def main(scenarios, sim_name, headless, num_episodes, seed):
    agent_spec = AgentSpec(
        interface=AgentInterface.from_type(AgentType.Tracker, max_episode_steps=None),
        agent_builder=TrackingAgent,
    )

    env = gym.make(
        "smarts.env:hiway-v0",
        scenarios=scenarios,
        agent_specs={AGENT_ID: agent_spec},
        sim_name=sim_name,
        headless=headless,
        visdom=False,
        fixed_timestep_sec=0.1,
        sumo_headless=True,
        seed=seed,
        # envision_record_data_replay_path="./data_replay",
    )

    for episode in episodes(n=num_episodes):
        agent = agent_spec.build_agent()
        observations = env.reset()
        episode.record_scenario(env.scenario_log)

        dones = {"__all__": False}
        while not dones["__all__"]:
            agent_obs = observations[AGENT_ID]
            agent_action = agent.act(agent_obs)
            observations, rewards, dones, infos = env.step({AGENT_ID: agent_action})
            episode.record_step(observations, rewards, dones, infos)

    env.close()
Ejemplo n.º 2
0
def test_graceful_interrupt(monkeypatch):
    """SMARTS should only throw a KeyboardInterript exception."""

    agent_spec = AgentSpec(
        interface=AgentInterface.from_type(AgentType.Laner),
        agent_builder=lambda: Agent.from_function(lambda _: "keep_lane"),
    )
    agent = agent_spec.build_agent()
    env = build_env(agent_spec)

    with pytest.raises(KeyboardInterrupt):
        obs = env.reset()

        # To simulate a user interrupting the sim (e.g. ctrl-c). We just need to
        # hook in to some function that SMARTS calls internally (like this one).
        with mock.patch(
            "smarts.core.sensors.Sensors.observe", side_effect=KeyboardInterrupt
        ):
            for episode in range(10):
                obs, _, _, _ = env.step({AGENT_ID: agent.act(obs)})

        assert episode == 0, "SMARTS should have been interrupted, ending early"

    with pytest.raises(SMARTSNotSetupError):
        env.step({AGENT_ID: agent.act(obs)})
Ejemplo n.º 3
0
def main(scenarios, headless, num_episodes, max_episode_steps=None):
    agent_spec = AgentSpec(
        interface=AgentInterface.from_type(
            AgentType.LanerWithSpeed, max_episode_steps=max_episode_steps
        ),
        agent_builder=ChaseViaPointsAgent,
    )

    env = gym.make(
        "smarts.env:hiway-v0",
        scenarios=scenarios,
        agent_specs={"SingleAgent": agent_spec},
        headless=headless,
        sumo_headless=True,
    )

    # Convert `env.step()` and `env.reset()` from multi-agent interface to
    # single-agent interface.
    env = SingleAgent(env=env)

    for episode in episodes(n=num_episodes):
        agent = agent_spec.build_agent()
        observation = env.reset()
        episode.record_scenario(env.scenario_log)

        done = False
        while not done:
            agent_action = agent.act(observation)
            observation, reward, done, info = env.step(agent_action)
            episode.record_step(observation, reward, done, info)

    env.close()
Ejemplo n.º 4
0
def test_building_agent_with_tuple_params():
    agent_spec = AgentSpec(
        agent_params=(32, 41),
        agent_builder=lambda x, y: Agent.from_function(lambda _: (x, y)),
    )

    agent = agent_spec.build_agent()
    assert agent.act("dummy observation") == (32, 41)
Ejemplo n.º 5
0
def train(training_scenarios, evaluation_scenarios, sim_name, headless,
          num_episodes, seed):
    agent_params = {"input_dims": 4, "hidden_dims": 7, "output_dims": 3}
    agent_spec = AgentSpec(
        interface=AgentInterface.from_type(AgentType.Standard,
                                           max_episode_steps=5000),
        agent_params=agent_params,
        agent_builder=PyTorchAgent,
        observation_adapter=observation_adapter,
    )

    env = gym.make(
        "smarts.env:hiway-v0",
        scenarios=training_scenarios,
        agent_specs={AGENT_ID: agent_spec},
        sim_name=sim_name,
        headless=headless,
        fixed_timestep_sec=0.1,
        seed=seed,
    )

    steps = 0
    for episode in episodes(n=num_episodes):
        agent = agent_spec.build_agent()
        observations = env.reset()
        episode.record_scenario(env.scenario_log)

        dones = {"__all__": False}
        while not dones["__all__"]:
            agent_obs = observations[AGENT_ID]
            agent_action = agent.act(agent_obs)
            observations, rewards, dones, infos = env.step(
                {AGENT_ID: agent_action})
            episode.record_step(observations, rewards, dones, infos)
            steps += 1

            if steps % 500 == 0:
                print("Evaluating agent")

