Ejemplo n.º 1
0
def filter(mask, cube, header, clipMethod, threshold, rmsMode, fluxRange, verbose):
	err.message("Running threshold finder.")
	
	# Sanity checks of user input
	err.ensure(
		clipMethod in {"absolute", "relative"},
		"Threshold finder failed. Illegal clip method: '" + str(clipMethod) + "'.")
	err.ensure(
		rmsMode in {"std", "mad", "gauss", "negative"},
		"Threshold finder failed. Illegal RMS mode: '" + str(rmsMode) + "'.")
	err.ensure(
		fluxRange in {"positive", "negative", "all"},
		"Threshold finder failed. Illegal flux range: '" + str(fluxRange) + "'.")
	
	# Scale threshold by RMS if requested
	if clipMethod == "relative":
		threshold *= GetRMS(cube, rmsMode=rmsMode, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=verbose)
	
	# Print some information and check sign of threshold
	err.message("  Using threshold of " + str(threshold) + ".")
	err.ensure(threshold >= 0.0, "Threshold finder failed. Threshold value is negative.")
	
	# Run the threshold finder, setting bit 1 of the mask for |cube| >= |threshold|:
	np.bitwise_or(mask, np.greater_equal(np.absolute(cube), threshold), out=mask)
	
	return
Ejemplo n.º 2
0
def print_memory_usage(t0):
    err.message(
        "\x1B[36mPeak memory usage: {0:.3f} MB at {1:.3f} s\x1B[0m".format(
            float(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) /
            MEM_FACTOR,
            time() - t0))
    return
Ejemplo n.º 3
0
def apply_weights_file(data, weightsFile, subcube):
	# Load weights cube
	err.message("Applying weights cube:\n  " + str(weightsFile))
	try:
		f = fits.open(weightsFile, memmap=False)
		header_weights = f[0].header
	except:
		err.error("Failed to read weights cube.")
	
	# Extract axis sizes and types
	n_axes_weights, axis_size_weights, axis_type_weights = extract_axis_size(header_weights)
	
	# Ensure correct dimensionality
	check_cube_dimensions(n_axes_weights, axis_size_weights, cube_name="weights cube", min_dim=1, max_dim=4)
	
	# Multiply data by weights
	# 1-D spectrum
	if n_axes_weights == 1:
		err.warning("Weights cube has 1 axis; interpreted as spectrum.\nAdding first and second axis.")
		if len(subcube):
			err.ensure(len(subcube) == 6, "Subcube list must have 6 entries ({0:d} given).".format(len(subcube)))
			data *= np.reshape(f[0].section[subcube[4]:subcube[5]], (-1, 1, 1))
		else:
			data *= reshape(f[0].data, (-1, 1, 1))
	
	# 2-D image
	elif n_axes_weights == 2:
		if len(subcube) == 6 or len(subcube) == 4:
			data *= np.array([f[0].section[subcube[2]:subcube[3], subcube[0]:subcube[1]]])
		else:
			data *= np.array([f[0].data])
	
	# 3-D cube
	elif n_axes_weights == 3:
		if len(subcube) == 6:
			data *= f[0].section[subcube[4]:subcube[5], subcube[2]:subcube[3], subcube[0]:subcube[1]]
		else:
			data *= f[0].data
	
	# 4-D hypercube
	else:
		if len(subcube) == 6:
			data *= f[0].section[0, subcube[4]:subcube[5], subcube[2]:subcube[3], subcube[0]:subcube[1]]
		else:
			data *= f[0].section[0]
	
	f.close()
	err.message("  Weights cube applied.")
	
	return data
Ejemplo n.º 4
0
def regridMaskedChannels(datacube, maskcube, header):
    import numpy as np
    import scipy.constants
    from scipy import interpolate
    from sofia import error as err

    if not check_wcs_info(header, spatial=True):
        err.warning(
            "Axis descriptors missing from FITS file header.\nIgnoring the effect of CELLSCAL = 1/F."
        )
        return datacube

    maskcubeFlt = maskcube.astype("float")
    maskcubeFlt[maskcube > 1] = 1.0

    err.message("Regridding...")
    z = (np.arange(1.0, header["NAXIS3"] + 1) -
         header["CRPIX3"]) * header["CDELT3"] + header["CRVAL3"]

    if check_header_keywords(KEYWORDS_VELO, header["CTYPE3"]):
        pixscale = (1.0 - header["CRVAL3"] / scipy.constants.c) / (
            1.0 - z / scipy.constants.c)
    elif check_header_keywords(KEYWORDS_FREQ, header["CTYPE3"]):
        pixscale = header["CRVAL3"] / z
    else:
        err.warning(
            "Cannot convert 3rd axis coordinates to frequency.\nIgnoring the effect of CELLSCAL = 1/F."
        )
        pixscale = np.ones((header["NAXIS3"]))

    x0 = header["CRPIX1"] - 1
    y0 = header["CRPIX2"] - 1
    xs = np.arange(datacube.shape[2], dtype=float) - x0
    ys = np.arange(datacube.shape[1], dtype=float) - y0

    for zz in range(datacube.shape[0]):
        regrid_channel = interpolate.RectBivariateSpline(
            ys * pixscale[zz], xs * pixscale[zz], datacube[zz])
        datacube[zz] = regrid_channel(ys, xs)
        regrid_channel_mask = interpolate.RectBivariateSpline(
            ys * pixscale[zz], xs * pixscale[zz], maskcubeFlt[zz])
        maskcubeFlt[zz] = regrid_channel_mask(ys, xs)

    datacube[abs(maskcubeFlt) <= abs(np.nanmin(maskcubeFlt))] = np.nan
    del maskcubeFlt

    return datacube
Ejemplo n.º 5
0
def apply_weights_function(data, weightsFunction):
    err.message("Applying weights function:\n  " + str(weightsFunction))

    # Define whitelist of allowed character sequences and import relevant Numpy functions
    whitelist = [
        "x", "y", "z", "e", "E", "sin", "cos", "tan", "arcsin", "arccos",
        "arctan", "arctan2", "sinh", "cosh", "tanh", "arcsinh", "arccosh",
        "arctanh", "exp", "log", "sqrt", "square", "power", "absolute", "fabs",
        "sign"
    ]
    from numpy import sin, cos, tan, arcsin, arccos, arctan, arctan2, sinh, cosh, tanh, arcsinh, arccosh, arctanh, exp, log, sqrt, square, power, absolute, fabs, sign

    # Search for all keywords consisting of consecutive sequences of alphabetical characters
    keywordsFound = filter(None, re.split("[^a-zA-Z]+", str(weightsFunction)))

    # Check for non-whitelisted sequences
    for keyword in keywordsFound:
        err.ensure(
            keyword in whitelist, "Unknown keyword '" + str(keyword) +
            "' found in weights function:\n"
            "  " + str(weightsFunction) + "\n"
            "Please check your input.")

