def getFf(q, u, nv, mapCons, μ, ForceAll): rv = np.zeros(2 * nv) for c in range(nv): if (not mapCons[2 * c]) and mapCons[2 * c + 1]: localU = u[2 * c:2 * c + 2] parallelU = localU - np.dot(localU, nWall(q[2 * c])) * nWall( q[2 * c]).T uNorm = np.linalg.norm(parallelU) if uNorm == 0: continue normalForce = np.dot(ForceAll[2 * c:2 * c + 2], nWall(q[2 * c])) if normalForce <= 0: continue rv[2 * c:2 * c + 2] = -(parallelU / uNorm) * μ * normalForce return rv
def objfunBW(q, oa, mapCons): nonlocal ForceAll_AN mMatInv = np.diag(1 / m_AN[oa]) Ident2nv = np.eye(2 * nv) imposedAcceleration = np.zeros(2 * nv) q0 = q0_AN[oa] u = u_AN[oa] m = m_AN[oa] # Figure out the imposed acceleration for c in range(nv): xPos = q0[2 * c] # Case 2: one dof is constrained if mapCons[2 * c + 1] == 1: dY = q0[2 * c + 1] - slopeWall(xPos) * q0[2 * c] dRDesired = dY * math.sin(thetaNormal) q0Point = np.array([q0[2 * c], q0[2 * c + 1]]) u0Point = np.array([u[2 * c], u[2 * c + 1]]) qDesired = q0Point - nWall(xPos).T * dRDesired imposedAcceleration[2 * c : 2 * c + 2] = (qDesired - q0Point) / dt - (nWall(xPos) * np.dot(u0Point, nWall(xPos))).T mMatInv[2 * c: 2 * c + 2, 2 * c: 2 * c + 2] = np.dot(invMass(xPos), np.array([[1 / m[2 * c], 0], [0, 1 / m[2 * c + 1]]])) else: imposedAcceleration[2 * c : 2 * c + 2] = np.array([0, 0]) mMatInv[2 * c: 2 * c + 2, 2 * c: 2 * c + 2] = np.array([[1 / m[2 * c], 0], [0, 1 / m[2 * c + 1]]]) # Newton-Raphson scheme iter = 0 # number of iterations # Initial guess for delta V dV = (q - q0) / dt - u normfRecords = [] while True: # Figure out the velocities uNew = u + dV # Figure out the positions q = q0 + dt * uNew # Get forces Fb, Jb = getFb(q, EI_AN[oa], nv, voronoiRefLen_AN[oa], -2 * pi / nv, isCircular=True) Fs, Js = getFs(q, EA_AN[oa], nv, refLen_AN[oa], isCircular=True) Fg = m * garr Ff = getFf(q, u, nv, mapCons_AN[oa], μ, ForceAll_AN[oa]) pressureRatio = refA_AN[oa] / area(q, nv) Fp, Jp = getFp(q, nv, refLen_AN[oa], InflationPressure_AN[oa] * pressureRatio) Forces = Fb + Fs + Fg + Fp + Ff # Equation of motion ForceAll_AN[oa] = m * dV / dt - Forces # actual force f = dV - np.dot(dt * mMatInv, Forces) - imposedAcceleration # force used for Baraff-Witkin mass modification # Get the norm normf = np.linalg.norm(f) * np.mean(m) / dt normfRecords.append(normf) if normf < tol * ScaleSolver_AN[oa]: print("Converged after %d loops" % iter) break if iter > maximum_iter: print("Normf before exit", normfRecords) raise Exception('Cannot converge') Jelastic = Jb + Js + Jp J = Ident2nv - dt ** 2 * np.dot(mMatInv, Jelastic) dV = dV - np.linalg.solve(J, f) iter += 1 return q, ForceAll_AN[oa]
