def svm_hmp_2_feature_plot(): print('hazzah!') shared_file_path = '/home/jlynch/gsoc2013/data/Stool.0.03.subsample.0.03.filter.shared' design_file_path = '/home/jlynch/gsoc2013/data/Stool.0.03.subsample.0.03.filter.mix.design' shared_data = mothur_files.load_shared_file(shared_file_path) design_data = mothur_files.load_design_file(design_file_path) otu1 = 'Otu29878' otu2 = 'Otu29552' # where are Otu29741 and Otu29678 n_otu1 = shared_data.otu_column_names.index(otu1) n_otu2 = shared_data.otu_column_names.index(otu2) print('{} is on column {}'.format(otu1, n_otu1)) print('{} is on column {}'.format(otu2, n_otu2)) print('shape of design_data.class_number_for_row {}'.format( design_data.class_number_for_row.shape)) class_zero = design_data.class_number_for_row == 2.0 class_one = design_data.class_number_for_row == 1.0 print('class zero count: {}'.format(np.sum(class_zero))) print('class one count: {}'.format(np.sum(class_one))) two_labels = np.logical_or(class_zero, class_one) print('shape of two_labels: {}'.format(two_labels.shape)) label_index = np.arange(design_data.class_number_for_row.shape[0]) reduced_label_index = label_index[two_labels[:, 0]] print('reduced_label_index: {}'.format(reduced_label_index)) two_labels_otu_frequency = shared_data.otu_frequency[ reduced_label_index, :] print('shape of two_labels_otu_frequency: {}'.format( two_labels_otu_frequency.shape)) reduced_otu_frequency = two_labels_otu_frequency[:, [n_otu1, n_otu2]] print('shaped of reduced_otu_frequency: {}'.format( reduced_otu_frequency.shape)) #print('reduced_otu_frequency:\n{}'.format(reduced_otu_frequency)) scaler = sklearn.preprocessing.StandardScaler() # the scaler returns a copy by default #X = scaler.fit_transform(reduced_otu_frequency) #exit() # the next line is pretty good # smo.smo(reduced_otu_frequency, design_data.class_number_for_row[two_labels], 0.5) smo.smo(reduced_otu_frequency, design_data.class_number_for_row[two_labels], 0.5) pl.xlabel(otu1) pl.ylabel(otu2) pl.gca().set_xticklabels([]) pl.gca().set_yticklabels([]) pl.show()
def svm_hmp_2_feature_plot(): print('hazzah!') shared_file_path = '/home/jlynch/gsoc2013/data/Stool.0.03.subsample.0.03.filter.shared'; design_file_path = '/home/jlynch/gsoc2013/data/Stool.0.03.subsample.0.03.filter.mix.design'; shared_data = mothur_files.load_shared_file(shared_file_path) design_data = mothur_files.load_design_file(design_file_path) otu1 = 'Otu29878' otu2 = 'Otu29552' # where are Otu29741 and Otu29678 n_otu1 = shared_data.otu_column_names.index(otu1) n_otu2 = shared_data.otu_column_names.index(otu2) print('{} is on column {}'.format(otu1, n_otu1)) print('{} is on column {}'.format(otu2, n_otu2)) print('shape of design_data.class_number_for_row {}'.format(design_data.class_number_for_row.shape)) class_zero = design_data.class_number_for_row == 2.0 class_one = design_data.class_number_for_row == 1.0 print('class zero count: {}'.format(np.sum(class_zero))) print('class one count: {}'.format(np.sum(class_one))) two_labels = np.logical_or(class_zero, class_one) print('shape of two_labels: {}'.format(two_labels.shape)); label_index = np.arange(design_data.class_number_for_row.shape[0]) reduced_label_index = label_index[two_labels[:,0]] print('reduced_label_index: {}'.format(reduced_label_index)) two_labels_otu_frequency = shared_data.otu_frequency[reduced_label_index,:] print('shape of two_labels_otu_frequency: {}'.format(two_labels_otu_frequency.shape)) reduced_otu_frequency = two_labels_otu_frequency[:,[n_otu1, n_otu2]] print('shaped of reduced_otu_frequency: {}'.format(reduced_otu_frequency.shape)) #print('reduced_otu_frequency:\n{}'.format(reduced_otu_frequency)) scaler = sklearn.preprocessing.StandardScaler() # the scaler returns a copy by default #X = scaler.fit_transform(reduced_otu_frequency) #exit() # the next line is pretty good # smo.smo(reduced_otu_frequency, design_data.class_number_for_row[two_labels], 0.5) smo.smo(reduced_otu_frequency, design_data.class_number_for_row[two_labels], 0.5) pl.xlabel(otu1) pl.ylabel(otu2) pl.gca().set_xticklabels([]) pl.gca().set_yticklabels([]) pl.show()
def _compute_multipliers(self, X, y): tol=0.001 passes=4 s=smo.smo(self._c, tol, passes, X, y, self._kernel,self.path) res=s.opt() #print res s.saveM(self.id)
def _compute_multipliers(self, X, y): tol = 0.001 passes = 4 s = smo.smo(self._c, tol, passes, X, y, self._kernel, self.path) res = s.opt() #print res s.saveM(self.id)
def test_smo(): print('hazzah!') # here is some trivial data x = np.array([[1.0, 3.0], [2.0, 5.0], [3.0, 8.0], [6.0, 4.0], [6.0, 7.0], [7.0, 8.0], [8.0, 4.0], [3.0, 6.0]]) labels = [] labels.append('blue') labels.append('blue') labels.append('blue') labels.append('blue') labels.append('green') labels.append('green') labels.append('green') labels.append('green') smo.smo(x, labels)