    # Loop over all channels
    for i in range(data.shape[0]):
        # Create index arrays over 2-D planes (i.e. of width dz = 1)
        z, y, x = np.indices((1, data.shape[1], data.shape[2]))
        z += i

        # Multiply each plane by weights function
        try:
            data[z, y, x] *= eval(str(weightsFunction))
            # NOTE: eval() should be safe now as we don't allow for non-whitelisted keywords.
        except:
            err.error("Failed to evaluate weights function:\n"
                      "  " + str(weightsFunction) + "\n"
                      "Please check your input.")

    err.message("  Weights function applied.")

    return data
Ejemplo n.º 6
0
def flag(cube, regions):
    if regions:
        err.message("Flagging data cube.")
        dim = len(cube.shape)

        try:
            for region in regions:
                for i in range(0, len(region) / 2):
                    if region[2 * i + 1] == "":
                        region[2 * i + 1] = cube.shape[dim - i - 1]
                if len(region) == 2:
                    cube[0, region[2]:region[3], region[0]:region[1]] = np.nan
                else:
                    cube[region[4]:region[5], region[2]:region[3],
                         region[0]:region[1]] = np.nan
            err.message("Cube has been flagged.")
        except:
            err.warning(
                "Flagging did not succeed. Please check the dimensions of your cube and filters."
            )

    return cube
Ejemplo n.º 7
0
def regridMaskedChannels(datacube, maskcube, header):
	import numpy as np
	import scipy.constants
	from scipy import interpolate
	from sofia import error as err
	
	if not check_wcs_info(header, spatial=True):
		err.warning("Axis descriptors missing from FITS file header.\nIgnoring the effect of CELLSCAL = 1/F.")
		return datacube
	
	maskcubeFlt = maskcube.astype("float")
	maskcubeFlt[maskcube > 1] = 1.0
	
	err.message("Regridding...")
	z = (np.arange(1.0, header["NAXIS3"] + 1) - header["CRPIX3"]) * header["CDELT3"] + header["CRVAL3"]
	
	if check_header_keywords(KEYWORDS_VELO, header["CTYPE3"]):
		pixscale = (1.0 - header["CRVAL3"] / scipy.constants.c) / (1.0 - z / scipy.constants.c)
	elif check_header_keywords(KEYWORDS_FREQ, header["CTYPE3"]):
		pixscale = header["CRVAL3"] / z
	else:
		err.warning("Cannot convert 3rd axis coordinates to frequency.\nIgnoring the effect of CELLSCAL = 1/F.")
		pixscale = np.ones((header["NAXIS3"]))
	
	x0 = header["CRPIX1"] - 1
	y0 = header["CRPIX2"] - 1
	xs = np.arange(datacube.shape[2], dtype=float) - x0
	ys = np.arange(datacube.shape[1], dtype=float) - y0
	
	for zz in range(datacube.shape[0]):
		regrid_channel = interpolate.RectBivariateSpline(ys * pixscale[zz], xs * pixscale[zz], datacube[zz])
		datacube[zz] = regrid_channel(ys, xs)
		regrid_channel_mask = interpolate.RectBivariateSpline(ys * pixscale[zz], xs * pixscale[zz], maskcubeFlt[zz])
		maskcubeFlt[zz] = regrid_channel_mask(ys, xs)
	
	datacube[abs(maskcubeFlt) <= abs(np.nanmin(maskcubeFlt))] = np.nan
	del maskcubeFlt
	
	return datacube
Ejemplo n.º 8
0
def apply_weights_function(data, weightsFunction):
	err.message("Applying weights function:\n  " + str(weightsFunction))
	
	# Define whitelist of allowed character sequences and import relevant Numpy functions
	whitelist = ["x", "y", "z", "e", "E", "sin", "cos", "tan", "arcsin", "arccos", "arctan", "arctan2", "sinh", "cosh", "tanh", "arcsinh", "arccosh", "arctanh", "exp", "log", "sqrt", "square", "power", "absolute", "fabs", "sign"]
	from numpy import sin, cos, tan, arcsin, arccos, arctan, arctan2, sinh, cosh, tanh, arcsinh, arccosh, arctanh, exp, log, sqrt, square, power, absolute, fabs, sign
	
	# Search for all keywords consisting of consecutive sequences of alphabetical characters
	keywordsFound = filter(None, re.split("[^a-zA-Z]+", str(weightsFunction)))
	
	# Check for non-whitelisted sequences
	for keyword in keywordsFound:
		err.ensure(keyword in whitelist,
			"Unknown keyword '" + str(keyword) + "' found in weights function:\n"
			"  " + str(weightsFunction) + "\n"
			"Please check your input.")
	
	# Loop over all channels
	for i in range(data.shape[0]):
		# Create index arrays over 2-D planes (i.e. of width dz = 1)
		z, y, x = np.indices((1, data.shape[1], data.shape[2]))
		z += i
		
		# Multiply each plane by weights function
		try:
			data[z, y, x] *= eval(str(weightsFunction))
			# NOTE: eval() should be safe now as we don't allow for non-whitelisted keywords.
		except:
			err.error(
				"Failed to evaluate weights function:\n"
				"  " + str(weightsFunction) + "\n"
				"Please check your input.")
	
	err.message("  Weights function applied.")
	
	return data
Ejemplo n.º 9
0
def apply_weights_file(data, weightsFile, subcube):
    # Load weights cube
    err.message("Applying weights cube:\n  " + str(weightsFile))
    try:
        f = fits.open(weightsFile, memmap=False)
        header_weights = f[0].header
    except:
        err.error("Failed to read weights cube.")

    # Extract axis sizes and types
    n_axes_weights, axis_size_weights, axis_type_weights = extract_axis_size(
        header_weights)

    # Ensure correct dimensionality
    check_cube_dimensions(n_axes_weights,
                          axis_size_weights,
                          cube_name="weights cube",
                          min_dim=1,
                          max_dim=4)

    # Multiply data by weights
    # 1-D spectrum
    if n_axes_weights == 1:
        err.warning(
            "Weights cube has 1 axis; interpreted as spectrum.\nAdding first and second axis."
        )
        if len(subcube):
            err.ensure(
                len(subcube) == 6,
                "Subcube list must have 6 entries ({0:d} given).".format(
                    len(subcube)))
            data *= np.reshape(f[0].section[subcube[4]:subcube[5]], (-1, 1, 1))
        else:
            data *= reshape(f[0].data, (-1, 1, 1))

    # 2-D image
    elif n_axes_weights == 2:
        if len(subcube) == 6 or len(subcube) == 4:
            data *= np.array(
                [f[0].section[subcube[2]:subcube[3], subcube[0]:subcube[1]]])
        else:
            data *= np.array([f[0].data])

    # 3-D cube
    elif n_axes_weights == 3:
        if len(subcube) == 6:
            data *= f[0].section[subcube[4]:subcube[5], subcube[2]:subcube[3],
                                 subcube[0]:subcube[1]]
        else:
            data *= f[0].data

    # 4-D hypercube
    else:
        if len(subcube) == 6:
            data *= f[0].section[0, subcube[4]:subcube[5],
                                 subcube[2]:subcube[3], subcube[0]:subcube[1]]
        else:
            data *= f[0].section[0]

    f.close()
    err.message("  Weights cube applied.")

    return data
Ejemplo n.º 10
0
def import_data(doSubcube,
                inFile,
                weightsFile,
                maskFile,
                weightsFunction=None,
                subcube=[],
                subcubeMode="pixel",
                doFlag=False,
                flagRegions=False,
                flagFile="",
                cubeOnly=False):
    # Basic sanity checks on user input
    err.ensure(os.path.isfile(inFile),
               "Data file not found:\n  " + str(inFile))

    # -------------------------------
    # Open input cube and read header
    # -------------------------------
    err.message("Loading input data cube.")
    try:
        f = fits.open(inFile,
                      mode="readonly",
                      memmap=False,
                      do_not_scale_image_data=False)
        header = f[0].header
    except:
        err.error("Failed to load primary HDU of data file:\n  " + str(inFile))