def runDER(): # 2 objects. all variables ending with _AN should be an array of objects OAN = 2 # number of vertices nv = 32 # max time step max_dt = 5e-3 # min time step min_dt = 1e-4 # limit f*dt per step limit_f_times_dt = 0.0025 # initial center of circle x0_AN = [[-0.5, 0.75], [0.5, 0.75]] # initial bulk velocity u0_AN = [[1.25, -2.5], [-1.25, -2.5]] # initial inflation pressure (N/m) InflationPressure_AN = [2.5, 2.5] # circle radius CircleRadius_AN = [0.15, 0.15] # circumference length CircumferenceLength_AN = [2 * pi * i for i in CircleRadius_AN] # Density rho_AN = [1000.0, 1000.0] # Cross-sectional radius of rod r0 = 3.25e-3 # Young's modulus Y_AN = [1e7, 1e7] # gravity g = [0.0, -9.81] # dynamic friction coeff. μ = 0.4 # Tolerance on force function. This is multiplied by ScaleSolver so that we do not have to update it based on edge length and time step size tol = 5e-7 # Maximum number of iterations in Newton Solver maximum_iter = 100 # Total simulation time (it exits after t=totalTime) totalTime = 5 # Utility quantities EI_AN = [Y * pi * r0 ** 4 / 4 for Y in Y_AN] EA_AN = [Y * pi * r0 ** 2 for Y in Y_AN] dm_AN = [pi * r0 ** 2 * CircumferenceLength_AN[oa] * rho_AN[oa] / nv for oa in range(OAN)] # mass per node nodes_AN = [] for oa in range(OAN): nodes_oa = np.empty((nv, 2)) x0_oa = x0_AN[oa] for c in range(nv): nodes_oa[c, 0] = x0_oa[0] + CircleRadius_AN[oa] * cos(c * 2 * pi / nv + pi / 2) nodes_oa[c, 1] = x0_oa[1] + CircleRadius_AN[oa] * sin(c * 2 * pi / nv + pi / 2) nodes_AN.append(nodes_oa) ScaleSolver_AN = [dm * np.linalg.norm(g) for dm in dm_AN] # i don't know why. maybe just take it as granted # mass m_AN = [np.full(2 * nv, dm) for dm in dm_AN] # gravity garr = np.tile(g, nv) # Reference length and Voronoi length refLen_AN = [] for oa in range(OAN): refLen_oa = np.empty(nv) nodes_oa = nodes_AN[oa] for c in range(nv - 1): dx = nodes_oa[c + 1] - nodes_oa[c] refLen_oa[c] = np.linalg.norm(dx) refLen_oa[nv - 1] = np.linalg.norm(nodes_oa[0] - nodes_oa[nv - 1]) refLen_AN.append(refLen_oa) voronoiRefLen_AN = [] for oa in range(OAN): voronoiRefLen_oa = np.empty(nv) refLen_oa = refLen_AN[oa] for c in range(nv): voronoiRefLen_oa[c] = 0.5 * (refLen_oa[c - 1] + refLen_oa[c]) voronoiRefLen_AN.append(voronoiRefLen_oa) # Initial q0_AN = [] for oa in range(OAN): q0 = np.zeros(2 * nv) nodes = nodes_AN[oa] for c in range(nv): q0[2 * c] = nodes[c, 0] # initial x-coord q0[2 * c + 1] = nodes[c, 1] # initial y-coord q0_AN.append(q0) # Reference Area refA_AN = [area(q0, nv) for q0 in q0_AN] # Constrained dofs mapCons_AN = [np.zeros(2 * nv) for _ in range(OAN)] ForceAll_AN = [np.zeros(2 * nv) for _ in range(OAN)] u_AN = [] for oa in range(OAN): u_oa = np.zeros(2 * nv) u0_oa = u0_AN[oa] for c in range(nv): u_oa[2 * c] = u0_oa[0] u_oa[2 * c + 1] = u0_oa[1] u_AN.append(u_oa) # set dt as max at the beginning dt = max_dt def objfunBW(q, oa, mapCons): nonlocal ForceAll_AN mMatInv = np.diag(1 / m_AN[oa]) Ident2nv = np.eye(2 * nv) imposedAcceleration = np.zeros(2 * nv) q0 = q0_AN[oa] u = u_AN[oa] m = m_AN[oa] # Figure out the imposed acceleration for c in range(nv): xPos = q0[2 * c] # Case 2: one dof is constrained if mapCons[2 * c + 1] == 1: dY = q0[2 * c + 1] - slopeWall(xPos) * q0[2 * c] dRDesired = dY * math.sin(thetaNormal) q0Point = np.array([q0[2 * c], q0[2 * c + 1]]) u0Point = np.array([u[2 * c], u[2 * c + 1]]) qDesired = q0Point - nWall(xPos).T * dRDesired imposedAcceleration[2 * c : 2 * c + 2] = (qDesired - q0Point) / dt - (nWall(xPos) * np.dot(u0Point, nWall(xPos))).T mMatInv[2 * c: 2 * c + 2, 2 * c: 2 * c + 2] = np.dot(invMass(xPos), np.array([[1 / m[2 * c], 0], [0, 1 / m[2 * c + 1]]])) else: imposedAcceleration[2 * c : 2 * c + 2] = np.array([0, 0]) mMatInv[2 * c: 2 * c + 2, 2 * c: 2 * c + 2] = np.array([[1 / m[2 * c], 0], [0, 1 / m[2 * c + 1]]]) # Newton-Raphson scheme iter = 0 # number of iterations # Initial guess for delta V dV = (q - q0) / dt - u normfRecords = [] while True: # Figure out the velocities uNew = u + dV # Figure out the positions q = q0 + dt * uNew # Get forces Fb, Jb = getFb(q, EI_AN[oa], nv, voronoiRefLen_AN[oa], -2 * pi / nv, isCircular=True) Fs, Js = getFs(q, EA_AN[oa], nv, refLen_AN[oa], isCircular=True) Fg = m * garr Ff = getFf(q, u, nv, mapCons_AN[oa], μ, ForceAll_AN[oa]) pressureRatio = refA_AN[oa] / area(q, nv) Fp, Jp = getFp(q, nv, refLen_AN[oa], InflationPressure_AN[oa] * pressureRatio) Forces = Fb + Fs + Fg + Fp + Ff # Equation of motion ForceAll_AN[oa] = m * dV / dt - Forces # actual force f = dV - np.dot(dt * mMatInv, Forces) - imposedAcceleration # force used for Baraff-Witkin mass modification # Get the norm normf = np.linalg.norm(f) * np.mean(m) / dt normfRecords.append(normf) if normf < tol * ScaleSolver_AN[oa]: print("Converged after %d loops" % iter) break if iter > maximum_iter: print("Normf before exit", normfRecords) raise Exception('Cannot converge') Jelastic = Jb + Js + Jp J = Ident2nv - dt ** 2 * np.dot(mMatInv, Jelastic) dV = dV - np.linalg.solve(J, f) iter += 1 return q, ForceAll_AN[oa] # Time marching ctime = 0 outputData = [{'time': ctime, 'data': [q0.tolist() for q0 in q0_AN]}] def checkMaxAndHackTimeIfNecessary(ForceAll): # check whether max force is too large. if so, go back in time and reduce step size nonlocal dt, ctime maxF = np.amax(ForceAll) if (dt > min_dt) and (maxF * dt > limit_f_times_dt): # du too large! relax_ratio = limit_f_times_dt / maxF / dt # we may contract dt by this ratio. but to be efficient, we don't contract that much dt = max((0.3 * relax_ratio + 0.45) * dt, min_dt) print('Reducing dt and recompute') return True else: return False steps_attempted = 0 while ctime <= totalTime: print('t = %f, dt = %f' % (ctime, dt)) steps_attempted += 1 q0_work_AN = q0_AN.copy() u_work_AN = u_AN.copy() mapCons_work_AN = [mapCons.copy() for mapCons in mapCons_AN] redo = False for oa in range(OAN): q0 = q0_AN[oa] mapCons = mapCons_work_AN[oa] # step 1: predictor qNew, ForceAll = objfunBW(q0, oa, mapCons) if checkMaxAndHackTimeIfNecessary(ForceAll): redo = True break # step 2: corrector changeMade = False # flag to identify if another step is needed for c in range(nv): xPos = qNew[2 * c] yPos = qNew[2 * c + 1] boundaryY = slopeWall(xPos) * xPos if (not mapCons[2 * c + 1]) and yPos < boundaryY: print("Adding constraint @ %d" % c) mapCons[2 * c + 1] = 1 changeMade = True # detect and delete constrained dof for c in range(nv): xPos = qNew[2 * c] yPos = qNew[2 * c + 1] boundaryY = slopeWall(xPos) * xPos # Delete unnecessary constraints if mapCons[2 * c + 1]: fReaction = ForceAll[2 * c: 2 * c + 2] fNormal = np.dot(fReaction, nWall(xPos)) # Based on reaction force, release the constraint if fNormal <= 0 and yPos >= boundaryY - 2e-6: # reaction force is negative print("Removing constraint @ %d" % c) mapCons[2 * c + 1] = 0 # unconstrain it changeMade = True if changeMade: qNew, ForceAll = objfunBW(q0, oa, mapCons) if checkMaxAndHackTimeIfNecessary(ForceAll): redo = True break u_work_AN[oa] = (qNew - q0) / dt # Update x0 q0_work_AN[oa] = qNew if redo: continue # detect collision with each other for target in range(OAN): q_target = q0_work_AN[target] for surface in range(OAN): if target == surface: continue q_surface = q0_work_AN[surface] polygon = Polygon([(q_surface[2 * c], q_surface[2 * c + 1]) for c in range(nv)]) for c in range(nv): if polygon.contains(Point(q_target[2 * c], q_target[2 * c + 1])): # we have a problem here pass q0_AN = q0_work_AN u_AN = u_work_AN mapCons_AN = mapCons_work_AN ctime += dt output = {'time': ctime, 'data': [q0.tolist() for q0 in q0_AN]} outputData.append(output) relax_ratio = limit_f_times_dt / max([np.amax(ForceAll) for ForceAll in ForceAll_AN]) / dt if (dt < max_dt) and (relax_ratio > 1): dt = min((0.6 * relax_ratio + 0.4) * dt, max_dt) print('Increasing dt') print('Steps attempted: %d' % steps_attempted) print('Steps succeeded: %d' % (len(outputData) - 1)) return {'meta': {'radius': r0, 'closed': True, 'ground': True, 'groundAngle': math.degrees(thetaNormal) - 90, 'numberOfStructure': OAN}, 'frames': outputData}
def runDER(): # number of vertices nv = 32 # max time step max_dt = 5e-3 # min time step min_dt = 1e-4 # limit f*dt per step limit_f_times_dt = 0.002 # initial center of circle x0 = [0.0, 0.2] # initial inflation pressure (N/m) InflationPressure = 0 # circle radius CircleRadius = 0.15 # circumference length CircumferenceLength = 2 * pi * CircleRadius # Density rho = 1000.0 # Cross-sectional radius of rod r0 = 3.25e-3 # Young's modulus Y = 1.5e6 # gravity g = [0.0, -9.81] # dynamic friction coeff. μ = 0.5 # Tolerance on force function. This is multiplied by ScaleSolver so that we do not have to update it based on edge length and time step size tol = 5e-7 # Maximum number of iterations in Newton Solver maximum_iter = 100 # Total simulation time (it exits after t=totalTime) totalTime = 12.5 # Utility quantities EI = Y * pi * r0**4 / 4 EA = Y * pi * r0**2 dm = pi * r0**2 * CircumferenceLength * rho / nv # mass per node nodes = np.empty((nv, 2)) for c in range(nv): nodes[c, 0] = x0[0] + CircleRadius * cos(c * 2 * pi / nv + pi / 2) nodes[c, 1] = x0[1] + CircleRadius * sin(c * 2 * pi / nv + pi / 2) ScaleSolver = dm * np.linalg.norm( g) # i don't know