Ejemplo n.º 1
0
 def _update_resized_properties(self, reduc_indices, reduced_num_pix):
     self._reduc_indices_1d = util.image2array(reduc_indices).astype(bool)
     # update resized coordinates
     self._num_pix_resized = reduced_num_pix
     self._x_grid_1d_resized = np.copy(
         self._x_grid_1d[self._reduc_indices_1d])
     self._y_grid_1d_resized = np.copy(
         self._y_grid_1d[self._reduc_indices_1d])
     # can only apply reduc_indices_1d on 1D arrays, hence reshaping operations below
     effective_mask_1d = np.copy(util.image2array(self._effective_mask))
     self._effective_mask_resized = util.array2image(
         effective_mask_1d[self._reduc_indices_1d])
     if self._verbose:
         print(
             "SizeablePlaneGrid: source grid has been reduced from {} to {} side pixels"
             .format(self._num_pix, self._num_pix_resized))
Ejemplo n.º 2
0
def test_image2array2image():
    image = np.zeros((20, 10))
    nx, ny = np.shape(image)
    image[1, 2] = 1
    array = util.image2array(image)
    image_new = util.array2image(array, nx, ny)
    assert image_new[1, 2] == image[1, 2]
Ejemplo n.º 3
0
 def project_on_original_grid(self, image):
     if hasattr(self, '_reduc_indices_1d'):
         input_is_1d = (len(image.shape) == 1)
         array_large = np.zeros(self._num_pix**2)
         if input_is_1d:
             array_large[self._reduc_indices_1d] = image[:]
             return array_large
         else:
             array_large[self._reduc_indices_1d] = util.image2array(
                 image)[:]
             return util.array2image(array_large)
     else:
         return image
Ejemplo n.º 4
0
    def test_image2source(self):
        lensing_op = LensingOperator(self.lens_model, self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix)
        image_1d = util.image2array(self.source_light_lensed)
        image_1d_delensed = lensing_op.image2source(
            image_1d, kwargs_lens=self.kwargs_lens)
        assert len(image_1d_delensed.shape) == 1

        image_2d = self.source_light_lensed
        image_2d_delensed = lensing_op.image2source_2d(
            image_2d, kwargs_lens=self.kwargs_lens, update_mapping=True)
        assert len(image_2d_delensed.shape) == 2
Ejemplo n.º 5
0
    def test_matrix_product(self):
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='nearest_legacy')
        lensing_op.update_mapping(self.kwargs_lens)

        lensing_op_mat = LensingOperator(self.lens_model,
                                         self.image_grid_class,
                                         self.source_grid_class_default,
                                         self.num_pix,
                                         source_interpolation='nearest')
        lensing_op_mat.update_mapping(self.kwargs_lens)

        source_1d = util.image2array(self.source_light_delensed)
        image_1d = util.image2array(self.source_light_lensed)

        npt.assert_equal(lensing_op.source2image(source_1d),
                         lensing_op_mat.source2image(source_1d))
        npt.assert_equal(lensing_op.image2source(image_1d),
                         lensing_op_mat.image2source(image_1d))
Ejemplo n.º 6
0
    def test_interpol_mapping(self):
        """testing than image2source / source2image are close to the parametric mapping"""
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='bilinear')
        lensing_op.update_mapping(self.kwargs_lens)

        source_1d = util.image2array(self.source_light_delensed)
        image_1d = util.image2array(self.source_light_lensed)

        source_1d_lensed = lensing_op.source2image(source_1d)
        image_1d_delensed = lensing_op.image2source(image_1d)
        assert source_1d_lensed.shape == image_1d.shape
        assert image_1d_delensed.shape == source_1d.shape

        npt.assert_almost_equal(source_1d_lensed / source_1d_lensed.max(),
                                image_1d / image_1d.max(),
                                decimal=0.8)
        npt.assert_almost_equal(image_1d_delensed / image_1d_delensed.max(),
                                source_1d / source_1d.max(),
                                decimal=0.8)
Ejemplo n.º 7
0
    def test_minimal_source_plane(self):
        source_1d = util.image2array(self.source_light_delensed)

        # test with no mask
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='nearest',
                                     minimal_source_plane=True)
        lensing_op.update_mapping(self.kwargs_lens)
        image_1d = util.image2array(self.source_light_lensed)
        assert lensing_op.image2source(image_1d).size < source_1d.size

        # test with mask
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='nearest',
                                     minimal_source_plane=True)
        lensing_op.set_likelihood_mask(self.likelihood_mask)
        lensing_op.update_mapping(self.kwargs_lens)
        image_1d = util.image2array(self.source_light_lensed)
        assert lensing_op.image2source(image_1d).size < source_1d.size

        # for 'bilinear' operator, only works with no mask (for now)
        lensing_op = LensingOperator(self.lens_model,
                                     self.image_grid_class,
                                     self.source_grid_class_default,
                                     self.num_pix,
                                     source_interpolation='bilinear',
                                     minimal_source_plane=True)
        lensing_op.update_mapping(self.kwargs_lens)
        image_1d = util.image2array(self.source_light_lensed)
        assert lensing_op.image2source(image_1d).size < source_1d.size
Ejemplo n.º 8
0
 def __init__(self,
              data_class,
              lensing_operator_class,
              numerics_class,
              thread_count=1,
              random_seed=None):
     self._lensing_op = lensing_operator_class
     self._ss_factor = numerics_class.grid_supersampling_factor
     self._conv = numerics_class.convolution_class
     if self._conv is not None:
         self._conv_transpose = self._conv.copy_transpose()
     else:
         self._conv_transpose = None
     self._prepare_data(data_class,
                        self._lensing_op.source_subgrid_resolution)
     self._no_source_light = True
     self._no_lens_light = True
     self._no_point_source = True
     self._thread_count = thread_count
     self._mask = np.ones_like(data_class.data)
     self._mask_1d = util.image2array(self._mask)
     self.random_seed = random_seed
Ejemplo n.º 9
0
def test_image2array():
    image = np.zeros((10, 10))
    image[1, 2] = 1
    array = util.image2array(image)
    assert array[12] == 1
Ejemplo n.º 10
0
 def source2image_2d(self, source, **kwargs):
     source_1d = util.image2array(source)
     return util.array2image(self.source2image(source_1d, **kwargs))
Ejemplo n.º 11
0
 def image2source_2d(self, image, **kwargs):
     image_1d = util.image2array(image)
     return util.array2image(self.image2source(image_1d, **kwargs))
Ejemplo n.º 12
0
 def _set_likelihood_mask(self, mask):
     self._mask = mask
     self._mask_1d = util.image2array(mask)
     self._lensing_op.set_likelihood_mask(mask)