    # Extract axis sizes and types
    n_axes, axis_size, axis_type = extract_axis_size(header)

    # Check dimensionality of data cube
    check_cube_dimensions(n_axes, axis_size, cube_name="data cube")

    # Print some information
    err.message("  Data cube has {0:d} axes.".format(header["NAXIS"]))
    err.message("    Types: " + str(axis_type))
    err.message("    Sizes: " + str(axis_size))

    # Extract subcube boundaries if requested
    if len(subcube):
        subcube = get_subcube_range(header, n_axes, axis_size, subcube,
                                    subcubeMode)
    else:
        subcube = []

    # --------------------------------
    # Read requested subregion of data
    # --------------------------------
    # 2-D image
    if n_axes == 2:
        fullshape = [axis_size[1], axis_size[0]]
        if len(subcube):
            data = np.array(
                [f[0].section[subcube[2]:subcube[3], subcube[0]:subcube[1]]])
            header["CRPIX1"] -= subcube[0]
            header["CRPIX2"] -= subcube[2]
            header["NAXIS1"] = subcube[1] - subcube[0]
            header["NAXIS2"] = subcube[3] - subcube[2]
        else:
            data = np.array([f[0].data])

    # 3-D cube
    elif n_axes == 3:
        fullshape = [axis_size[2], axis_size[1], axis_size[0]]
        if len(subcube):
            data = f[0].section[subcube[4]:subcube[5], subcube[2]:subcube[3],
                                subcube[0]:subcube[1]]
            header["CRPIX1"] -= subcube[0]
            header["CRPIX2"] -= subcube[2]
            header["CRPIX3"] -= subcube[4]
            header["NAXIS1"] = subcube[1] - subcube[0]
            header["NAXIS2"] = subcube[3] - subcube[2]
            header["NAXIS3"] = subcube[5] - subcube[4]
        else:
            data = f[0].data

    #4-D hypercube
    else:
        fullshape = [axis_size[2], axis_size[1], axis_size[0]]
        if len(subcube):
            data = f[0].section[0, subcube[4]:subcube[5],
                                subcube[2]:subcube[3], subcube[0]:subcube[1]]
            header["CRPIX1"] -= subcube[0]
            header["CRPIX2"] -= subcube[2]
            header["CRPIX3"] -= subcube[4]
            header["NAXIS1"] = subcube[1] - subcube[0]
            header["NAXIS2"] = subcube[3] - subcube[2]
            header["NAXIS3"] = subcube[5] - subcube[4]
        else:
            data = f[0].section[0]

    # Close input cube
    f.close()
    err.message("Input data cube loaded.")

    # ---------------------------------------------------------
    # If no additional actions required, return data and header
    # ---------------------------------------------------------
    if cubeOnly: return data, header

    # ---------------------------------------------------
    # Otherwise carry out additional actions as requested
    # ---------------------------------------------------
    # Weighting
    if weightsFile:
        data = apply_weights_file(data, weightsFile, subcube)
    elif weightsFunction:
        data = apply_weights_function(data, weightsFunction)

    # Flagging
    if doFlag:
        data = apply_flagging(data, flagFile, flagRegions, subcube)

    # Masking
    if maskFile:
        mask = import_mask(maskFile, header, axis_size, subcube)
    else:
        # Create an empty mask if none is provided.
        mask = np.zeros(data.shape, dtype=bool)

    return data, header, mask, subcube
Ejemplo n.º 11
0
def EstimateRel(data,
                pdfoutname,
                parNames,
                parSpace=["snr_sum", "snr_max", "n_pix"],
                logPars=[1, 1, 1],
                autoKernel=True,
                scaleKernel=1,
                negPerBin=1,
                skellamTol=-0.5,
                kernel=[0.15, 0.05, 0.1],
                usecov=False,
                doscatter=1,
                docontour=1,
                doskellam=1,
                dostats=0,
                saverel=1,
                threshold=0.99,
                fMin=0,
                verb=0,
                makePlot=False):

    # Always work on logarithmic parameter values; the reliability.logPars parameter should be removed
    if 0 in logPars:
        err.warning(
            "  Setting all reliability.logPars entries to 1. This parameter is no longer editable by users."
        )
    logPars = [1 for pp in parSpace]

    # Import Matplotlib if diagnostic plots requested
    if makePlot:
        import matplotlib
        # The following line is necessary to run SoFiA remotely
        matplotlib.use("Agg")
        import matplotlib.pyplot as plt

    # --------------------------------
    # Build array of source parameters
    # --------------------------------

    idCOL = parNames.index("id")
    ftotCOL = parNames.index("snr_sum")
    fmaxCOL = parNames.index("snr_max")
    fminCOL = parNames.index("snr_min")

    # Get columns of requested parameters
    parCol = []
    for ii in range(len(parSpace)):
        parCol.append(parNames.index(parSpace[ii]))

    # Get position and number of positive and negative sources
    pos = data[:, ftotCOL] > 0
    neg = data[:, ftotCOL] <= 0
    Npos = pos.sum()
    Nneg = neg.sum()

    err.ensure(Npos, "No positive sources found; cannot proceed.")
    err.ensure(Nneg, "No negative sources found; cannot proceed.")

    # Get array of relevant source parameters (and take log of them if requested)
    ids = data[:, idCOL]
    pars = np.empty((data.shape[0], 0))

    for ii in range(len(parSpace)):
        if parSpace[ii] == "snr_max":
            parsTmp = data[:, fmaxCOL] * pos - data[:, fminCOL] * neg
            if logPars[ii]: parsTmp = np.log10(parsTmp)
            pars = np.concatenate((pars, parsTmp.reshape(-1, 1)), axis=1)
        elif parSpace[ii] == "snr_sum" or parSpace[ii] == "snr_mean":
            parsTmp = abs(data[:, parCol[ii]].reshape(-1, 1))
            if logPars[ii]: parsTmp = np.log10(parsTmp)
            pars = np.concatenate((pars, parsTmp), axis=1)
        else:
            parsTmp = data[:, parCol[ii]].reshape(-1, 1)
            if logPars[ii]: parsTmp = np.log10(parsTmp)
            pars = np.concatenate((pars, parsTmp), axis=1)

    err.message("  Working in parameter space {0:}".format(str(parSpace)))
    err.message(
        "  Will convolve the distribution of positive and negative sources in this space to derive the P and N density fields"
    )
    pars = np.transpose(pars)

    # ----------------------------------------------------------
    # Set parameters to work with and gridding/plotting for each
    # ----------------------------------------------------------

    # Axis labels when plotting
    labs = []
    for ii in range(len(parSpace)):
        labs.append("")
        if logPars[ii]: labs[ii] += "log "
        labs[ii] += parSpace[ii]

    # Axis limits when plotting
    pmin, pmax = pars.min(axis=1), pars.max(axis=1)
    pmin, pmax = pmin - 0.1 * (pmax - pmin), pmax + 0.1 * (pmax - pmin)
    lims = [[pmin[i], pmax[i]] for i in range(len(parSpace))]

    # Grid on which to evaluate Np and Nn in order to plot contours
    grid = [[pmin[i], pmax[i], 0.02 * (pmax[i] - pmin[i])]
            for i in range(len(parSpace))]

    # Calculate the number of rows and columns in figure
    projections = [subset for subset in combinations(range(len(parSpace)), 2)]
    nr = int(np.floor(np.sqrt(len(projections))))
    nc = int(np.ceil(float(len(projections)) / nr))