why. maybe just take it as granted # mass m = np.full(2 * nv, dm) # gravity garr = np.tile(g, nv) # Reference length and Voronoi length refLen = np.empty(nv) for c in range(nv - 1): dx = nodes[c + 1] - nodes[c] refLen[c] = np.linalg.norm(dx) refLen[nv - 1] = np.linalg.norm(nodes[0] - nodes[nv - 1]) voronoiRefLen = np.empty(nv) for c in range(nv): voronoiRefLen[c] = 0.5 * (refLen[c - 1] + refLen[c]) # Initial q0 = np.zeros(2 * nv) for c in range(nv): q0[2 * c] = nodes[c, 0] # initial x-coord q0[2 * c + 1] = nodes[c, 1] # initial y-coord # Reference Area refA = area(q0, nv) # Constrained dofs mapCons = np.zeros(2 * nv) ForceAll = np.zeros(2 * nv) u = np.zeros(2 * nv) for c in range(nv): u[2 * c] = 0.0 u[2 * c + 1] = 0.0 # set dt as max at the beginning dt = max_dt def objfunBW(q, uProjected): nonlocal ForceAll mMatInv = np.diag(1 / m) Ident2nv = np.eye(2 * nv) imposedAcceleration = np.zeros(2 * nv) # Figure out the imposed acceleration for c in range(nv): xPos = q0[2 * c] # Case 1: both dofs are constrained if mapCons[2 * c] and mapCons[2 * c + 1] == 1: uProjectedPoint = uProjected[2 * c:2 * c + 2] uPerp = np.dot(uProjectedPoint, nWall(xPos)) * nWall(xPos) normU = np.linalg.norm(uPerp) if normU < (CircumferenceLength / 9.81) * 1e-3: # very small normUinv = 0 else: normUinv = 1 / normU dY = q0[2 * c + 1] - slopeWall(xPos) * q0[2 * c] dRDesired = dY * math.sin(thetaNormal) tpseudo = dRDesired * normUinv q0Point = np.array([q0[2 * c], q0[2 * c + 1]]) u0Point = np.array([u[2 * c], u[2 * c + 1]]) qDesired = q0Point + tpseudo * uProjectedPoint imposedAcceleration[2 * c:2 * c + 2] = (qDesired - q0Point) / dt - u0Point mMatInv[2 * c:2 * c + 2, 2 * c:2 * c + 2] = np.array([[0, 0], [0, 0]]) # Case 2: one dof is constrained elif mapCons[2 * c + 1] == 1: dY = q0[2 * c + 1] - slopeWall(xPos) * q0[2 * c] dRDesired = dY * math.sin(thetaNormal) q0Point = np.array([q0[2 * c], q0[2 * c + 1]]) u0Point = np.array([u[2 * c], u[2 * c + 1]]) qDesired = q0Point - nWall(xPos).T * dRDesired imposedAcceleration[2 * c:2 * c + 2] = (qDesired - q0Point) / dt - ( nWall(xPos) * np.dot(u0Point, nWall(xPos))).T mMatInv[2 * c:2 * c + 2, 2 * c:2 * c + 2] = np.dot( invMass(xPos), np.array([[1 / m[2 * c], 0], [0, 1 / m[2 * c + 1]]])) else: imposedAcceleration[2 * c:2 * c + 2] = np.array([0, 0]) mMatInv[2 * c:2 * c + 2, 2 * c:2 * c + 2] = np.array([[1 / m[2 * c], 0], [0, 1 / m[2 * c + 1]]]) # Newton-Raphson scheme iter = 0 # number of iterations # Initial guess for delta V dV = (q - q0) / dt - u normfRecords = [] while True: # Figure out the velocities uNew = u + dV # Figure out the positions q = q0 + dt * uNew # Get forces Fb, Jb = getFb(q, EI, nv, voronoiRefLen, -2 * pi / nv, isCircular=True) Fs, Js = getFs(q, EA, nv, refLen, isCircular=True) Fg = m * garr Ff = getFf(q, u, nv, mapCons, μ, ForceAll) pressureRatio = refA / area(q, nv) Fp, Jp = getFp(q, nv, refLen, InflationPressure * pressureRatio) Forces = Fb + Fs + Fg + Fp + Ff # Equation of