                # We construct an evaluation agent based on the saved
                # state of the agent in training.
                model_path = tempfile.mktemp()
                agent.save(model_path)

                eval_agent_spec = agent_spec.replace(
                    agent_params=dict(agent_params, model_path=model_path))

                # Remove the call to ray.wait if you want evaluation to run
                # in parallel with training
                ray.wait([
                    evaluate.remote(eval_agent_spec, evaluation_scenarios,
                                    headless, seed)
                ])

    env.close()
Ejemplo n.º 6
0
def test_building_agent_with_dict_params():
    agent_spec = AgentSpec(
        agent_params={
            "y": 2,
            "x": 1
        },
        agent_builder=lambda x, y: Agent.from_function(lambda _: x / y),
    )

    agent = agent_spec.build_agent()
    assert agent.act("dummy observation") == 1 / 2
Ejemplo n.º 7
0
def test_graceful_shutdown():
    """SMARTS should not throw any exceptions when shutdown."""
    agent_spec = AgentSpec(
        interface=AgentInterface.from_type(AgentType.Laner),
        agent_builder=lambda: Agent.from_function(lambda _: "keep_lane"),
    )
    env = build_env(agent_spec)
    agent = agent_spec.build_agent()
    obs = env.reset()
    for _ in range(10):
        obs = env.step({AGENT_ID: agent.act(obs)})

    env.close()
Ejemplo n.º 8
0
def entrypoint(
    gains={
        "theta": 3.0,
        "position": 4.0,
        "obstacle": 3.0,
        "u_accel": 0.1,
        "u_yaw_rate": 1.0,
        "terminal": 0.01,
        "impatience": 0.01,
        "speed": 0.01,
        "rate": 1,
    },
    debug=False,
    aggressiveness=0,
    max_episode_steps=None,
):
    from .agent import OpEnAgent

    return AgentSpec(
        interface=AgentInterface(
            action=ActionSpaceType.Trajectory,
            waypoints=True,
            neighborhood_vehicles=True,
            max_episode_steps=max_episode_steps,
        ),
        agent_params={
            "gains": gains,
            "debug": debug,
        },
        agent_builder=OpEnAgent,
    )
Ejemplo n.º 9
0
def main(scenario):
    scenario_path = Path(scenario).absolute()
    agent_mission_count = Scenario.discover_agent_missions_count(scenario_path)

    assert agent_mission_count > 0, "agent mission count should larger than 0"

    agent_ids = [f"AGENT-{i}" for i in range(agent_mission_count)]

    agent_specs = {
        agent_id: AgentSpec(
            interface=AgentInterface.from_type(AgentType.Laner, max_episode_steps=None),
            agent_builder=RuleBasedAgent,
        )
        for agent_id in agent_ids
    }

    agents = {aid: agent_spec.build_agent() for aid, agent_spec in agent_specs.items()}

    env = HiWayEnv(scenarios=[scenario_path], agent_specs=agent_specs)