    # ---------------------------------------
    # Set smoothing kernel in parameter space
    # ---------------------------------------

    # If autoKernel is True, then the initial kernel is taken as a scaled version of the covariance matrix
    # of the negative sources. The kernel size along each axis is such that the number of sources per kernel
    # width (sigma**2) is equal to "negPerBin". Optionally, the user can decide to use only the diagonal
    # terms of the covariance matrix. The kernel is then grown until convergence is reached on the Skellam
    # plot. If autoKernel is False, then use the kernel given by "kernel" parameter (argument of EstimateRel);
    # this is sigma, and is squared to be consistent with the auto kernel above.

    if autoKernel:
        # Set the kernel shape to that of the variance or covariance matrix
        kernel = np.cov(pars[:, neg])
        kernelType = "covariance"
        # Check if kernel matrix can be inverted
        try:
            np.linalg.inv(kernel)
        except:
            err.error(
                "The reliability cannot be calculated because the smoothing kernel\n"
                "derived from " + str(pars[:, neg].shape[1]) +
                " negative sources cannot be inverted.\n"
                "This is likely due to an insufficient number of negative sources.\n"
                "Try to increase the number of negative sources by changing the\n"
                "source finding and/or filtering settings.",
                fatal=True,
                frame=True)

        if np.isnan(kernel).sum():
            err.error(
                "The reliability cannot be calculated because the smoothing kernel\n"
                "derived from " + str(pars[:, neg].shape[1]) +
                " negative sources contains NaNs.\n"
                "A good kernel is required to calculate the density field of positive\n"
                "and negative sources in parameter space.\n"
                "Try to increase the number of negative sources by changing the\n"
                "source finding and/or filtering settings.",
                fatal=True,
                frame=True)

        if not usecov:
            kernel = np.diag(np.diag(kernel))
            kernelType = "variance"

        kernelIter = 0.0
        deltplot = []

        # Scale the kernel size as requested by the user (scaleKernel>0) or use the autoscale algorithm (scaleKernel=0)
        if scaleKernel > 0:
            # Scale kernel size as requested by the user
            # Note that the scale factor is squared because users are asked to give a factor to apply to sqrt(kernel)
            kernel *= scaleKernel**2
            err.message(
                "  Using the {0:s} matrix scaled by a factor {1:.2f} as convolution kernel"
                .format(kernelType, scaleKernel))
            err.message("  The sqrt(kernel) size is:")
            err.message(" " + str(np.sqrt(np.abs(kernel))))
        elif scaleKernel == 0:
            # Scale kernel size to get started the kernel-growing loop
            # The scale factor for sqrt(kernel) is elevated to the power of 1.0 / len(parCol)
            err.message(
                "  Will search for the best convolution kernel by scaling the {0:s} matrix"
                .format(kernelType))
            err.message("  The {0:s} matrix has sqrt:".format(kernelType))
            err.message(" " + str(np.sqrt(np.abs(kernel))))
            # negPerBin must be >=1
            err.ensure(
                negPerBin >= 1,
                "The parameter reliability.negPerBin used to start the convolution kernel search was set to {0:.1f} but must be >= 1. Please change your settings."
                .format(negPerBin))
            kernel *= ((negPerBin + kernelIter) / Nneg)**(2.0 / len(parCol))
            err.message("  Search starting from the kernel with sqrt:")
            err.message(" " + str(np.sqrt(np.abs(kernel))))
            err.message(
                "  Iteratively growing kernel until the distribution of (P-N)/sqrt(P+N) reaches median/width = {0:.2f} ..."
                .format(skellamTol))
            err.ensure(
                skellamTol <= 0,
                "The parameter reliability.skellamTol was set to {0:.2f} but must be <= 0. Please change your settings."
                .format(skellamTol))
        else:
            err.ensure(scaleKernel>=0,\
             "The reliability.scaleKernel parameter cannot be negative.\n"\
             "It should be = 0 if you want SoFiA to find the optimal kernel scaling\n"\
             "or > 0 if you want to set the scaling yourself.\n"\
             "Please change your settings.")

        #deltOLD=-1e+9 # Used to stop kernel growth if P-N stops moving closer to zero [NOT USED CURRENTLY]
        if doskellam and makePlot: fig0 = plt.figure()
    else:
        # Note that the user must give sigma, which then gets squared
        err.message(
            "  Using user-defined variance kernel with sqrt(kernel) size: {0}".
            format(kernel))
        err.ensure(
            len(parSpace) == len(kernel),
            "The number of entries in the kernel above does not match the number of parameters you requested for the reliability calculation."
        )
        kernel = np.identity(len(kernel)) * np.array(kernel)**2

    # Set grow_kernel to 1 to start the kernel growing loop below.
    grow_kernel = 1

    # This loop will estimate the reliability, check whether the kernel is large enough,
    # and if not pick a larger kernel. If autoKernel = 0 or scaleKernel = 0, we will do
    # just one pass (i.e., we will not grow the kernel).
    while grow_kernel:
        # ------------------------
        # Evaluate N-d reliability
        # ------------------------

        if verb:
            err.message(
                "   estimate normalised positive and negative density fields ..."
            )

        Np = gaussian_kde_set_covariance(pars[:, pos], kernel)
        Nn = gaussian_kde_set_covariance(pars[:, neg], kernel)

        # Calculate the number of positive and negative sources at the location of positive sources
        Nps = Np(pars[:, pos]) * Npos
        Nns = Nn(pars[:, pos]) * Nneg

        # Calculate the number of positive and negative sources at the location of negative sources
        nNps = Np(pars[:, neg]) * Npos
        nNns = Nn(pars[:, neg]) * Nneg

        # Calculate the reliability at the location of positive sources
        Rs = (Nps - Nns) / Nps

        # The reliability must be <= 1. If not, something is wrong.
        err.ensure(
            Rs.max() <= 1,
            "Maximum reliability greater than 1; something is wrong.\nPlease ensure that enough negative sources are detected\nand decrease your source finding threshold if necessary.",
            frame=True)

        # Find pseudo-reliable sources (taking maximum(Rs, 0) in order to include objects with Rs < 0
        # if threshold == 0; Rs may be < 0 because of insufficient statistics)
        # These are called pseudo-reliable because some objects may be discarded later based on additional criteria below
        pseudoreliable = np.maximum(Rs, 0) >= threshold

