def copy_bands_to_file(src_file_path, dst_file_path, bands=None): # Get info from source product src_prod = ProductIO.readProduct(src_file_path) prod_name = src_prod.getName() prod_type = src_prod.getProductType() width = src_prod.getSceneRasterWidth() height = src_prod.getSceneRasterHeight() if bands is None: bands = src_prod.getBandNames() # Copy geocoding and selected bands from source to destination product dst_prod = Product(prod_name, prod_type, width, height) ProductUtils.copyGeoCoding(src_prod.getBandAt(0), dst_prod) for band in bands: r = ProductUtils.copyBand(band, src_prod, dst_prod, True) if r is None: src_prod.closeIO() raise RuntimeError(src_file_path + " does not contain band " + band) # Write destination product to disk ext = os.path.splitext(dst_file_path)[1] if ext == '.dim': file_type = 'BEAM_DIMAP' elif ext == '.nc': file_type = 'NetCDF-CF' elif ext == '.tif': file_type = 'GeoTIFF-BigTIFF' else: file_type = 'GeoTIFF-BigTIFF' ProductIO.writeProduct(dst_prod, dst_file_path, file_type) src_prod.closeIO() dst_prod.closeIO()
def do_vegetation_indices (source): print ('\tVegetation Indices ...') ## Input product and dimensions input_product = ProductIO.readProduct(source) width = input_product.getSceneRasterWidth() height = input_product.getSceneRasterHeight() product_name = input_product.getName() product_description = input_product.getDescription() product_band_names = input_product.getBandNames() GPF.getDefaultInstance().getOperatorSpiRegistry().loadOperatorSpis() ## input product red and nir bands b4 = input_product.getBand('B4') b8 = input_product.getBand('B8') ## output product (ndvi) new band output_product = Product('NDVI', 'NDVI', width, height) ProductUtils.copyGeoCoding(input_product, output_product) output_band = output_product.addBand('ndvi', ProductData.TYPE_FLOAT32) ## output writer output_product_writer = ProductIO.getProductWriter('BEAM-DIMAP') output_product.setProductWriter(output_product_writer) output_product.writeHeader(product_name + '_ndvi.dim') ## compute & save ndvi line by line red_row = numpy.zeros(width, dtype=numpy.float32) nir_row = numpy.zeros(width, dtype=numpy.float32) for y in xrange (height): red_row = b4.readPixels(0, y, width, 1, red_row) nir_row = b8.readPixels(0, y, width, 1, nir_row) ndvi = (nir_row - red_row)/(nir_row + red_row) output = output_band.writePixels(0, y, width, 1, ndvi) output_product.CloseIO() return output
#SVR training pipeline = make_pipeline( StandardScaler(), SVR(kernel='rbf', epsilon=0.105, C=250, gamma=2.8), ) SVRmodel = pipeline.fit(X, Y) # Predictfor validation data valX = X y_out = pipeline.predict(valX) ##--------------------------------------------------------------------------------- bandc11 = product.getBand('C11') bandc22 = product.getBand('C22') laiProduct = Product('LAI', 'LAI', width, height) laiBand = laiProduct.addBand('lai', ProductData.TYPE_FLOAT32) laiFlagsBand = laiProduct.addBand('lai_flags', ProductData.TYPE_UINT8) writer = ProductIO.getProductWriter('BEAM-DIMAP') ProductUtils.copyGeoCoding(product, laiProduct) ProductUtils.copyMetadata(product, laiProduct) ProductUtils.copyTiePointGrids(product, laiProduct) laiFlagCoding = FlagCoding('lai_flags') laiFlagCoding.addFlag("LAI_LOW", 1, "LAI below 0") laiFlagCoding.addFlag("LAI_HIGH", 2, "LAI above 5") group = laiProduct.getFlagCodingGroup() #print(dir(group)) group.add(laiFlagCoding)
import snappy from snappy import ProductIO from snappy import Product from snappy import ProductData from snappy import ProductUtils jpy = snappy.jpy if os.path.exists(file1): # Read sourceProduct and get information needed to create target product: sourceProduct = snappy.ProductIO.readProduct(file1) width = sourceProduct.getSceneRasterWidth() height = sourceProduct.getSceneRasterHeight() #Create target product: targetProduct = Product('FLH_Product', 'FLH_Type', width, height) targetBand = targetProduct.addBand('FLH', ProductData.TYPE_FLOAT32) ProductUtils.copyGeoCoding(sourceProduct, targetProduct) targetProduct.setProductWriter(ProductIO.getProductWriter('GeoTIFF')) # Use calibration operator - I've taken "org.esa.s1tbx.calibration.gpf.CalibrationOp" from the help window CalibrationOp = jpy.get_type("org.esa.s1tbx.calibration.gpf.CalibrationOp") CalOp = CalibrationOp() CalOp = CalibrationOp() CalOp.setSourceProduct(sourceProduct) CalOp.setParameter('doSomethng', True) targetProduct = CalOp.getTargetProduct() snappy.ProductIO.writeProduct(targetProduct, 'toFile.dim', 'BEAM-DIMAP') #### HERE I DO NOT KNOW HOW TO EXECUTE this operator
def create_product(self): from snappy import Product, ProductUtils, ProductIO, ProductData, String product = self.product ac_product = Product('L2h', 'L2h', self.width, self.height) writer = ProductIO.getProductWriter('BEAM-DIMAP') ac_product.setProductWriter(writer) ProductUtils.copyGeoCoding(product, ac_product) ProductUtils.copyMetadata(product, ac_product) ac_product.setStartTime(product.getStartTime()) ac_product.setEndTime(product.getEndTime()) # add metadata: ancillary data used for processing meta = jpy.get_type('org.esa.snap.core.datamodel.MetadataElement') att = jpy.get_type('org.esa.snap.core.datamodel.MetadataAttribute') # att(name=string,type=int), type: 41L->ascii; 12L->int32; att0 = att('AERONET file', ProductData.TYPE_ASCII) att0.setDataElems(self.aeronetfile) att1 = att('AOT', ProductData.TYPE_ASCII) att1.setDataElems(str(self.aot)) meta = meta('L2') meta.setName('Ancillary Data') meta.addAttribute(att0) meta.addAttribute(att1) ac_product.getMetadataRoot().addElement(meta) # add data # Water-leaving radiance + sunglint for iband in range(self.N): bname = "Lnw_g_" + self.band_names[iband] acband = ac_product.addBand(bname, ProductData.TYPE_FLOAT32) acband.setSpectralWavelength(self.wl[iband]) acband.setSpectralBandwidth(self.B[iband].getSpectralBandwidth()) acband.setModified(True) acband.setNoDataValue(np.nan) acband.setNoDataValueUsed(True) acband.setValidPixelExpression(bname + ' >= -1') ac_product.getBand(bname).setDescription( "Water-leaving plus sunglint normalized radiance (Lnw + Lg) in mW cm-2 sr-1 μm-1 at " + self.band_names[iband]) # Water-leaving radiance for iband in range(self.N): bname = "Lnw_" + self.band_names[iband] acband = ac_product.addBand(bname, ProductData.TYPE_FLOAT32) acband.setSpectralWavelength(self.wl[iband]) acband.setSpectralBandwidth(self.B[iband].getSpectralBandwidth()) acband.setModified(True) acband.setNoDataValue(np.nan) acband.setNoDataValueUsed(True) acband.setValidPixelExpression(bname + ' >= -1') ac_product.getBand(bname).setDescription( "Normalized water-leaving radiance in mW cm-2 sr-1 μm-1 at " + self.band_names[iband]) # Sunglint reflection factor # for iband in range(self.N): bname = "BRDFg" # + self.band_names[iband] acband = ac_product.addBand(bname, ProductData.TYPE_FLOAT32) # acband.setSpectralWavelength(self.wl[iband]) # acband.setSpectralBandwidth(self.b[iband].getSpectralBandwidth()) acband.setModified(True) acband.setNoDataValue(np.nan) acband.setNoDataValueUsed(True) acband.setValidPixelExpression(bname + ' >= 0') ac_product.getBand(bname).setDescription( "Glint reflection factor (BRDF) ") # + self.band_names[iband]) # Viewing geometry acband = ac_product.addBand("SZA", ProductData.TYPE_FLOAT32) acband.setModified(True) acband.setNoDataValue(np.nan) acband.setNoDataValueUsed(True) ac_product.getBand("SZA").setDescription("Solar zenith angle in deg.") acband = ac_product.addBand("VZA", ProductData.TYPE_FLOAT32) acband.setModified(True) acband.setNoDataValue(np.nan) acband.setNoDataValueUsed(True) ac_product.getBand("VZA").setDescription( "Mean viewing zenith angle in deg.") acband = ac_product.addBand("AZI", ProductData.TYPE_FLOAT32) acband.setModified(True) acband.setNoDataValue(np.nan) acband.setNoDataValueUsed(True) ac_product.getBand("AZI").setDescription( "Mean relative azimuth angle in deg.") ac_product.setAutoGrouping("Lnw:Lnw_g_") ac_product.writeHeader(String(self.outfile + ".dim")) self.l2_product = ac_product
def write_BalticP_AC_Product(product, baltic__product_path, sensor, data_dict, singleBand_dict=None): File = jpy.get_type('java.io.File') width = product.getSceneRasterWidth() height = product.getSceneRasterHeight() bandShape = (height, width) balticPACProduct = Product('balticPAC', 'balticPAC', width, height) balticPACProduct.setFileLocation(File(baltic__product_path)) ProductUtils.copyGeoCoding(product, balticPACProduct) ProductUtils.copyTiePointGrids(product, balticPACProduct) if (sensor == 'OLCI'): nbands = 21 band_name = ["Oa01_radiance"] for i in range(1, nbands): if (i < 9): band_name += ["Oa0" + str(i + 1) + "_radiance"] else: band_name += ["Oa" + str(i + 1) + "_radiance"] # Create empty bands for rhow, rhown, uncertainties for rhow for i in range(nbands): bsource = product.getBand(band_name[i]) # TOA radiance for key in data_dict.keys(): brtoa_name = key + "_" + str(i + 1) rtoaBand = balticPACProduct.addBand(brtoa_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rtoaBand) rtoaBand.setNoDataValue(np.nan) rtoaBand.setNoDataValueUsed(True) dataNames = [*data_dict.keys()] autoGroupingString = dataNames[0] for key in dataNames[1:]: autoGroupingString += ':' + key balticPACProduct.setAutoGrouping(autoGroupingString) if not singleBand_dict is None: for key in singleBand_dict.keys(): singleBand = balticPACProduct.addBand(key, ProductData.TYPE_FLOAT32) singleBand.setNoDataValue(np.nan) singleBand.setNoDataValueUsed(True) writer = ProductIO.getProductWriter('BEAM-DIMAP') balticPACProduct.setProductWriter(writer) balticPACProduct.writeHeader(baltic__product_path) writer.writeProductNodes(balticPACProduct, baltic__product_path) # set datarhow, rhown, uncertainties for rhow for key in data_dict.keys(): x = data_dict[key].get('data') if not x is None: for i in range(nbands): brtoa_name = key + "_" + str(i + 1) rtoaBand = balticPACProduct.getBand(brtoa_name) out = np.array(x[:, i]).reshape(bandShape) rtoaBand.writeRasterData( 0, 0, width, height, snp.ProductData.createInstance(np.float32(out)), ProgressMonitor.NULL) if not singleBand_dict is None: for key in singleBand_dict.keys(): x = singleBand_dict[key].get('data') if not x is None: singleBand = balticPACProduct.getBand(key) out = np.array(x).reshape(bandShape) singleBand.writeRasterData( 0, 0, width, height, snp.ProductData.createInstance(np.float32(out)), ProgressMonitor.NULL) # # Create flag coding # raycorFlagsBand = balticPACProduct.addBand('raycor_flags', ProductData.TYPE_UINT8) # raycorFlagCoding = FlagCoding('raycor_flags') # raycorFlagCoding.addFlag("testflag_1", 1, "Flag 1 for Rayleigh Correction") # raycorFlagCoding.addFlag("testflag_2", 2, "Flag 2 for Rayleigh Correction") # group = balticPACProduct.getFlagCodingGroup() # group.add(raycorFlagCoding) # raycorFlagsBand.setSampleCoding(raycorFlagCoding) balticPACProduct.closeIO()
sys.exit(1) print("Reading...") product = ProductIO.readProduct(sys.argv[1]) width = product.getSceneRasterWidth() height = product.getSceneRasterHeight() name = product.getName() desc = product.getDescription() band_names = product.getBandNames() print("Product: %s, %d x %d pixels, %s" % (name, width, height, desc)) print("Bands: %s" % (band_names)) b7 = product.getBand('radiance_7') b10 = product.getBand('radiance_10') ndviProduct = Product('NDVI', 'NDVI', width, height) ndviBand = ndviProduct.addBand('ndvi', ProductData.TYPE_FLOAT32) ndviBand.setNoDataValue(numpy.nan) ndviBand.setNoDataValueUsed(True) writer = ProductIO.getProductWriter('BEAM-DIMAP') ProductUtils.copyGeoCoding(product, ndviProduct) ndviProduct.setProductWriter(writer) ndviProduct.writeHeader(String('snappy_ndvi_with_masks_output.dim')) r7 = numpy.zeros(width, dtype=numpy.float32) r10 = numpy.zeros(width, dtype=numpy.float32) v7 = numpy.zeros(width, dtype=numpy.uint8)
product = ProductIO.readProduct(File) width = product.getSceneRasterWidth() height = product.getSceneRasterHeight() name = product.getName() description = product.getDescription() band_names = product.getBandNames() print("Product: %s, %s" % (name, description)) print("Raster size: %d x %d pixels" % (width, height)) print("Start time: " + str(product.getStartTime())) print("Description: %s" % description) print("End time: " + str(product.getEndTime())) print("Bands: %s" % (list(band_names))) KNNProduct = Product('KNN', 'KNN', width, height) KNNBand = KNNProduct.addBand('KNN', ProductData.TYPE_FLOAT32) KNNFlagsBand = KNNProduct.addBand('KNN_flags', ProductData.TYPE_UINT8) writer = ProductIO.getProductWriter('BEAM-DIMAP') ProductUtils.copyGeoCoding(product, KNNProduct) KNNFlagCoding = FlagCoding('KNN_flags') KNNFlagCoding.addFlag("1", 1, "KNN above 0") KNNFlagCoding.addFlag("2", 2, "KNN above 1") KNNFlagCoding.addFlag("3", 3, "KNN above 2") KNNFlagCoding.addFlag("4", 4, "KNN above 3") KNNFlagCoding.addFlag("5", 5, "KNN above 4") KNNFlagCoding.addFlag("6", 6, "KNN above 5") group = KNNProduct.getFlagCodingGroup() group.add(KNNFlagCoding)
