dim])
    flow_ff = flownn.FF(
        ff, \
        input=ff_input, \
        layers=[spec.ff_hidden_dim],
        hidden=0)
    flow_ff.set_layer_data(0, self.ff_layer.weight.data.numpy(), \
                           self.ff_layer.bias.data.numpy())

    ff_concat_op = ff.rawop(optype="ConcatV2", name="concat")
    ff_concat_op.add_output(ff_input)

    # Add link variable to the given connector.
    def link(bldr, name, dim, cnx, prefix=True):
      if prefix: name = "link/" + name
      l = bldr.var(name, shape=[-1, dim])
      l.ref = True
      cnx.add(l)
      return l

    # Add links to the two LSTMs.
    ff_lr = link(ff, "lr_lstm", spec.lstm_hidden_dim, lex.lr_lstm.cnx_hidden)
    ff_rl = link(ff, "rl_lstm", spec.lstm_hidden_dim, lex.rl_lstm.cnx_hidden)

    # Add link and connector for previous FF steps.
    ff_cnx = ff.cnx("step", args=[])
    ff_steps = link(ff, "steps", spec.ff_hidden_dim, ff_cnx, False)
    ff_cnx.add(flow_ff.hidden_out)

    # Add FF's input variables.
    for feature in spec.ff_fixed_features:
      write_fixed_feature(feature, feature.bag, ff, ff_concat_op)

    for feature in spec.ff_link_features:
      indices = index_vars(ff, feature)

      activations = None
      n = feature.name
      if n == "frame-end-lr" or n == "lr" or n == "mark-lr":
        activations = ff_lr
      elif n == "frame-end-rl" or n == "rl" or n == "mark-rl":
        activations = ff_rl
      elif n in ["frame-creation-steps", "frame-focus-steps", \
        "history", "mark-step"]:
        activations = ff_steps
      else:
        raise ValueError("Unknown feature %r" % n)

      activation_dim = activations.shape[1]
      name = feature.name + "/Gather"
      oov_var = ff.var(name=name + "/oov", shape=[1, activation_dim])
      oov_var.data = feature.transform.oov.data.numpy()
      gathered = ff.gather(activations, indices, oov_var, name=name)

      projection = feature.transform.projection.weight
      sz = projection.size()
      transform = ff.var(name=feature.name + "/transform", shape=[sz[0], sz[1]])
      transform.data = projection.data.numpy()

      name = feature.name + "/MatMul"
      output = ff.matmul(gathered, transform, name=name)
      ff_concat_op.add_input(output)

    finish_concat_op(ff, ff_concat_op)

    # Specify one cell per FF head (= delegate).
    ff_trunk_width = flow_ff.hidden_out.shape[1]
    delegate_cell_prefix = "delegate"
    for i, head in enumerate(self.ff_heads):
      delegate = spec.cascade.delegates[i]
      assert_softmax_delegate(delegate)
      d = builder.Builder(fl, delegate_cell_prefix + str(i))
      head_input = link(d, "input", ff_trunk_width, ff_cnx, False)

      W = d.var("W", shape=[ff_trunk_width, delegate.size()])
      W.data = head.softmax.weight.data.numpy()
      output = d.matmul(head_input, W)
      output.type = W.type
      output.shape = [1, delegate.size()]

      b = d.var("b", shape=[1, delegate.size()])
      b.data = head.softmax.bias.data.numpy()
      logits = d.add(output, b)
      logits.type = b.type
      logits.shape = [1, delegate.size()]

      best_op = d.rawop(optype="ArgMax")
      best_op.add_input(logits)
      best = d.var("output")
      best.type = builder.DT_INT
      best.shape = [1]
      best_op.add_output(best)
      best.producer.add_attr("output", 1)
Ejemplo n.º 2
0
    def __init__(self, flow, spec, lstm_feature_embeddings, lr_lstm, rl_lstm):
        # Add blobs for the lexical resources.
        lexicon = flow.blob("lexicon")
        lexicon.type = "dict"
        lexicon.add_attr("delimiter", 10)
        lexicon.add_attr("oov", spec.words.oov_index)
        normalization = ""
        if spec.words.normalize_digits: normalization = "d"
        lexicon.add_attr("normalization", normalization)
        lexicon.data = str(spec.words) + "\n"
        self.lexicon_blob = lexicon

        def read_file(filename):
            fin = open(filename, "rb")
            data = fin.read()
            fin.close()
            return data

        f = tempfile.NamedTemporaryFile(delete=False)
        fname = f.name
        spec.commons.save(fname, binary=True)
        f.close()

        commons = flow.blob("commons")
        commons.type = "frames"
        commons.data = read_file(fname)
        os.unlink(fname)
        self.commons_blob = commons

        suffix = flow.blob("suffixes")
        suffix.type = "affix"
        suffix.data = str(spec.write_suffix_table())
        self.suffix_blob = suffix

        # Add feature extraction related ops.
        bldr = builder.Builder(flow, "features")
        self.feature_ids = []
        concat_args = []
        for f, e in zip(spec.lstm_features, lstm_feature_embeddings):
            shape = [f.vocab_size, f.dim]
            embedding = bldr.var(name=f.name + "_embeddings", shape=shape)
            embedding.data = e
            ids_input = bldr.var(name=f.name, dtype="int32", shape=[1, f.num])
            self.feature_ids.append(ids_input)

            gather_op_type = "Gather"
            if f.num > 1: gather_op_type = "GatherSum"
            gather_op = bldr.rawop(gather_op_type)
            gather_op.dtype = "float32"
            gather_op.add_input(embedding)
            gather_op.add_input(ids_input)
            gather_output = bldr.var(gather_op.name + ":0", "float32",
                                     [1, f.dim])
            gather_op.add_output(gather_output)
            concat_args.append(gather_output)

        self.feature_vector = bldr.concat(concat_args)
        bldr.rename(self.feature_vector, "feature_vector")
        self.feature_vector.ref = True
        self.feature_vector.input = True
        self.feature_vector.output = True

        # Add BiLSTM.
        lr = builder.Builder(flow, "lstm/lr")
        lr_input = lr.var(name="input", shape=[1, spec.lstm_input_dim])
        lr_input.ref = True
        flow_lr_lstm = nn.LSTM(lr, input=lr_input, size=spec.lstm_hidden_dim)
        lr_lstm.copy_to_flow_lstm(flow_lr_lstm)
        self.lr_lstm = flow_lr_lstm

        rl = builder.Builder(flow, "lstm/rl")
        rl_input = rl.var(name="input", shape=[1, spec.lstm_input_dim])
        rl_input.ref = True
        flow_rl_lstm = nn.LSTM(rl, input=rl_input, size=spec.lstm_hidden_dim)
        rl_lstm.copy_to_flow_lstm(flow_rl_lstm)
        self.rl_lstm = flow_rl_lstm

        cnxin = flow.cnx("features")
        cnxin.add(self.feature_vector)
        cnxin.add(lr_input)
        cnxin.add(rl_input)