        # Find reliable sources (taking maximum(Rs, 0) in order to include objects with Rs < 0 if
        # threshold == 0; Rs may be < 0 because of insufficient statistics)
        #reliable=(np.maximum(Rs, 0)>=threshold) * (data[pos, ftotCOL].reshape(-1,) > fMin) * (data[pos, fmaxCOL].reshape(-1,) > 4)
        reliable = (np.maximum(Rs, 0) >= threshold) * (
            (data[pos, ftotCOL] /
             np.sqrt(data[pos, parNames.index("n_pix")])).reshape(-1, ) > fMin)

        if autoKernel:
            # Calculate quantities needed for comparison to Skellam distribution
            delt = (nNps - nNns) / np.sqrt(nNps + nNns)
            deltstd = delt.std()
            deltmed = np.median(delt)
            deltmin = delt.min()
            deltmax = delt.max()

            if deltmed / deltstd > -100 and doskellam and makePlot:
                plt.hist(delt / deltstd,
                         bins=np.arange(deltmin / deltstd,
                                        max(5.1, deltmax / deltstd), 0.01),
                         cumulative=True,
                         histtype="step",
                         color=(min(
                             1,
                             float(max(1., negPerBin) + kernelIter) / Nneg), 0,
                                0),
                         density=True)
                deltplot.append([((max(1., negPerBin) + kernelIter) /
                                  Nneg)**(1.0 / len(parCol)),
                                 deltmed / deltstd])

            if scaleKernel: grow_kernel = 0
            else:
                err.message(
                    "  iteration, median, width, median/width = %3i, %9.2e, %9.2e, %9.2e"
                    % (kernelIter, deltmed, deltstd, deltmed / deltstd))

                if deltmed / deltstd > skellamTol or negPerBin + kernelIter >= Nneg:
                    grow_kernel = 0
                    err.message(
                        "  Found good kernel after %i kernel growth iterations. The sqrt(kernel) size is:"
                        % kernelIter)
                    err.message(np.sqrt(np.abs(kernel)))
                elif deltmed / deltstd < 5 * skellamTol:
                    kernel *= (float(negPerBin + kernelIter + 20) /
                               (negPerBin + kernelIter))**(2.0 / len(parCol))
                    kernelIter += 20
                elif deltmed / deltstd < 2 * skellamTol:
                    kernel *= (float(negPerBin + kernelIter + 10) /
                               (negPerBin + kernelIter))**(2.0 / len(parCol))
                    kernelIter += 10
                elif deltmed / deltstd < 1.5 * skellamTol:
                    kernel *= (float(negPerBin + kernelIter + 3) /
                               (negPerBin + kernelIter))**(2.0 / len(parCol))
                    kernelIter += 3
                else:
                    kernel *= (float(negPerBin + kernelIter + 1) /
                               (negPerBin + kernelIter))**(2.0 / len(parCol))
                    kernelIter += 1
        else:
            grow_kernel = 0

    # ------------
    # Skellam plot
    # ------------

    if autoKernel and deltmed / deltstd > -100 and doskellam and makePlot:
        plt.plot(np.arange(-10, 10, 0.01),
                 stats.norm().cdf(np.arange(-10, 10, 0.01)), "k-")
        plt.plot(np.arange(-10, 10, 0.01),
                 stats.norm(scale=0.4).cdf(np.arange(-10, 10, 0.01)), "k:")
        plt.legend(("Gaussian (sigma=1)", "Gaussian (sigma=0.4)"),
                   loc="lower right",
                   prop={"size": 13})
        plt.hist(delt / deltstd,
                 bins=np.arange(deltmin / deltstd, max(5.1, deltmax / deltstd),
                                0.01),
                 cumulative=True,
                 histtype="step",
                 color="r",
                 density=True)
        plt.xlim(-5, 5)
        plt.ylim(0, 1)
        plt.xlabel("(P-N)/sqrt(N+P)")
        plt.ylabel("cumulative distribution")
        plt.plot([0, 0], [0, 1], "k--")
        fig0.savefig("%s_rel_skellam.pdf" % pdfoutname, rasterized=True)

        if not scaleKernel:
            fig3 = plt.figure()
            deltplot = np.array(deltplot)
            plt.plot(deltplot[:, 0], deltplot[:, 1], "ko-")
            plt.xlabel("kernel size (1D-sigma, aribtrary units)")
            plt.ylabel("median/std of (P-N)/sqrt(P+N)")
            plt.axhline(y=skellamTol, linestyle="--", color="r")
            fig3.savefig("%s_rel_skellam-delta.pdf" % pdfoutname,
                         rasterized=True)

    # -----------------------
    # Scatter plot of sources
    # -----------------------

    specialids = []

    if doscatter and makePlot:
        if verb: err.message("  plotting sources ...")
        fig1 = plt.figure(figsize=(18, 4.5 * nr))
        plt.subplots_adjust(left=0.06,
                            bottom=0.15 / nr,
                            right=0.97,
                            top=1 - 0.08 / nr,
                            wspace=0.35,
                            hspace=0.25)

        n_p = 0
        for jj in projections:
            if verb:
                err.message("    projection %i/%i" %
                            (projections.index(jj) + 1, len(projections)))
            n_p, p1, p2 = n_p + 1, jj[0], jj[1]
            plt.subplot(nr, nc, n_p)
            plt.scatter(pars[p1, pos],
                        pars[p2, pos],
                        marker="o",
                        c="b",
                        s=10,
                        edgecolor="face",
                        alpha=0.5)
            plt.scatter(pars[p1, neg],
                        pars[p2, neg],
                        marker="o",
                        c="r",
                        s=10,
                        edgecolor="face",
                        alpha=0.5)
            for si in specialids:
                plt.plot(pars[p1, ids == si],
                         pars[p2, ids == si],
                         "kd",
                         zorder=10000,
                         ms=7,
                         mfc="none",
                         mew=2)
            # Plot Integrated SNR threshold
            if fMin > 0 and (parSpace[jj[0]], parSpace[jj[1]]) == ("snr_sum",
                                                                   "snr_mean"):
                xArray = np.arange(
                    lims[p1][0],
                    lims[p1][1] + (lims[p1][1] - lims[p1][0]) / 100,
                    (lims[p1][1] - lims[p1][0]) / 100)
                plt.plot(xArray, np.log10(fMin) * 2 - xArray, 'k:')
            elif fMin > 0 and (parSpace[jj[0]],
                               parSpace[jj[1]]) == ("snr_mean", "snr_sum"):
                yArray = np.arange(
                    lims[p2][0],
                    lims[p2][1] + (lims[p2][1] - lims[p2][0]) / 100,
                    (lims[p2][1] - lims[p2][0]) / 100)
                plt.plot(np.log10(fMin) * 2 - yArray, yArray, 'k:')
            plt.xlim(lims[p1][0], lims[p1][1])
            plt.ylim(lims[p2][0], lims[p2][1])
            plt.xlabel(labs[p1])
            plt.ylabel(labs[p2])
            plt.grid(color='k', linestyle='-', linewidth=0.2)
        fig1.savefig("%s_rel_scatter.pdf" % pdfoutname, rasterized=True)

    # -------------
    # Plot contours
    # -------------

    if docontour and makePlot:
        levs = 10**np.arange(-1.5, 2, 0.5)

        if verb: err.message("  plotting contours ...")
        fig2 = plt.figure(figsize=(18, 4.5 * nr))
        plt.subplots_adjust(left=0.06,
                            bottom=0.15 / nr,
                            right=0.97,
                            top=1 - 0.08 / nr,
                            wspace=0.35,
                            hspace=0.25)
        n_p = 0
        for jj in projections:
            if verb:
                err.message("    projection %i/%i" %
                            (projections.index(jj) + 1, len(projections)))
            n_p, p1, p2 = n_p + 1, jj[0], jj[1]
            g1, g2 = grid[p1], grid[p2]
            x1 = np.arange(g1[0], g1[1], g1[2])
            x2 = np.arange(g2[0], g2[1], g2[2])
            pshape = (x2.shape[0], x1.shape[0])

            # Get array of source parameters on current projection
            parsp = np.concatenate((pars[p1:p1 + 1], pars[p2:p2 + 1]), axis=0)