for S2_SAFE in os.listdir('products'): #NDVI: NDVI_im = S2_SAFE.split(".")[0] + "_NDVI" NIR_im = S2_SAFE.split(".")[0] + "_NIR" os.system('mkdir checked_products/' + NDVI_im) os.system('mkdir checked_products/' + NIR_im) S2_product = ProductIO.readProduct('products/' + S2_SAFE + '/GRANULE/output.dim') band_names = S2_product.getBandNames() width = S2_product.getSceneRasterWidth() height = S2_product.getSceneRasterHeight() b4 = S2_product.getBand('B4') b8 = S2_product.getBand('B8') newProduct = Product('NDVI', 'NDVI', width, height) newBand = newProduct.addBand('ndvi', ProductData.TYPE_FLOAT32) writer = ProductIO.getProductWriter('BEAM-DIMAP') ProductUtils.copyGeoCoding(S2_product, newProduct) newProduct.setProductWriter(writer) newProduct.writeHeader('NDVI.dim') rb4 = np.zeros(width, dtype=np.float32) rb8 = np.zeros(width, dtype=np.float32) for y in range(height): rb4 = b4.readPixels(0, y, width, 1, rb4) rb8 = b8.readPixels(0, y, width, 1, rb8) NDVI = (rb8 - rb4) / (rb8 + rb4) newBand.writePixels(0, y, width, 1, NDVI) newProduct.closeIO()
def write_snappy_product(file_path, bands, product_name, geo_coding): try: (height, width) = bands[0]['band_data'].shape except AttributeError: raise RuntimeError(bands[0]['band_name'] + "contains no data.") product = Product(product_name, product_name, width, height) product.setSceneGeoCoding(geo_coding) # Ensure that output is saved in BEAM-DIMAP format, # otherwise writeHeader does not work. file_path = os.path.splitext(file_path)[0] + '.dim' # Bands have to be created before header is written # but header has to be written before band data is written. for b in bands: band = product.addBand(b['band_name'], ProductData.TYPE_FLOAT32) if 'description' in b.keys(): band.setDescription(b['description']) if 'unit' in b.keys(): band.setUnit(b['unit']) product.setProductWriter(ProductIO.getProductWriter('BEAM-DIMAP')) product.writeHeader(String(file_path)) for b in bands: band = product.getBand(b['band_name']) band.writePixels(0, 0, width, height, b['band_data'].astype(np.float32)) product.closeIO()
def main(args=sys.argv[1:]): if len(args) != 1: print("usage: raycorr-processor <SENSOR>") sys.exit(1) SENSOR = args[0] # SENSOR = 'OLCI' # SENSOR = 'MERIS' # PRODPATH = "C:\\Users\\carsten\\Dropbox\\Carsten\\SWProjects\\Rayleigh-Correction\\testdata\\" # AUXPATH = "C:\\Users\\carsten\\Dropbox\\Carsten\\Tagesordner\\20160104\\Rayleigh-Correction-Processor\\" # O3PATH="C:\\Users\\carsten\\Dropbox\\Carsten\\SWProjects\\Rayleigh-Correction\\raycorr\\" PRODPATH = "D:\\Dropbox\\Carsten\\SWProjects\\Rayleigh-Correction\\testdata\\" # AUXPATH = "D:\\Dropbox\\Carsten\\Tagesordner\\20160104\\Rayleigh-Correction-Processor\\" O3PATH="D:\\Dropbox\\Carsten\\SWProjects\\Rayleigh-Correction\\raycorr\\" DEMFactory = jpy.get_type('org.esa.snap.dem.dataio.DEMFactory') Resampling = jpy.get_type('org.esa.snap.core.dataop.resamp.Resampling') GeoPos = jpy.get_type('org.esa.snap.core.datamodel.GeoPos') if (SENSOR=='MERIS'): IN_FILE = PRODPATH+"subset_1_of_MER_RR__1PTACR20050713_094325_000002592039_00022_17611_0000.dim" OUT_FILE = PRODPATH+'Testprodukt1_MER_RR_20050713.dim' else: if (SENSOR=='OLCI'): IN_FILE = PRODPATH+'subset_3_of_S3A_OL_1_EFR____20160509T103945_20160509T104245_20160509T124907_0180_004_051_1979_SVL_O_NR_001.dim' OUT_FILE = PRODPATH+'Testproduct3_OL_1_EFR____20160509T103945.dim' else: print("Sensor ",SENSOR," not supported - exit") return file = IN_FILE # AUX_FILE = AUXPATH+'ADF\\MER_ATP_AXVACR20091026_144725_20021224_121445_20200101_000000' # adf = ADF(AUX_FILE) # ray_coeff_matrix = adf.ray_coeff_matrix # rayADF = readRayADF(AUX_FILE) # new_aux = OrderedDict() # new_aux['tau_ray'] = rayADF['tR'] # new_aux['theta'] = rayADF['theta'] # new_aux['ray_albedo_lut'] = rayADF['rayAlbLUT'] # new_aux['ray_coeff_matrix'] = ray_coeff_matrix # with open('raycorr_auxdata.json', 'w') as fp: # json.dumps(new_aux, fp, cls=JSONNumpyEncoder, indent=2) # fp.close() with open('../test/raycorr_auxdata.json', 'r') as fp: obj = json.load(fp, object_hook=json_as_numpy) # json_str = json.dumps(new_aux, cls=JSONNumpyEncoder, indent=2) # print(json_str) # obj = json.loads(json_str, object_hook=json_as_numpy) # rayADF = new_aux rayADF = obj ray_coeff_matrix=rayADF['ray_coeff_matrix'] print("Reading...") product = ProductIO.readProduct(file) width = product.getSceneRasterWidth() height = product.getSceneRasterHeight() name = product.getName() description = product.getDescription() band_names = product.getBandNames() print("Sensor: %s" % SENSOR) print("Product: %s, %s" % (name, description)) print("Raster size: %d x %d pixels" % (width, height)) print("Start time: " + str(product.getStartTime())) print("End time: " + str(product.getEndTime())) print("Bands: %s" % (list(band_names))) raycorProduct = Product('RayCorr', 'RayCorr', width, height) writer = ProductIO.getProductWriter('BEAM-DIMAP') raycorProduct.setProductWriter(writer) if (SENSOR == 'MERIS'): nbands = product.getNumBands() - 2 # the last 2 bands are l1flags and detector index; we don't need them band_name = ["radiance_1"] for i in range(1,nbands): band_name += ["radiance_" + str(i+1)] if (SENSOR == 'OLCI'): nbands = 21 band_name = ["Oa01_radiance"] sf_name = ["solar_flux_band_1"] for i in range(1,nbands): if (i < 9): band_name += ["Oa0" + str(i + 1) + "_radiance"] sf_name += ["solar_flux_band_" + str(i + 1)] else: band_name += ["Oa" + str(i + 1) + "_radiance"] sf_name += ["solar_flux_band_" + str(i + 1)] # Create TOA reflectance and Rayleig optical thickness bands for i in range(nbands): # bsource = product.getBandAt(i) bsource = product.getBand(band_name[i]) btoa_name = "rtoa_" + str(i + 1) toareflBand = raycorProduct.addBand(btoa_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, toareflBand) btaur_name = "taur_" + str(i + 1) taurBand = raycorProduct.addBand(btaur_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, taurBand) brhor_name = "rRay_" + str(i + 1) rhorBand = raycorProduct.addBand(brhor_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rhorBand) # Fourier Terms, during debugging only brhorF1_name = "rRayF1_" + str(i + 1) rhorF1Band = raycorProduct.addBand(brhorF1_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rhorF1Band) brhorF2_name = "rRayF2_" + str(i + 1) rhorF2Band = raycorProduct.addBand(brhorF2_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rhorF2Band) brhorF3_name = "rRayF3_" + str(i + 1) rhorF3Band = raycorProduct.addBand(brhorF3_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rhorF3Band) rayTransS_name = "transSRay_" + str(i + 1) rayTransSBand = raycorProduct.addBand(rayTransS_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rayTransSBand) rayTransV_name = "transVRay_" + str(i + 1) rayTransVBand = raycorProduct.addBand(rayTransV_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rayTransVBand) sARay_name = "sARay_" + str(i + 1) sARayBand = raycorProduct.addBand(sARay_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, sARayBand) rtoaR_name = "rtoaRay_" + str(i + 1) rtoaRBand = raycorProduct.addBand(rtoaR_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rtoaRBand) rBRR_name = "rBRR_" + str(i + 1) rBRRBand = raycorProduct.addBand(rBRR_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rBRRBand) spf_name = "sphericalAlbedoFactor_" + str(i + 1) spfBand = raycorProduct.addBand(spf_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, spfBand) # simple Rayleigh reflectance (Roland's formular) rRaySimple_name = "RayleighSimple_" + str(i + 1) rRaySimpleBand = raycorProduct.addBand(rRaySimple_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rRaySimpleBand) # gaseous absorption corrected TOA reflectances rho_ng_name = "rtoa_ng_" + str(i + 1) rho_ngBand = raycorProduct.addBand(rho_ng_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, rho_ngBand) # simple Rayleigh optical thickness, for debugging taurS_name = "taurS_" + str(i + 1) taurSBand = raycorProduct.addBand(taurS_name, ProductData.TYPE_FLOAT32) ProductUtils.copySpectralBandProperties(bsource, taurSBand) raycorProduct.setAutoGrouping( 'rtoa:taur:rRay:rRayF1:rRayF2:rRayF3:transSRay:transVRay:sARay:rtoaRay:rBRR:sphericalAlbedoFactor:RayleighSimple:rtoa_ng:taurS') airmassBand = raycorProduct.addBand('airmass', ProductData.TYPE_FLOAT32) azidiffBand = raycorProduct.addBand('azidiff', ProductData.TYPE_FLOAT32) altBand = raycorProduct.addBand('altitude', ProductData.TYPE_FLOAT32) # Create flag coding raycorFlagsBand = raycorProduct.addBand('raycor_flags', ProductData.TYPE_UINT8) raycorFlagCoding = FlagCoding('raycor_flags') raycorFlagCoding.addFlag("testflag_1", 1, "Flag 1 for Rayleigh Correction") raycorFlagCoding.addFlag("testflag_2", 2, "Flag 2 for Rayleigh Correction") group = raycorProduct.getFlagCodingGroup() group.add(raycorFlagCoding) raycorFlagsBand.setSampleCoding(raycorFlagCoding) # add geocoding and create the product on disk (meta data, empty bands) ProductUtils.copyGeoCoding(product, raycorProduct) #geocoding is copied when tie point grids are copied, ProductUtils.copyTiePointGrids(product, raycorProduct) raycorProduct.writeHeader(OUT_FILE) # Calculate and write toa reflectances and Rayleigh optical thickness # =================================================================== # some stuff needed to get the altitude from an external DEM; can be omitted if altitude is used from the product # resamplingMethod = 'NEAREST_NEIGHBOUR' # Resampling.NEAREST_NEIGHBOUR.getName() resamplingMethod = Resampling.NEAREST_NEIGHBOUR.getName() demName = 'GETASSE30' # alternative 'SRTM 3Sec' dem = DEMFactory.createElevationModel(demName, resamplingMethod) # constants AVO = 6.0221367E+23 # Avogadro's number m_a_zero = 28.9595 # Mean molecular weight of dry ait (zero CO2) g0_45 = 980.616 # Acceleration of gravity (sea level and 458 latitude) Ns = 2.5469E19 # Molecular density of gas in molecules / cm3 # constants describing the state of the atmosphere and which we don't know; better values may be used if known CO2 = 3.E-4 # CO2 concentration at pixel; typical values are 300 to 360 ppm C_CO2 = CO2 * 100 # CO2 concentration in ppm m_a = 15.0556 * CO2 + m_a_zero # mean molecular weight of dry air as function of actual CO2 # other constants PA = 0.9587256 # Rayleigh Phase function, molecular asymetry factor 1 PB = 1. - PA # Rayleigh Phase function, molecular asymetry factor 2 tpoly = rayADF['tau_ray'] # Polynomial coefficients for Rayleigh transmittance h2o_cor_poly = np.array( [0.3832989, 1.6527957, -1.5635101, 0.5311913]) # Polynomial coefficients for WV transmission @ 709nm # absorb_ozon = np.array([0.0, 0.0002174, 0.0034448, 0.0205669, 0.0400134, 0.105446, 0.1081787, 0.0501634, 0.0410249, \ # 0.0349671, 0.0187495, 0.0086322, 0.0, 0.0, 0.0, 0.0084989, 0.0018944, 0.0012369, 0.0, 0.0, 0.0000488]) # OLCI # absorb_ozon = np.array([0.0002174, 0.0034448, 0.0205669, 0.0400134, 0.105446, 0.1081787, 0.0501634, \ # 0.0349671, 0.0187495, 0.0086322, 0.0, 0.0084989, 0.0018944, 0.0012369, 0.0]) # MERIS O3_FILE = O3PATH+'ozone-highres.txt' ozoneO = O3(O3_FILE) absorb_ozon = ozoneO.convolveInstrument(SENSOR) # arrays which are needed to store some stuff E0 = np.zeros(width, dtype=np.float32) radiance = np.zeros(width, dtype=np.float32) reflectance = np.zeros((nbands, width), dtype=np.float32) taur = np.zeros((nbands, width), dtype=np.float32) sigma = np.zeros(nbands, dtype=np.float32) airmass = np.zeros(width, dtype=np.float32) azidiff = np.zeros(width, dtype=np.float32) PR = np.zeros(3, dtype=np.float32) # Fourier coefficients of the Rayleigh Phase function rho_Rf = np.zeros(3, dtype=np.float32) # Fourier terms of the Rayleigh primary scattering reflectance rho_Rm = np.zeros((3, nbands, width), dtype=np.float32) # Fourier terms of the Rayleigh scattering reflectance, corrected for multiple scattering rho_R = np.zeros((nbands, width), dtype=np.float32) # first approximation of Rayleigh