    while True:
        observations = env.reset()
        done = False
        while not done:
            agent_ids = list(observations.keys())
            actions = {aid: agents[aid].act(observations[aid]) for aid in agent_ids}
            observations, _, dones, _ = env.step(actions)
            done = dones["__all__"]
Ejemplo n.º 10
0
def entrypoint(
    goal_is_nearby_threshold=40,
    lane_end_threshold=51,
    lane_crash_distance_threshold=6,
    lane_crash_ttc_threshold=2,
    intersection_crash_distance_threshold=6,
    intersection_crash_ttc_threshold=5,
    target_speed=15,
    lane_change_speed=12.5,
):
    with pkg_resources.path(rl_agent, "checkpoint") as checkpoint_path:
        return AgentSpec(
            interface=agent_interface,
            observation_adapter=get_observation_adapter(
                goal_is_nearby_threshold=goal_is_nearby_threshold,
                lane_end_threshold=lane_end_threshold,
                lane_crash_distance_threshold=lane_crash_distance_threshold,
                lane_crash_ttc_threshold=lane_crash_ttc_threshold,
                intersection_crash_distance_threshold=
                intersection_crash_distance_threshold,
                intersection_crash_ttc_threshold=
                intersection_crash_ttc_threshold,
            ),
            action_adapter=get_action_adapter(
                target_speed=target_speed,
                lane_change_speed=lane_change_speed,
            ),
            agent_builder=lambda: RLAgent(
                load_path=str((checkpoint_path / "checkpoint").absolute()),
                policy_name="default_policy",
                observation_space=OBSERVATION_SPACE,
                action_space=ACTION_SPACE,
            ),
        )
Ejemplo n.º 11
0
def _make_agent_specs(num_agent):
    agent_specs = {
        "AGENT_"
        + str(agent_id): AgentSpec(
            interface=AgentInterface(
                rgb=RGB(),
                action=ActionSpaceType.Lane,
            ),
            agent_builder=lambda: Agent.from_function(lambda _: "keep_lane"),
            observation_adapter=lambda obs: obs.top_down_rgb.data,
            reward_adapter=lambda obs, reward: reward,
            info_adapter=lambda obs, reward, info: info["score"],
        )
        for agent_id in range(num_agent)
    }

    obs_space = gym.spaces.Dict(
        {
            "AGENT_"
            + str(agent_id): gym.spaces.Box(
                low=0,
                high=255,
                shape=(
                    agent_specs["AGENT_" + str(agent_id)].interface.rgb.width,
                    agent_specs["AGENT_" + str(agent_id)].interface.rgb.height,
                    3,
                ),
                dtype=np.uint8,
            )
            for agent_id in range(num_agent)
        }
    )

    return agent_specs, obs_space
Ejemplo n.º 12
0
def replay_entrypoint(
    save_directory,
    id,
    wrapped_agent_locator,
    wrapped_agent_params=None,
    read=False,
):
    if wrapped_agent_params is None:
        wrapped_agent_params = {}
    from .replay_agent import ReplayAgent

    internal_spec = make(wrapped_agent_locator, **wrapped_agent_params)
    global social_index
    global replay_save_dir
    global replay_read
    spec = AgentSpec(
        interface=internal_spec.interface,
        agent_params={
            "save_directory": replay_save_dir,
            "id": f"{id}_{social_index}",
            "internal_spec": internal_spec,
            "wrapped_agent_params": wrapped_agent_params,
            "read": replay_read,
        },
        agent_builder=ReplayAgent,
    )
    social_index += 1
    return spec
def env_and_spec(action,
                 agent_type,
                 max_episode_steps,
                 scenarios,
                 seed=42,
                 agent_id="Agent-006"):
    class Policy(Agent):
        def act(self, obs):
            return action

    agent_spec = AgentSpec(
        interface=AgentInterface.from_type(
            agent_type, max_episode_steps=max_episode_steps),
        agent_builder=Policy,
    )
    env = gym.make(
        "smarts.env:hiway-v0",
        scenarios=scenarios,
        agent_specs={agent_id: agent_spec},
        headless=True,
        visdom=False,
        fixed_timestep_sec=TIMESTEP_SEC,
        sumo_headless=True,
        seed=seed,
    )

    return (env, agent_spec)
Ejemplo n.º 14
0
def run_experiment(log_path, experiment_name, training_iteration=100):
    model_path = Path(__file__).parent / "model"
    agent_spec = AgentSpec(
        interface=AgentInterface.from_type(AgentType.Standard,
                                           max_episode_steps=5000),
        policy=RLlibTFSavedModelAgent(
            model_path.absolute(),
            OBSERVATION_SPACE,
        ),
        observation_adapter=observation_adapter,
        reward_adapter=reward_adapter,
        action_adapter=action_adapter,
    )

    rllib_policies = {
        "policy": (
            None,
            OBSERVATION_SPACE,
            ACTION_SPACE,
            {
                "model": {
                    "custom_model": TrainingModel.NAME
                }
            },
        )
    }

    scenario_path = Path(__file__).parent / "../../scenarios/loop"
    scenario_path = str(scenario_path.absolute())