            # Derive Np and Nn density fields on the current projection
            setcov = kernel[p1:p2 + 1:p2 - p1, p1:p2 + 1:p2 - p1]
            try:
                Np = gaussian_kde_set_covariance(parsp[:, pos], setcov)
                Nn = gaussian_kde_set_covariance(parsp[:, neg], setcov)
            except:
                err.error(
                    "Reliability  determination  failed  because of issues  with the\n"
                    "smoothing kernel.  This is likely due to an insufficient number\n"
                    "of negative detections. Please review your filtering and source\n"
                    "finding settings to ensure that a sufficient number of negative\n"
                    "detections is found.",
                    fatal=True,
                    frame=True)

            # Evaluate density fields on grid on current projection
            g = np.transpose(
                np.transpose(np.mgrid[slice(g1[0], g1[1], g1[2]),
                                      slice(g2[0], g2[1], g2[2])]).reshape(
                                          -1, 2))
            Np = Np(g)
            Nn = Nn(g)
            Np = Np / Np.sum() * Npos
            Nn = Nn / Nn.sum() * Nneg
            Np.resize(pshape)
            Nn.resize(pshape)
            plt.subplot(nr, nc, n_p)
            plt.contour(x1,
                        x2,
                        Np,
                        origin="lower",
                        colors="b",
                        levels=levs,
                        zorder=2)
            plt.contour(x1,
                        x2,
                        Nn,
                        origin="lower",
                        colors="r",
                        levels=levs,
                        zorder=1)

            # Plot Integrated SNR threshold
            if fMin > 0 and (parSpace[jj[0]], parSpace[jj[1]]) == ("snr_sum",
                                                                   "snr_mean"):
                xArray = np.arange(
                    lims[p1][0],
                    lims[p1][1] + (lims[p1][1] - lims[p1][0]) / 100,
                    (lims[p1][1] - lims[p1][0]) / 100)
                plt.plot(xArray, np.log10(fMin) * 2 - xArray, 'k:')
            elif fMin > 0 and (parSpace[jj[0]],
                               parSpace[jj[1]]) == ("snr_mean", "snr_sum"):
                yArray = np.arange(
                    lims[p2][0],
                    lims[p2][1] + (lims[p2][1] - lims[p2][0]) / 100,
                    (lims[p2][1] - lims[p2][0]) / 100)
                plt.plot(np.log10(fMin) * 2 - yArray, yArray, 'k:')

            if reliable.sum():
                plt.scatter(pars[p1, pos][reliable],
                            pars[p2, pos][reliable],
                            marker="o",
                            s=10,
                            edgecolor="k",
                            facecolor="k",
                            zorder=4)
            if (pseudoreliable * (reliable == False)).sum():
                plt.scatter(pars[p1,
                                 pos][pseudoreliable * (reliable == False)],
                            pars[p2,
                                 pos][pseudoreliable * (reliable == False)],
                            marker="x",
                            s=40,
                            edgecolor="0.5",
                            facecolor="0.5",
                            zorder=3)
            for si in specialids:
                plt.plot(pars[p1, ids == si],
                         pars[p2, ids == si],
                         "kd",
                         zorder=10000,
                         ms=7,
                         mfc="none",
                         mew=2)
            plt.xlim(lims[p1][0], lims[p1][1])
            plt.ylim(lims[p2][0], lims[p2][1])
            plt.xlabel(labs[p1])
            plt.ylabel(labs[p2])
            plt.grid(color='k', linestyle='-', linewidth=0.2)
        fig2.savefig("%s_rel_contour.pdf" % pdfoutname, rasterized=True)

    # -------------------------
    # Add Np, Nn and R to table
    # -------------------------

    # This allows me not to calculate R every time I want to do some plot analysis,
    # but just read it from the file
    if saverel:
        if not (docontour or dostats):
            Nps = Np(pars[:, pos]) * Npos
            Nns = Nn(pars[:, pos]) * Nneg
        Np = np.zeros((data.shape[0], ))
        Np[pos] = Nps
        Nn = np.zeros((data.shape[0], ))
        Nn[pos] = Nns
        R = -np.ones((data.shape[0], ))  # R will be -1 for negative sources
        # Set R to zero for positive sources if R < 0 because of Nn > Np
        R[pos] = np.maximum(0, (Np[pos] - Nn[pos]) / Np[pos])
        data = np.concatenate(
            (data, Np.reshape(-1, 1), Nn.reshape(-1, 1), R.reshape(-1, 1)),
            axis=1)

    data = [list(jj) for jj in list(data)]
    return data, ids[pos][reliable].astype(int)
Ejemplo n.º 12
0
def add_wcs_coordinates(objects, catParNames, catParFormt, catParUnits,
                        Parameters):
    try:
        hdulist = fits.open(Parameters["import"]["inFile"])
        header = hdulist[0].header
        hdulist.close()

        # Fix headers where "per second" is written "/S" instead of "/s"
        # (assuming they mean "per second" and not "per Siemens").
        if "cunit3" in header and "/S" in header["cunit3"]:
            err.warning("Converting '/S' to '/s' in CUNIT3.")
            header["cunit3"] = header["cunit3"].replace("/S", "/s")

        # Check if there is a Nmap/GIPSY FITS header keyword value present
        gipsyKey = [
            k for k in ["FREQ-OHEL", "FREQ-OLSR", "FREQ-RHEL", "FREQ-RLSR"]
            if (k in [header[key] for key in header if ("CTYPE" in key)])
        ]
        if gipsyKey:
            err.message(
                "GIPSY header found. Trying to convert to FITS standard.")
            from astropy.wcs import Wcsprm
            header = fix_gipsy_header(header)
            wcsin = Wcsprm(str(header))
            wcsin.sptr("VOPT-F2W")
            #if header["naxis"] == 4:
            #	objects = np.concatenate((objects, wcsin.p2s(np.concatenate((objects[:, catParNames.index("x"):catParNames. index("x") + 3], np.zeros((objects.shape[0], 1))), axis=1), 0)["world"][:,:-1]), axis=1)
            #else:
            #	objects = np.concatenate((objects, wcsin.p2s(objects[:, catParNames.index("x"):catParNames.index("x") + 3], 0)["world"]), axis=1)
            objects = np.concatenate(
                (objects,
                 wcsin.p2s(
                     objects[:,
                             catParNames.index("x"):catParNames.index("x") +
                             3], 0)["world"]),
                axis=1)
            catParUnits = tuple(
                list(catParUnits) +
                [str(cc).replace(" ", "") for cc in wcsin.cunit])
            catParNames = tuple(
                list(catParNames) + [(cc.split("--")[0]).lower()
                                     for cc in wcsin.ctype])
            catParFormt = tuple(
                list(catParFormt) + ["%15.7e", "%15.7e", "%15.7e"])

        else:
            # Constrain the RA axis reference value CRVAL_ to be between 0 and 360 deg
            rafound = 0
            for kk in range(header["naxis"]):
                if header["ctype1"][:2] == "RA":
                    rafound = 1
                    break
            if rafound:
                if header["crval%i" % (kk + 1)] < 0:
                    err.warning("Adding 360 deg to RA reference value.")
                    header["crval%i" % (kk + 1)] += 360
                elif header["crval%i" % (kk + 1)] > 360:
                    err.warning("Subtracting 360 deg from RA reference value.")
                    header["crval%i" % (kk + 1)] -= 360