reflectance rho_toaR = np.zeros((nbands, width), dtype=np.float32) # toa reflectance corrected for Rayleigh scattering rho_BRR = np.zeros((nbands, width), dtype=np.float32) # top of aerosol reflectance, which is equal to bottom of Rayleigh reflectance sphericalFactor = np.zeros((nbands, width), dtype=np.float32) # spherical Albedo Correction Factor (for testing only, can be integrated into the equation later) rRaySimple = np.zeros((nbands, width), dtype=np.float32) # simple Rayleigh reflectance formular, after Roland (for testing only) rho_ng = np.zeros((nbands, width), dtype=np.float32) # toa reflectance corrected for gaseous absorption (rho_ng = "rho no gas") X2 = np.zeros(width, dtype=np.float32) # temporary variable used for WV correction algorithm for gaseous absorption trans709 = np.zeros(width, dtype=np.float32) # WV transmission at 709nm, used for WV correction algorithm for gaseous absorption taurS = np.zeros((nbands, width), dtype=np.float32) # simple Rayleigh optical thickness, for debugging only if (SENSOR == 'MERIS'): dem_alt = 'dem_alt' atm_press = 'atm_press' ozone = 'ozone' latitude = 'latitude' longitude = 'longitude' sun_zenith = 'sun_zenith' view_zenith = 'view_zenith' sun_azimuth = 'sun_azimuth' view_azimuth = 'view_azimuth' # water vapour correction: # MERIS band 9 @ 709nm to be corrected; WV absorption 900nm = band 15, WV reference 885nm= band 14 b709 = 8 # the band to be corrected bWVRef = 13 # the reference reflectance outside WV absorption band bWV = 14 # the reflectance within the WV absorption band if (SENSOR == 'OLCI'): dem_alt = 'N/A' atm_press = 'sea_level_pressure' ozone = 'total_ozone' latitude = 'TP_latitude' longitude = 'TP_longitude' sun_zenith = 'SZA' view_zenith = 'OZA' sun_azimuth = 'SAA' view_azimuth = 'OAA' # water vapour correction: # OLCI band 11 @ 709nm, WV absorption 900nm = band 19, WV reference 885nm = band 18 b709 = 11 # the band to be corrected bWVRef=17 # the reference reflectance outside WV absorption band bWV=18 # the reference reflectance outside WV absorption band if (SENSOR == 'MERIS'): # check if this is required at all! tp_alt = product.getTiePointGrid(dem_alt) alt = np.zeros(width, dtype=np.float32) tp_press = product.getTiePointGrid(atm_press) press0 = np.zeros(width, dtype=np.float32) tp_ozone = product.getTiePointGrid(ozone) ozone = np.zeros(width, dtype=np.float32) tp_latitude = product.getTiePointGrid(latitude) lat = np.zeros(width, dtype=np.float32) tp_longitude = product.getTiePointGrid(longitude) lon = np.zeros(width, dtype=np.float32) tp_theta_s = product.getTiePointGrid(sun_zenith) theta_s = np.zeros(width, dtype=np.float32) tp_theta_v = product.getTiePointGrid(view_zenith) theta_v = np.zeros(width, dtype=np.float32) tp_azi_s = product.getTiePointGrid(sun_azimuth) azi_s = np.zeros(width, dtype=np.float32) tp_azi_v = product.getTiePointGrid(view_azimuth) azi_v = np.zeros(width, dtype=np.float32) # Rayleigh multiple scattering # - Coefficients LUT dimTheta = 12 dimThetaS = dimThetaV = dimTheta gridThetaS = rayADF['theta'] gridThetaV = rayADF['theta'] gridGeometry = [gridThetaS, gridThetaV] RayScattCoeffA = ray_coeff_matrix[:, :, :, 0] RayScattCoeffB = ray_coeff_matrix[:, :, :, 1] RayScattCoeffC = ray_coeff_matrix[:, :, :, 2] RayScattCoeffD = ray_coeff_matrix[:, :, :, 3] # - Fourier terms a = np.zeros(3, dtype=np.float32) b = np.zeros(3, dtype=np.float32) c = np.zeros(3, dtype=np.float32) d = np.zeros(3, dtype=np.float32) rayMultiCorr = np.zeros(3, dtype=np.float32) # Rayleigh transmittances and spherical albedo tR_thetaS = np.zeros((nbands, width), dtype=np.float32) # Rayleigh Transmittance sun - surface tR_thetaV = np.zeros((nbands, width), dtype=np.float32) # Rayleigh Transmittance surface - sun dimTaur = 17 taurTab = np.linspace(0.0, 1.0, num=dimTaur) rayAlb_f = interp1d(taurTab, rayADF['ray_albedo_lut']) sARay = np.zeros((nbands, width), dtype=np.float32) # Rayleigh spherical albedo print("Processing ...") # Calculate the Rayleigh cross section, which depends only on wavelength but not on air pressure for i in range(nbands): print("processing Rayleigh cross section of band", i) # b_source = product.getBandAt(i) b_source = product.getBand(band_name[i]) lam = b_source.getSpectralWavelength() # wavelength of band i in nm lam = lam / 1000.0 # wavelength in micrometer lam2 = lam / 10000.0 # wavelength in cm F_N2 = 1.034 + 0.000317 / (lam ** 2) # King factor of N2 F_O2 = 1.096 + 0.001385 / (lam ** 2) + 0.0001448 / (lam ** 4) # King factor of O2 F_air = (78.084 * F_N2 + 20.946 * F_O2 + 0.934 * 1 + C_CO2 * 1.15) / ( 78.084 + 20.946 + 0.934 + C_CO2) # depolarization ratio or King Factor, (6+3rho)/(6-7rho) n_ratio = 1 + 0.54 * (CO2 - 0.0003) n_1_300 = (8060.51 + (2480990. / (132.274 - lam ** (-2))) + (17455.7 / (39.32957 - lam ** (-2)))) / 100000000.0 nCO2 = n_ratio * (1 + n_1_300) # reflective index at CO2 sigma[i] = (24 * math.pi ** 3 * (nCO2 ** 2 - 1) ** 2) / (lam2 ** 4 * Ns ** 2 * (nCO2 ** 2 + 2) ** 2) * F_air for y in range(height): print("processing line ", y, " of ", height) # start radiance to reflectance conversion theta_s = tp_theta_s.readPixels(0, y, width, 1, theta_s) # sun zenith angle in degree for i in range(nbands): b_source = product.getBand(band_name[i]) radiance = b_source.readPixels(0, y, width, 1, radiance) if (SENSOR == 'MERIS'): E0.fill(b_source.getSolarFlux()) if (SENSOR == 'OLCI'): b_source = product.getBand(sf_name[i]) E0 = b_source.readPixels(0, y, width, 1, E0) reflectance[i] = radiance * math.pi / (E0 * np.cos(np.radians(theta_s))) b_out = raycorProduct.getBand("rtoa_" + str(i + 1)) b_out.writePixels(0, y, width, 1, reflectance[i]) # radiance to reflectance conversion completed # this is dummy code to create a flag flag1 = np.zeros(width, dtype=np.bool_) flag2 = np.zeros(width, dtype=np.bool_) raycorFlags = flag1 + 2 * flag2 raycorFlagsBand.writePixels(0, y, width, 1, raycorFlags) # end flags dummy code # raycorProduct.closeIO() # if (0==1): lat = tp_latitude.readPixels(0, y, width, 1, lat) lon = tp_longitude.readPixels(0, y, width, 1, lon) # start Rayleigh optical thickness calculation # alt = tp_alt.readPixels(0, y, width, 1, alt) # using the tie-point DEM in a MERIS product # get the altitude