motion ForceAll = m * dV / dt - Forces # actual force f = dV - np.dot( dt * mMatInv, Forces ) - imposedAcceleration # force used for Baraff-Witkin mass modification # Get the norm normf = np.linalg.norm(f) * np.mean(m) / dt normfRecords.append(normf) if normf < tol * ScaleSolver: print("Converged after %d loops" % iter) break if iter > maximum_iter: print("Normf before exit", normfRecords) raise Exception('Cannot converge') Jelastic = Jb + Js + Jp J = Ident2nv - dt**2 * np.dot(mMatInv, Jelastic) dV = dV - np.linalg.solve(J, f) iter += 1 return q, ForceAll # Time marching ctime = 0 outputData = [{'time': ctime, 'data': q0.tolist()}] def checkMaxAndHackTimeIfNecessary( ): # check whether max force is too large. if so, go back in time and reduce step size nonlocal dt, ctime maxF = np.amax(ForceAll) if (dt > min_dt) and (maxF * dt > limit_f_times_dt): # du too large! relax_ratio = limit_f_times_dt / maxF / dt # we may contract dt by this ratio. but to be efficient, we don't contract that much dt = max((0.3 * relax_ratio + 0.45) * dt, min_dt) print('Reducing dt and recompute') return True else: return False steps_attempted = 0 while ctime <= totalTime: print('t = %f, dt = %f' % (ctime, dt)) steps_attempted += 1 mapConsBackup = mapCons.copy() uProjected = u.copy() # step 1: predictor qNew, ForceAll = objfunBW(q0, uProjected) if checkMaxAndHackTimeIfNecessary(): continue # step 2: corrector changeMade = False # flag to identify if another step is needed for c in range(nv): xPos = qNew[2 * c] yPos = qNew[2 * c + 1] boundaryY = slopeWall(xPos) * xPos if (not mapCons[2 * c + 1]) and yPos < boundaryY: print("Adding constraint @ %d" % c) mapCons[2 * c + 1] = 1 uProjected[2 * c] = (qNew[2 * c] - q0[2 * c]) / dt uProjected[2 * c + 1] = (qNew[2 * c + 1] - q0[2 * c + 1]) / dt changeMade = True # detect and delete constrained dof for c in range(nv): xPos = qNew[2 * c] yPos = qNew[2 * c + 1] boundaryY = slopeWall(xPos) * xPos # Delete unnecessary constraints if mapCons[2 * c + 1]: fReaction = ForceAll[2 * c:2 * c + 2] fNormal = np.dot(fReaction, nWall(xPos)) # Based on reaction force, release the constraint if fNormal <= 0 and yPos >= boundaryY - 2e-6: # reaction force is negative print("Removing constraint @ %d" % c) mapCons[2 * c + 1] = 0 # unconstrain it changeMade = True if changeMade: qNew, ForceAll = objfunBW(q0, uProjected) if checkMaxAndHackTimeIfNecessary(): mapCons = mapConsBackup continue ctime += dt u = (qNew - q0) / dt # Update x0 q0 = qNew output = {'time': ctime, 'data': q0.tolist()} outputData.append(output) relax_ratio = limit_f_times_dt / np.amax(ForceAll) / dt if (dt < max_dt) and (relax_ratio > 1): dt = min((0.6 * relax_ratio + 0.4) * dt, max_dt) print('Increasing dt') print('Steps attempted: %d' % steps_attempted) print('Steps succeeded: %d' % (len(outputData) - 1)) return { 'meta': { 'radius': r0, 'closed': True, 'ground': True, 'groundAngle': math.degrees(thetaNormal) - 90 }, 'frames': outputData }