            #if header["naxis"] == 4: wcsin = wcs.WCS(header, naxis=[wcs.WCSSUB_CELESTIAL, wcs.WCSSUB_SPECTRAL, wcs.WCSSUB_STOKES])
            #else: wcsin = wcs.WCS(header, naxis=[wcs.WCSSUB_CELESTIAL, wcs.WCSSUB_SPECTRAL])
            wcsin = wcs.WCS(header,
                            naxis=[wcs.WCSSUB_CELESTIAL, wcs.WCSSUB_SPECTRAL])
            xyz = objects[:,
                          catParNames.index("x"):catParNames.index("x") +
                          3].astype(float)
            if "cellscal" in header and header["cellscal"] == "1/F":
                err.warning(
                    "CELLSCAL keyword with value of 1/F found.\n"
                    "Will account for varying pixel scale in WCS coordinate calculation."
                )
                x0, y0 = header["crpix1"] - 1, header["crpix2"] - 1
                # Will calculate the pixscale factor of each channel as:
                # pixscale = ref_frequency / frequency
                if header["ctype3"] == "VELO-HEL":
                    pixscale = (1 - header["crval3"] / scipy.constants.c) / (
                        1 - (((xyz[:, 2] + 1) - header["crpix3"]) *
                             header["cdelt3"] + header["crval3"]) /
                        scipy.constants.c)
                else:
                    err.warning(
                        "Cannot convert 3rd axis coordinates to frequency. Ignoring the effect of CELLSCAL = 1/F."
                    )
                    pixscale = 1.0
                xyz[:, 0] = (xyz[:, 0] - x0) * pixscale + x0
                xyz[:, 1] = (xyz[:, 1] - y0) * pixscale + y0
            #if header["naxis"] == 4: objects = np.concatenate((objects, wcsin.wcs_pix2world(np.concatenate((xyz, np.zeros((objects.shape[0], 1))), axis=1), 0)[:, :-1]), axis=1)
            #else: objects = np.concatenate((objects, wcsin.wcs_pix2world(xyz, 0)), axis=1)
            objects = np.concatenate((objects, wcsin.wcs_pix2world(xyz, 0)),
                                     axis=1)
            catParUnits = tuple(
                list(catParUnits) +
                [str(cc).replace(" ", "") for cc in wcsin.wcs.cunit])
            catParNames = tuple(
                list(catParNames) + [(cc.split("--")[0]).lower()
                                     for cc in wcsin.wcs.ctype])
            catParFormt = tuple(
                list(catParFormt) + ["%15.7e", "%15.7e", "%15.7e"])
        #if header["naxis"] == 4:
        #	catParUnits = catParUnits[:-1]
        #	catParNames= catParNames[:-1]
        err.message("WCS coordinates added to catalogue.")

        # Create IAU-compliant source name:
        # WARNING: This currently assumes a regular, ≥ 2-dim. data cube where the first two axes are longitude and latitude.
        n_src = objects.shape[0]
        n_par = objects.shape[1]

        iau_names = np.empty([n_src, 1], dtype=object)

        if header["ctype1"][:4] == "RA--":
            # Equatorial coordinates; try to figure out equinox:
            iau_coord = "equ"
            if "equinox" in header:
                if int(header["equinox"]) >= 2000: iau_equinox = "J"
                else: iau_equinox = "B"
            elif "epoch" in header:
                # Assume that EPOCH has been abused to record the equinox:
                if int(header["epoch"]) >= 2000: iau_equinox = "J"
                else: iau_equinox = "B"
            else:
                # Equinox undefined:
                iau_equinox = "X"
        elif header["ctype1"][:4] == "GLON":
            # Galactic coordinates:
            iau_coord = "gal"
            iau_equinox = "G"
        else:
            # Unsupported coordinate system:
            iau_coord = ""
            iau_equinox = ""

        for src in xrange(n_src):
            lon = objects[src][n_par - 3]
            lat = objects[src][n_par - 2]

            if iau_coord == "equ":
                ra = Longitude(lon, unit=u.deg)
                dec = Latitude(lat, unit=u.deg)
                iau_pos = ra.to_string(unit=u.h,
                                       decimal=False,
                                       sep="",
                                       precision=2,
                                       alwayssign=False,
                                       pad=True,
                                       fields=3)
                iau_pos += dec.to_string(unit=u.deg,
                                         decimal=False,
                                         sep="",
                                         precision=1,
                                         alwayssign=True,
                                         pad=True,
                                         fields=3)
            else:
                iau_pos = "{0:08.4f}".format(lon)
                if lat < 0.0: iau_pos += "-"
                else: iau_pos += "+"
                iau_pos += "{0:07.4f}".format(abs(lat))

            iau_names[src][0] = "SoFiA " + iau_equinox + iau_pos

        objects = np.concatenate((objects, iau_names), axis=1)
        catParUnits = tuple(list(catParUnits) + ["-"])
        catParNames = tuple(list(catParNames) + ["name"])
        catParFormt = tuple(list(catParFormt) + ["%30s"])
    except:
        err.warning("WCS conversion of parameters failed.")

    return (objects, catParNames, catParFormt, catParUnits)
Ejemplo n.º 13
0
            "1) Enable automatic overwrite in the GUI or parameter file\n"
            "2) Change base name and/or output directory in the GUI or\n"
            "   parameter file\n"
            "3) Delete or rename the existing directory",
            fatal=True,
            frame=True)
    return


# -----------------------------------------------
# ---- Check if parameter file name provided ----
# -----------------------------------------------

if len(sys.argv) != 2:
    err.message(
        "\n\033[1;4mUsage:\033[24m sofia_pipeline.py \033[3m<filename>\033[0m\n\nThe filename of a valid SoFiA parameter file must be specified. Please\nadd the full path if the file is not located in the current directory.\n\n"
    )
    sys.exit(1)

# -----------------------------------------------
# ---- Print some initial status information ----
# -----------------------------------------------

err.print_progress_message("Running the SoFiA pipeline")
err.message("    Using: SoFiA   " + sofia_version + "\n"
            "           Python  " + str(sys.version_info[0]) + "." +
            str(sys.version_info[1]) + "." + str(sys.version_info[2]) + "\n"
            "           NumPy   " + np.__version__ + "\n"
            "           SciPy   " + scipy_version + "\n"
            "           Astropy " + astropy_version + "\n")
Ejemplo n.º 14
0
def print_memory_usage(t0):
	err.message("\x1B[36mPeak memory usage: {0:.3f} MB at {1:.3f} s\x1B[0m".format(float(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss) / MEM_FACTOR, time() - t0))
	return
Ejemplo n.º 15
0
def write_catalog_from_array(mode, objects, catHeader, catUnits, catFormat, parList, outName, flagCompress, flagOverwrite, flagUncertainties):
	# Check output format and compression
	availableModes = ["ASCII", "XML", "SQL"]
	if mode not in availableModes:
		err.warning("Unknown catalogue format: " + str(mode) + ". Defaulting to ASCII.")
		mode = "ASCII"
	modeIndex = availableModes.index(mode)
	
	if flagCompress: outName += ".gz"
	err.message("Writing " + availableModes[modeIndex] + " catalogue: " + outName + ".")
	