from an external DEM for x in range(width): alt[x] = dem.getElevation(GeoPos(lat[x], lon[x])) press0 = tp_press.readPixels(0, y, width, 1, press0) ozone = tp_ozone.readPixels(0, y, width, 1, ozone) theta_s = tp_theta_s.readPixels(0, y, width, 1, theta_s) # sun zenith angle in degree theta_v = tp_theta_v.readPixels(0, y, width, 1, theta_v) # view zenith angle in degree azi_s = tp_azi_s.readPixels(0, y, width, 1, azi_s) # sun azimuth angle in degree azi_v = tp_azi_v.readPixels(0, y, width, 1, azi_v) # view azimuth angle in degree # gaseous absorption correction rho_ng = reflectance # to start: gaseous corrected reflectances equals toa reflectances # water vapour correction: # MERIS band 9 @ 709nm to be corrected; WV absorption 900nm = band 15, WV reference 885nm= band 14 # b709 = 8 # the band to be corrected # bWVRef = 13 # the reference reflectance outside WV absorption band # bWV = 14 # the reflectance within the WV absorption band # OLCI band 11 @ 709nm, WV absorption 900nm = band 19, WV reference 885nm = band 18 # b709 = 11 # the band to be corrected # bWVRef=17 # the reference reflectance outside WV absorption band # bWV=18 # the reference reflectance outside WV absorption band for i in range(width): if (reflectance[(bWV, i)] > 0): X2[i] = reflectance[(bWV, i)] / reflectance[(bWVRef, i)] else: X2[i] = 1 trans709 = h2o_cor_poly[0] + (h2o_cor_poly[1] + (h2o_cor_poly[2] + h2o_cor_poly[3] * X2) * X2) * X2 rho_ng[b709] /= trans709 # ozone correction model_ozone = 0 for x in range(width): ts = math.radians(theta_s[x]) # sun zenith angle in radian cts = math.cos(ts) # cosine of sun zenith angle sts = math.sin(ts) # sinus of sun zenith angle tv = math.radians(theta_v[x]) # view zenith angle in radian ctv = math.cos(tv) # cosine of view zenith angle stv = math.sin(tv) # sinus of view zenith angle for i in range(nbands): trans_ozoned12 = math.exp(-(absorb_ozon[i] * ozone[x] / 1000.0 - model_ozone) / cts) trans_ozoneu12 = math.exp(-(absorb_ozon[i] * ozone[x] / 1000.0 - model_ozone) / ctv) trans_ozone12 = trans_ozoned12 * trans_ozoneu12 rho_ng[(i, x)] /= trans_ozone12 # here we can decide if we continue with gaseous corrected reflectances or not reflectance = rho_ng # Now calculate the pixel dependent terms (like pressure) and finally the Rayleigh optical thickness for x in range(width): # Calculation to get the pressure z = alt[x] # altitude at pixel in meters, taken from MERIS tie-point grid z = max(z, 0) # clip to sea level Psurf0 = press0[x] # pressure at sea level in hPa, taken from MERIS tie-point grid Psurf = Psurf0 * ( 1. - 0.0065 * z / 288.15) ** 5.255 # air pressure at the pixel (i.e. at altitude) in hPa, using the international pressure equation P = Psurf * 1000. # air pressure at pixel location in dyn / cm2, which is hPa * 1000 # calculation to get the constant of gravity at the pixel altitude, taking the air mass above into account dphi = math.radians(lat[x]) # latitude in radians cos2phi = math.cos(2 * dphi) g0 = g0_45 * (1 - 0.0026373 * cos2phi + 0.0000059 * cos2phi ** 2) zs = 0.73737 * z + 5517.56 # effective mass-weighted altitude g = g0 - (0.0003085462 + 0.000000227 * cos2phi) * zs + (0.00000000007254 + 0.0000000000001 * cos2phi) * \ zs ** 2 - (1.517E-17 + 6E-20 * cos2phi) * zs ** 3 # calculations to get the Rayeigh optical thickness factor = (P * AVO) / (m_a * g) for i in range(nbands): taur[(i, x)] = sigma[i] * factor # Calculate Rayleigh Phase function ts = math.radians(theta_s[x]) # sun zenith angle in radian cts = math.cos(ts) # cosine of sun zenith angle sts = math.sin(ts) # sinus of sun zenith angle tv = math.radians(theta_v[x]) # view zenith angle in radian ctv = math.cos(tv) # cosine of view zenith angle stv = math.sin(tv) # sinus of view zenith angle airmass[x] = 1 / cts + 1 / ctv # air mass # Rayleigh Phase function, 3 Fourier terms PR[0] = 3. * PA / 4. * (1. + cts ** 2 * ctv ** 2 + (sts ** 2 * stv ** 2) / 2.) + PB PR[1] = -3. * PA / 4. * cts * ctv * sts * stv PR[2] = 3. * PA / 16. * sts ** 2 * stv ** 2 # Calculate azimuth difference azs = math.radians(azi_s[x]) azv = math.radians(azi_v[x]) cosdeltaphi = math.cos(azv - azs) azidiff[x] = math.acos(cosdeltaphi) # azimuth difference in radian # Fourier components of multiple scattering for j in [0, 1, 2]: a[j] = interpn(gridGeometry, RayScattCoeffA[j, :, :], [theta_s[x], theta_v[x]], method='linear', bounds_error=False, fill_value=None) b[j] = interpn(gridGeometry, RayScattCoeffB[j, :, :], [theta_s[x], theta_v[x]], method='linear', bounds_error=False, fill_value=None) c[j] = interpn(gridGeometry, RayScattCoeffC[j, :, :], [theta_s[x], theta_v[x]], method='linear', bounds_error=False, fill_value=None) d[j] = interpn(gridGeometry, RayScattCoeffD[j, :, :], [theta_s[x], theta_v[x]], method='linear', bounds_error=False, fill_value=None) for i in range(nbands): # Fourier series, loop for j in [0, 1, 2]: # Rayleigh primary scattering rho_Rf[j] = (PR[j] / (4.0 * (cts + ctv))) * (1. - math.exp(-airmass[x] * taur[(i, x)])) # correction for multiple scattering rayMultiCorr[j] = a[j] + b[j] * taur[(i, x)] + c[j] * taur[(i, x)] ** 2 + d[j] * taur[(i, x)] ** 3 rho_Rm[(j, i, x)] = rho_Rf[j] * rayMultiCorr[j] # rho_Rm[(0, i, x)] = rho_Rf[0] # rho_Rm[(1, i, x)] = 0. # rho_Rm[(2, i, x)] = 0. # Fourier sum to get the Rayleigh Reflectance rho_R[(i, x)] = rho_Rm[(0, i, x)] + 2.0 * rho_Rm[(1, i, x)] * math.cos(azidiff[x]) + 2. * rho_Rm[ (2, i, x)] * math.cos(2. * azidiff[x]) # complete the Rayleigh correction: see MERIS DPM PDF-p251 or DPM 9-16 # polynomial coefficients tpoly0, tpoly1 and tpoly2 from MERIS LUT tRs = ((2. / 3. + cts) + (2. / 3. - cts) * math.exp(-taur[(i, x)] / cts)) / (4. / 3. + taur[(i, x)]) tR_thetaS[(i, x)] = tpoly[0] + tpoly[1] * tRs + tpoly[ 2] * tRs ** 2 # Rayleigh Transmittance sun - surface tRv = ((2. / 3. + ctv) + (2. / 3. - ctv) * math.exp(-taur[(i, x)] / ctv)) / (4. / 3. + taur[(i, x)]) tR_thetaV[(i, x)] = tpoly[0] + tpoly[1] * tRv + tpoly[ 2] * tRv ** 2 # Rayleigh Transmittance surface - sensor sARay[(i, x)] = rayAlb_f(taur[(i, x)]) # Rayleigh spherical albedo rho_toaR[(i, x)] = (reflectance[(i, x)] - rho_R[(i, x)]) / ( tR_thetaS[(i, x)] * tR_thetaV[(i, x)]) # toa reflectance corrected for Rayleigh scattering