    tune_confg = {
        "env": RLlibHiWayEnv,
        "env_config": {
            "scenarios": [scenario_path],
            "seed": 42,
            "headless": True,
            "agent_specs": {
                "Agent-007": agent_spec
            },
        },
        "multiagent": {
            "policies": rllib_policies,
            "policy_mapping_fn": lambda _: "policy",
        },
        "log_level": "WARN",
        "num_workers": multiprocessing.cpu_count() - 1,
        "horizon": HORIZON,
    }

    analysis = tune.run(
        "PPO",
        name=experiment_name,
        stop={"training_iteration": training_iteration},
        max_failures=10,
        local_dir=log_path,
        config=tune_confg,
    )

    return analysis
def agent_spec():
    return AgentSpec(
        interface=AgentInterface.from_type(
            AgentType.TrajectoryInterpolator, neighborhood_vehicles=True
        ),
        agent_builder=WithTimeTrajectoryAgent,
        agent_params=None,
    )
Ejemplo n.º 16
0
def klws_entrypoint(speed):
    from .keep_left_with_speed_agent import KeepLeftWithSpeedAgent

    return AgentSpec(
        interface=AgentInterface.from_type(AgentType.LanerWithSpeed,
                                           max_episode_steps=20000),
        agent_params={"speed": speed * 0.01},
        agent_builder=KeepLeftWithSpeedAgent,
    )
Ejemplo n.º 17
0
def human_keyboard_entrypoint(*arg, **kwargs):
    from .human_in_the_loop import HumanKeyboardAgent

    spec = AgentSpec(
        interface=AgentInterface.from_type(
            AgentType.StandardWithAbsoluteSteering, max_episode_steps=3000),
        agent_builder=HumanKeyboardAgent,
    )
    return spec
        def on_trigger(ctx: Dict[str, Any]):
            # Define agent specs to be assigned
            agent_spec = AgentSpec(
                interface=AgentInterface(waypoints=True, action=ActionSpaceType.Lane),
                agent_builder=BasicAgent,
            )

            # Select a random sample from candidates
            k = ctx.get("vehicles_to_replace_randomly", 0)
            if k <= 0:
                logger.warning(
                    "default (0) or negative value specified for replacement. Replacing all valid vehicle candidates."
                )
                sample = ctx["vehicle_candidates"]
            else:
                logger.info(
                    f"Choosing {k} vehicles randomly from {len(ctx['vehicle_candidates'])} valid vehicle candidates."
                )
                sample = random.sample(ctx["vehicle_candidates"], k)
            assert len(sample) != 0

            for veh_id in sample:
                # Map selected vehicles to agent ids & specs
                agent_id = f"agent-{veh_id}"
                ctx["agents"][agent_id] = agent_spec.build_agent()

                # Create missions based on current state and traffic history
                positional, traverse = scenario.create_dynamic_traffic_history_mission(
                    veh_id, ctx["elapsed_sim_time"], ctx["positional_radius"]
                )

                # Take control of vehicles immediately
                try:
                    # Try to assign a PositionalGoal at the last recorded timestep
                    smarts.add_agent_and_switch_control(
                        veh_id, agent_id, agent_spec.interface, positional
                    )
                except PlanningError:
                    logger.warning(
                        f"Unable to create PositionalGoal for vehicle {veh_id}, falling back to TraverseGoal"
                    )
                    smarts.add_agent_and_switch_control(
                        veh_id, agent_id, agent_spec.interface, traverse
                    )
Ejemplo n.º 19
0
def agent_spec():
    class KeepLaneAgent(Agent):
        def act(self, obs):
            return "keep_lane"

    return AgentSpec(
        interface=AgentInterface.from_type(AgentType.Laner,
                                           max_episode_steps=MAX_STEPS),
        agent_builder=KeepLaneAgent,
    )
Ejemplo n.º 20
0
def entrypoint():
    with pkg_resources.path(cross_rl_agent, "models") as model_path:
        return AgentSpec(
            interface=cross_interface,
            observation_adapter=observation_adapter,
            action_adapter=action_adapter,
            agent_builder=lambda: RLAgent(
                load_path=str(model_path) + "/",
                policy_name="Soc_Mt_TD3Network",
            ),
        )
Ejemplo n.º 21
0
def prepare_test_agent_and_environment(
    required_interface: Dict[str, Any],
    action_adapter: Callable = lambda action: action,
    info_adapter: Callable = lambda observation, reward, info: info,
    observation_adapter: Callable = lambda observation: observation,
    reward_adapter: Callable = lambda _, reward: reward,
    headless: bool = True,
) -> Tuple[Agent, UltraEnv]:
    if "waypoints" not in required_interface:
        required_interface["waypoints"] = Waypoints(lookahead=20)
    if "neighborhood_vehicles" not in required_interface:
        required_interface["neighborhood_vehicles"] = NeighborhoodVehicles(
            radius=200)
    if "action" not in required_interface:
        required_interface["action"] = ActionSpaceType.Lane