sphericalFactor[(i, x)] = 1.0 / (1.0 + sARay[(i, x)] * rho_toaR[ (i, x)]) # factor used in the next equation to account for the spherical albedo rho_BRR[(i, x)] = rho_toaR[(i, x)] * sphericalFactor[ (i, x)] # top of aerosol reflectance, which is equal to bottom of Rayleigh reflectance # simple Rayleigh correction azi_diff_deg = math.fabs(azi_v[x] - azi_s[x]) if (azi_diff_deg > 180.0): azi_diff_deg = 360.0 - azi_diff_deg azi_diff_rad = math.radians(azi_diff_deg) cos_scat_ang = (-ctv * cts) - (stv * sts * math.cos(azi_diff_rad)) phase_rayl_min = 0.75 * (1.0 + cos_scat_ang * cos_scat_ang) for i in range(nbands): # b_source = product.getBandAt(i) b_source = product.getBand(band_name[i]) lam = b_source.getSpectralWavelength() taurS[(i, x)] = math.exp(-4.637) * math.pow((lam / 1000.0), -4.0679) pressureAtms = press0[x] * math.exp(-alt[x] / 8000.0) pressureFactor = taurS[(i, x)] / 1013.0 taurS[(i, x)] = pressureAtms * pressureFactor rRaySimple[(i, x)] = cts * taurS[(i, x)] * phase_rayl_min / (4 * 3.1415926) * (1 / ctv) * 3.1415926 # Write bands to product airmassBand.writePixels(0, y, width, 1, airmass) azidiffBand.writePixels(0, y, width, 1, azidiff) altBand.writePixels(0, y, width, 1, alt) for i in range(nbands): taurBand = raycorProduct.getBand("taur_" + str(i + 1)) taurBand.writePixels(0, y, width, 1, taur[i]) rhorBand = raycorProduct.getBand("rRay_" + str(i + 1)) rhorBand.writePixels(0, y, width, 1, rho_R[i]) rhorF1Band = raycorProduct.getBand("rRayF1_" + str(i + 1)) rhorF1Band.writePixels(0, y, width, 1, rho_Rm[0, i]) rhorF2Band = raycorProduct.getBand("rRayF2_" + str(i + 1)) rhorF2Band.writePixels(0, y, width, 1, rho_Rm[1, i]) rhorF3Band = raycorProduct.getBand("rRayF3_" + str(i + 1)) rhorF3Band.writePixels(0, y, width, 1, rho_Rm[2, i]) rayTransSBand = raycorProduct.getBand("transSRay_" + str(i + 1)) rayTransSBand.writePixels(0, y, width, 1, tR_thetaS[i]) rayTransVBand = raycorProduct.getBand("transVRay_" + str(i + 1)) rayTransVBand.writePixels(0, y, width, 1, tR_thetaV[i]) sARayBand = raycorProduct.getBand("sARay_" + str(i + 1)) sARayBand.writePixels(0, y, width, 1, sARay[i]) rtoaRBand = raycorProduct.getBand("rtoaRay_" + str(i + 1)) rtoaRBand.writePixels(0, y, width, 1, rho_toaR[i]) rBRRBand = raycorProduct.getBand("rBRR_" + str(i + 1)) rBRRBand.writePixels(0, y, width, 1, rho_BRR[i]) spfBand = raycorProduct.getBand("sphericalAlbedoFactor_" + str(i + 1)) spfBand.writePixels(0, y, width, 1, sphericalFactor[i]) rRaySimpleBand = raycorProduct.getBand("RayleighSimple_" + str(i + 1)) rRaySimpleBand.writePixels(0, y, width, 1, rRaySimple[i]) rho_ngBand = raycorProduct.getBand("rtoa_ng_" + str(i + 1)) rho_ngBand.writePixels(0, y, width, 1, rho_ng[i]) taurSBand = raycorProduct.getBand("taurS_" + str(i + 1)) taurSBand.writePixels(0, y, width, 1, taurS[i]) # Rayleigh calculation completed raycorProduct.closeIO() print("Done.")
if len(sys.argv) < 2: print 'Product file requires' sys.exit(1) # input product & dimensions input_product = ProductIO.readProduct(sys.argv[1]) width = input_product.getSceneRasterWidth() height = input_product.getSceneRasterHeight() product_name = input_product.getName() # input product red & nir bands red_band = input_product.getBand('B4') nir_band = input_product.getBand('B8') # output product (ndvi) & new band output_product = Product('NDVI', 'NDVI', width, height) ProductUtils.copyGeoCoding(input_product, output_product) output_band = output_product.addBand('ndvi', ProductData.TYPE_FLOAT32) # output writer output_product_writer = ProductIO.getProductWriter('BEAM-DIMAP') output_product.setProductWriter(output_product_writer) output_product.writeHeader(product_name + '.ndvi.dim') # compute & save ndvi line by line red_row = numpy.zeros(width, dtype=numpy.float32) nir_row = numpy.zeros(width, dtype=numpy.float32) for y in xrange(height): red_row = red_band.readPixels(0, y, width, 1, red_row) nir_row = nir_band.readPixels(0, y, width, 1, nir_row)
def process_product(file, sensor): in_product = ProductIO.readProduct(file) width = in_product.getSceneRasterWidth() height = in_product.getSceneRasterHeight() in_name = in_product.getName() in_description = in_product.getDescription() in_band_names = in_product.getBandNames() c2x_log.info("Product: %s, %s" % (in_name, in_description)) c2x_log.debug("Raster size: %d x %d pixels" % (width, height)) c2x_log.debug("Start time: " + str(in_product.getStartTime())) c2x_log.debug("End time: " + str(in_product.getEndTime())) c2x_log.debug("Bands: %s" % (list(in_band_names))) # Output product Definition # 1. define the target product and its file format c2x_product = Product('%s_%s' % (in_name, PRODUCT_TYPE), '%s' % PRODUCT_TYPE, width, height) writer = ProductIO.getProductWriter('BEAM-DIMAP') c2x_product.setProductWriter(writer) fpath = in_product.getFileLocation().getAbsolutePath() fpath = os.path.split(fpath)[0] + "/out/" + os.path.split(fpath)[1] fpath = fpath.split(".")[0] fpath = "{0}_{1}.dim".format(fpath, PRODUCT_TYPE.lower()) c2x_product.setFileLocation(File(fpath)) sensor_outputs = sensor["outputs"] sensor_wavelengths = sensor["wavelengths"] # 2. define the bands for the results of the different algorithms outbands = dict() for cnt in range(len(sensor_outputs)): cnt = sensor_outputs[cnt] outbands[cnt[0]] = c2x_product.addBand(cnt[0], cnt[1]) # 3. copy tie point grids from input product to target product ProductUtils.copyTiePointGrids(in_product, c2x_product) ProductUtils.copyMetadata(in_product, c2x_product) ProductUtils.copyGeoCoding(in_product, c2x_product) ProductUtils.copyFlagBands(in_product, c2x_product, False) # 4. write the header to disk location = c2x_product.getFileLocation() c2x_product.writeHeader(location) # assigning aux arrays rhow_arrays = dict() for wls in sensor_wavelengths: rhow_arrays[str(wls)] = np.zeros(width, dtype=np.float32) # get all specified bands from input product c2x_log.info("Processing and writing to %s" % file) algo_names = dict() for cnt in range(len(sensor_outputs)): algo_names[cnt] = sensor_outputs[cnt][0] c2x_log.debug("Processing with following algos: %s " % list(algo_names.values())) bsource = dict() for i in range(len(sensor_wavelengths)): band_name = create_source_band_name(sensor_wavelengths[i]) bsource[band_name] = in_product.getBand(sensor[band_name]) flag_bands = [] for b in in_product.getBands(): if b.isFlagBand(): flag_bands.append(b) flags_data = np.zeros (width, dtype=np.int32) # loop through the product line by line and application of algorithms for y in range(height): rhow = dict() for wl in sensor_wavelengths: source_band = bsource[create_source_band_name(wl)] # dealing with no-data; setting no-data to to NaN invalidMask = read_invalid_mask(source_band, width, y) source_band.readPixels(0, y, width, 1, rhow_arrays[str(wl)]) rhow["band" + str(wl)] = np.ma.array(rhow_arrays[str(wl)], mask=invalidMask, fill_value=np.nan) for algo in range(len(sensor_outputs)): res = sensor_outputs[algo][2](rhow, sensor_outputs[algo][4], sensor_outputs[algo][5]) name = sensor_outputs[algo][0] outbands[name].writePixels(0, y, width, 1, res) for fband in flag_bands: fband.readPixels(0, y, width, 1, flags_data) c2x_product.getBand(fband.getName()).writePixels(0, y, width, 1, flags_data) # all computations and writing is completed; close all data streams and finish the program c2x_product.closeIO() print("Done.") return 0
sys.exit(1) print("Reading...") sourceProduct = ProductIO.readProduct(sys.argv[1]) b1 = sourceProduct.getBand('reflec_5') b2 = sourceProduct.getBand('reflec_7') b3 = sourceProduct.getBand('reflec_9') w1 = b1.getSpectralWavelength() w2 = b2.getSpectralWavelength() w3 = b3.getSpectralWavelength() a = (w2 - w1) / (w3 - w1) k = 1.03 width = sourceProduct.getSceneRasterWidth() height = sourceProduct.getSceneRasterHeight() targetProduct = Product('FLH_Product', 'FLH_Type', width, height) targetBand = targetProduct.addBand('FLH', ProductData.TYPE_FLOAT32) ProductUtils.copyGeoCoding(sourceProduct, targetProduct) targetProduct.setProductWriter(ProductIO.getProductWriter('GeoTIFF')) targetProduct.writeHeader(String('snappy_flh_output.tif')) r1 = numpy.zeros(width, dtype=numpy.float32) r2 = numpy.zeros(width, dtype=numpy.float32) r3 = numpy.zeros(width, dtype=numpy.float32) print("Writing...") for y in range(height): b1.readPixels(0, y, width, 1, r1) b2.readPixels(0, y, width, 1, r2)
print 'Product file and band index required' sys.exit(1) # check if band index given is correct if not sys.argv[2] in ['2', '3', '4', '8']: print 'Incorrect band index' # get cli arguments product_file = sys.argv[1] band_index = sys.argv[2] band_name = 'B' + band_index product_name = { 'B2': 'blue', 'B3': 'green', 'B4': 'red', 'B8': 'nir', }[band_name] # input product: open and get dimensions & name input_product = ProductIO.readProduct(product_file) product_width = input_product.getSceneRasterWidth() product_height = input_product.getSceneRasterHeight() product_name = input_product.getName() # output product: copy selected band & save product output_product = Product(product_name, product_name, product_width, product_height) ProductUtils.copyGeoCoding(input_product, output_product) ProductUtils.copyBand(band_name, input_product, output_product, True) ProductIO.writeProduct(output_product, product_name + '.band.dim', 'BEAM-DIMAP') output_product.closeIO()
product = ProductIO.readProduct(file) width = product.getSceneRasterWidth() height = product.getSceneRasterHeight() name = product.getName() description = product.getDescription() band_names = product.getBandNames() print("Product: %s, %s" % (name, description)) print("Raster size: %d x %d pixels" % (width, height)) print("Start time: " + str(product.getStartTime())) print("End time: " + str(product.getEndTime())) print("Bands: %s" % (list(band_names))) b7 = product.getBand('radiance_7') b10 = product.getBand('radiance_10') ndviProduct = Product('NDVI', 'NDVI', width, height) ndviBand = ndviProduct.addBand('ndvi', ProductData.TYPE_FLOAT32) ndviFlagsBand = ndviProduct.addBand('ndvi_flags', ProductData.TYPE_UINT8) writer = ProductIO.getProductWriter('BEAM-DIMAP') ProductUtils.copyGeoCoding(product, ndviProduct) ndviFlagCoding = FlagCoding('ndvi_flags') ndviFlagCoding.addFlag("NDVI_LOW", 1, "NDVI below 0") ndviFlagCoding.addFlag("NDVI_HIGH", 2, "NDVI above 1") group = ndviProduct.getFlagCodingGroup() #print(dir(group)) group.add(ndviFlagCoding) ndviFlagsBand.setSampleCoding(ndviFlagCoding)
# check if band index given is correct if not sys.argv[2] in ['2', '3', '4', '8']: print 'Incorrect band index' # get cli arguments product_file = sys.argv[1] band_index = sys.argv[2] band_name = 'B' + band_index product_name = { 'B2': 'blue', 'B3': 'green', 'B4': 'red', 'B8': 'nir', }[band_name] # input product: open and get dimensions & name input_product = ProductIO.readProduct(product_file) product_width = input_product.getSceneRasterWidth() product_height = input_product.getSceneRasterHeight() product_name = input_product.getName() # output product: copy selected band & save product output_product = Product(product_name, product_name, product_width, product_height) ProductUtils.copyGeoCoding(input_product, output_product) ProductUtils.copyBand(band_name, input_product, output_product, True) ProductIO.writeProduct(output_product, product_name + '.band.dim', 'BEAM-DIMAP') output_product.closeIO()
width = product.getSceneRasterWidth() height = product.getSceneRasterHeight() name = product.getName() description = product.getDescription() band_names = product.getBandNames() print("Product: %s, %s" % (name, description)) print("Raster size: %d x %d pixels" % (width, height)) print("Start time: " + str(product.getStartTime())) print("End time: " + str(product.getEndTime())) print("Bands: %s" % (list(band_names))) b7 = product.getBand('radiance_7') b10 = product.getBand('radiance_10') ndviProduct = Product('NDVI', 'NDVI', width, height) ndviBand = ndviProduct.addBand('ndvi', ProductData.TYPE_FLOAT32) ndviFlagsBand = ndviProduct.addBand('ndvi_flags', ProductData.TYPE_UINT8) writer = ProductIO.getProductWriter('BEAM-DIMAP') ProductUtils.copyGeoCoding(product, ndviProduct) ndviFlagCoding = FlagCoding('ndvi_flags') ndviFlagCoding.addFlag("NDVI_LOW", 1, "NDVI below 0") ndviFlagCoding.addFlag("NDVI_HIGH", 2, "NDVI above 1") group = ndviProduct.getFlagCodingGroup() #print(dir(group)) group.add(ndviFlagCoding) ndviFlagsBand.setSampleCoding(ndviFlagCoding)