    agent_spec = AgentSpec(
        interface=AgentInterface(**required_interface),
        agent_builder=RandomAgent,
        agent_params={"action_type": required_interface["action"]},
        action_adapter=action_adapter,
        info_adapter=info_adapter,
        observation_adapter=observation_adapter,
        reward_adapter=reward_adapter,
    )
    agent = agent_spec.build_agent()

    environment = gym.make(
        "ultra.env:ultra-v0",
        agent_specs={AGENT_ID: agent_spec},
        scenario_info=("00", "easy"),
        headless=headless,
        timestep_sec=TIMESTEP_SEC,
        seed=SEED,
    )

    return agent, environment
Ejemplo n.º 22
0
def gen_config(**kwargs):
    scenario_path = Path(kwargs["scenario"]).absolute()
    agent_missions_count = Scenario.discover_agent_missions_count(
        scenario_path)
    if agent_missions_count == 0:
        agent_ids = ["default_policy"]
    else:
        agent_ids = [f"AGENT-{i}" for i in range(agent_missions_count)]

    config = load_config(kwargs["config_file"],
                         mode=kwargs.get("mode", "training"))
    agents = {agent_id: AgentSpec(**config["agent"]) for agent_id in agent_ids}

    config["env_config"].update({
        "seed": 42,
        "scenarios": [str(scenario_path)],
        "headless": kwargs["headless"],
        "agent_specs": agents,
    })

    obs_space, act_space = config["policy"][1:3]
    tune_config = config["run"]["config"]

    if kwargs["paradigm"] == "centralized":
        config["env_config"].update({
            "obs_space":
            gym.spaces.Tuple([obs_space] * agent_missions_count),
            "act_space":
            gym.spaces.Tuple([act_space] * agent_missions_count),
            "groups": {
                "group": agent_ids
            },
        })
        tune_config.update(config["policy"][-1])
    else:
        policies = {}
        for k in agents:
            policies[k] = config["policy"][:-1] + ({
                **config["policy"][-1], "agent_id":
                k
            }, )
        tune_config.update({
            "multiagent": {
                "policies": policies,
                "policy_mapping_fn": lambda agent_id: agent_id,
            }
        })

    return config
Ejemplo n.º 23
0
def agent_spec(max_steps_per_episode):
    return AgentSpec(
        interface=AgentInterface(
            drivable_area_grid_map=True,
            ogm=True,
            rgb=True,
            lidar=True,
            waypoints=True,
            max_episode_steps=max_steps_per_episode,
            debug=True,
            neighborhood_vehicles=True,
            action=ActionSpaceType.Lane,
        ),
        agent_builder=lambda: Agent.from_function(lambda _: "keep_lane"),
    )
Ejemplo n.º 24
0
def agent_specs():
    def observation_adapter(env_observation):
        return env_observation.top_down_rgb.data

    return {
        "AGENT_" + agent_id: AgentSpec(
            interface=AgentInterface(
                rgb=RGB(),
                action=ActionSpaceType.Lane,
            ),
            agent_builder=lambda: Agent.from_function(lambda _: "keep_lane"),
            observation_adapter=observation_adapter,
        )
        for agent_id in ["001", "002"]
    }
Ejemplo n.º 25
0
def _make_agent_specs(topdown_rgb):
    if topdown_rgb == "rgb":
        rgb = RGB()
    elif topdown_rgb == "false":
        rgb = False

    return {
        "AGENT_" + agent_id: AgentSpec(
            interface=AgentInterface(
                rgb=rgb,
                action=ActionSpaceType.Lane,
            ),
            agent_builder=lambda: Agent.from_function(lambda _: "keep_lane"),
        )
        for agent_id in ["001", "002"]
    }
Ejemplo n.º 26
0
def agent_specs():
    return {
        "Agent_"
        + agent_id: AgentSpec(
            interface=AgentInterface(
                rgb=RGB(width=256, height=256, resolution=50 / 256),
                action=ActionSpaceType.Lane,
                max_episode_steps=3,
            ),
            agent_builder=lambda: Agent.from_function(lambda _: "keep_lane"),
            observation_adapter=lambda obs: obs.top_down_rgb.data,
            reward_adapter=lambda obs, reward: reward,
            info_adapter=lambda obs, reward, info: info["score"],
        )
        for agent_id in ["1", "2"]
    }
Ejemplo n.º 27
0
def agent_spec():
    return AgentSpec(
        interface=AgentInterface(
            road_waypoints=RoadWaypoints(40),
            neighborhood_vehicles=NeighborhoodVehicles(
                radius=max(MAP_WIDTH * MAP_RESOLUTION, MAP_HEIGHT *
                           MAP_RESOLUTION) * 0.5),
            drivable_area_grid_map=DrivableAreaGridMap(
                width=MAP_WIDTH, height=MAP_HEIGHT, resolution=MAP_RESOLUTION),
            ogm=OGM(width=MAP_WIDTH,
                    height=MAP_HEIGHT,
                    resolution=MAP_RESOLUTION),
            rgb=RGB(width=MAP_WIDTH,
                    height=MAP_HEIGHT,
                    resolution=MAP_RESOLUTION),
            action=ActionSpaceType.Lane,
        ),
        agent_builder=lambda: Agent.from_function(lambda _: "keep_lane"),
    )
Ejemplo n.º 28
0
def env_and_spec(scenarios, seed, headless=True, max_episode_steps=None):
    agent_spec = AgentSpec(
        interface=AgentInterface.from_type(
            AgentType.Laner, max_episode_steps=max_episode_steps),
        agent_builder=KeepLaneAgent,
    )

    env = gym.make(
        "smarts.env:hiway-v0",
        scenarios=scenarios,
        agent_specs={AGENT_ID: agent_spec},
        sim_name=None,
        headless=headless,
        visdom=False,
        timestep_sec=0.1,
        sumo_headless=True,
        seed=seed,
    )
    return env, agent_spec
Ejemplo n.º 29
0
def _make_agent_specs(intrfcs):
    base_intrfc = AgentInterface(
        action=ActionSpaceType.Lane,
        accelerometer=False,
        drivable_area_grid_map=False,
        lidar=False,
        neighborhood_vehicles=False,
        ogm=False,
        rgb=False,
        waypoints=False,
    )

    return {
        "AGENT_"
        + agent_id: AgentSpec(
            interface=dataclasses.replace(base_intrfc, **intrfc),
            agent_builder=lambda: Agent.from_function(lambda _: "keep_lane"),
        )
        for agent_id, intrfc in zip(["001", "002"], intrfcs)
    }
Ejemplo n.º 30
0
def agent_spec():
    def observation_adapter(env_observation):
        ego = env_observation.ego_vehicle_state
        waypoint_paths = env_observation.waypoint_paths
        wps = [path[0] for path in waypoint_paths]

        # distance of vehicle from center of lane
        closest_wp = min(wps, key=lambda wp: wp.dist_to(ego.position))
        signed_dist_from_center = closest_wp.signed_lateral_error(ego.position)
        lane_hwidth = closest_wp.lane_width * 0.5
        norm_dist_from_center = signed_dist_from_center / lane_hwidth

        return {OBSERVATION_EXPECTED: norm_dist_from_center}

    def reward_adapter(env_obs, env_reward):
        # reward is currently the delta in distance travelled by this agent.
        # We want to make sure that this is infact a delta and not total distance
        # travelled since this bug has appeared a few times.
        #
        # The way to verify this is by making sure the reward does not grow without bounds.
        assert -3 < env_reward < 3

        # Return a constant reward to test reward adapter call.
        return REWARD_EXPECTED

    def info_adapter(env_obs, env_reward, env_info):
        env_info[INFO_EXTRA_KEY] = "blah"
        return env_info

    def action_adapter(model_action):
        # We convert the action command to the required lower case.
        return model_action.lower()

    return AgentSpec(
        interface=AgentInterface.from_type(AgentType.Laner, max_episode_steps=100),
        agent_builder=lambda: Agent.from_function(lambda _: ACTION_TO_BE_ADAPTED),
        observation_adapter=observation_adapter,
        reward_adapter=reward_adapter,
        action_adapter=action_adapter,
        info_adapter=info_adapter,
    )