	# Exit if file exists and overwrite flag is set to false
	func.check_overwrite(outName, flagOverwrite, fatal=True)
	
	# Do we need to write all parameters?
	if parList == ["*"] or not parList: parList = list(catHeader)
	
	# Remove undefined parameters
	parList = [item for item in parList if item in catHeader]
	
	# Remove statistical uncertainties if not requested
	if not flagUncertainties:
		for item in ["err_x", "err_y", "err_z", "err_w20", "err_w50"]:
			while item in parList: parList.remove(item)
	
	# Check whether there is anything left
	if not len(parList):
		err.error("No valid output parameters selected. No output catalogue written.", fatal=False)
		return
	
	
	# Create and write catalogue in requested format
	# -------------------------------------------------------------------------
	if mode == "XML":
		# Define basic XML header information
		votable          = Element("VOTABLE")
		resource         = SubElement(votable, "RESOURCE", name="SoFiA catalogue (version %s)" % sofia_version)
		description      = SubElement(resource, "DESCRIPTION")
		description.text = "Source catalogue from the Source Finding Application (SoFiA) version %s" % sofia_version
		coosys           = SubElement(resource, "COOSYS", ID="J2000")
		table            = SubElement(resource, "TABLE", ID="sofia_cat", name="sofia_cat")
		
		# Load list of parameters and unified content descriptors (UCDs)
		ucdList = {}
		fileUcdPath = os.environ["SOFIA_PIPELINE_PATH"]
		fileUcdPath = fileUcdPath.replace("sofia_pipeline.py", "SoFiA_source_parameters.dat")
		
		try:
			with open(fileUcdPath) as fileUcd:
				for line in fileUcd:
					(key, value) = line.split()
					ucdList[key] = value
		except:
			err.warning("Failed to read UCD file.")
		
		# Create parameter fields
		for par in parList:
			ucdEntity = ucdList[par] if par in ucdList else ""
			index = list(catHeader).index(par)
			if catFormat[index] == "%30s":
				field = SubElement(table, "FIELD", name=par, ucd=ucdEntity, datatype="char", arraysize="30", unit=catUnits[index])
			else:
				field = SubElement(table, "FIELD", name=par, ucd=ucdEntity, datatype="float", unit=catUnits[index])
		
		# Create data table entries
		data = SubElement(table, "DATA")
		tabledata = SubElement(data, "TABLEDATA")
		
		for obj in objects:
			tr = SubElement(tabledata, "TR")
			for par in parList:
				td = SubElement(tr, "TD")
				index = list(catHeader).index(par)
				td.text = (catFormat[index] % obj[index]).strip()
		
		# Write XML catalogue:
		try:
			f1 = gzopen(outName, "wb") if flagCompress else open(outName, "w")
		except:
			err.error("Failed to write to XML catalogue: " + outName + ".", fatal=False)
			return
		f1.write(prettify(votable))
		#f1.write(tostring(votable, "utf-8")) // without prettifying, which is faster and uses much less memory
		f1.close
	
	# -----------------------------------------------------------------End-XML-
	
	elif mode == "SQL":
		# Record if there is an ID column in the catalogue
		# (if no ID is present, we will later create one for use as primary key)
		noID = "id" not in parList
		
		# Write some header information:
		content = "-- SoFiA catalogue (version %s)\n\nSET SQL_MODE = \"NO_AUTO_VALUE_ON_ZERO\";\n\n" % sofia_version
		
		# Construct and write table structure:
		flagProgress = False
		content += "CREATE TABLE IF NOT EXISTS `SoFiA-Catalogue` (\n"
		if noID: content += "  `id` INT NOT NULL,\n"
		for par in parList:
			index = list(catHeader).index(par)
			if flagProgress: content += ",\n"
			content += "  " + sqlHeaderItem(par) + sqlFormat(catFormat[index])
			flagProgress = True
		content += ",\n  PRIMARY KEY (`id`),\n  KEY (`id`)\n) DEFAULT CHARSET=utf8 COMMENT=\'SoFiA source catalogue\';\n\n"
		
		# Insert data:
		flagProgress = False
		content += "INSERT INTO `SoFiA-Catalogue` ("
		if noID: content += "`id`, "
		for par in parList:
			if flagProgress: content += ", "
			content += sqlHeaderItem(par)
			flagProgress = True
		content += ") VALUES\n"
		
		source_count = 0
		for obj in objects:
			flagProgress = False
			source_count += 1
			content += "("
			if noID: content += str(source_count) + ", "
			
			for par in parList:
				index = list(catHeader).index(par)
				if flagProgress: content += ", "
				content += sqlDataItem(obj[index], catFormat[index])
				flagProgress = True
			
			if(source_count < len(objects)): content += "),\n"
			else: content += ");\n"
		
		# Write catalogue
		try:
			fp = gzopen(outName, "wb") if flagCompress else open(outName, "w")
		except:
			err.error("Failed to write to SQL catalogue: " + outName + ".", fatal=False)
			return
		fp.write(content)
		fp.close()
	
	# -----------------------------------------------------------------End-SQL-
	
	else: # mode == "ASCII" by default
		# Determine header sizes based on variable-length formatting
		lenCathead = []
		for j in catFormat: lenCathead.append(int(j.split("%")[1].split("e")[0].split("f")[0].split("i")[0].split("d")[0].split(".")[0].split("s")[0]) + 1)
		
		# Create header
		headerName = ""
		headerUnit = ""
		headerCol  = ""
		outFormat  = ""
		colCount   =  0
		header     = "SoFiA catalogue (version %s)\n" % sofia_version
		
		for par in parList:
			index = list(catHeader).index(par)
			headerName += catHeader[index].rjust(lenCathead[index])
			headerUnit += catUnits[index].rjust(lenCathead[index])
			headerCol  += ("(%i)" % (colCount + 1)).rjust(lenCathead[index])
			outFormat  += catFormat[index] + " "
			colCount += 1
		header += headerName[3:] + '\n' + headerUnit[3:] + '\n' + headerCol[3:]
		
		# Create catalogue
		outObjects = []
		for obj in objects:
			outObjects.append([])
			for par in parList: outObjects[-1].append(obj[list(catHeader).index(par)])
		
		# Write ASCII catalogue
		try:
			np.savetxt(outName, np.array(outObjects, dtype=object), fmt=outFormat, header=header)
		
		except:
			err.error("Failed to write to ASCII catalogue: " + outName + ".", fatal=False)
			return
	
	# ---------------------------------------------------------------End-ASCII-
	
	return
Ejemplo n.º 16
0
def dilate(cube, mask, objects, cathead, Parameters):
	dilateThreshold = Parameters["parameters"]["dilateThreshold"]
	dilatePixMax = Parameters["parameters"]["dilatePixMax"]
	dilateChanMax = Parameters["parameters"]["dilateChanMax"]
	
	# Stops dilating when (flux_new - flux_old) / flux_new < dilateThreshold
	sourceIDs = np.unique(mask)
	# remove first element which should be zero
	if sourceIDs[0] == 0:
		sourceIDs = np.delete(sourceIDs,0)
	
	for i in range(0, len(sourceIDs)):
		obj = objects[i]
		xmin = max(0, obj[list(cathead).index("x_min")] - dilatePixMax)
		xmax = min(cube.shape[2] - 1, obj[list(cathead).index("x_max")] + dilatePixMax)
		ymin = max(0, obj[list(cathead).index("y_min")] - dilatePixMax)
		ymax = min(cube.shape[1] - 1, obj[list(cathead).index("y_max")] + dilatePixMax)
		zmin = max(0, obj[list(cathead).index("z_min")] - dilateChanMax)
		zmax = min(cube.shape[0] - 1, obj[list(cathead).index("z_max")] + dilateChanMax)
		
		[zmin, zmax, ymin, ymax, xmin, xmax] = map(int, [zmin, zmax, ymin, ymax, xmin, xmax])
		
		objcube = cube[zmin:zmax+1, ymin:ymax+1, xmin:xmax+1].copy()
		objmask = mask[zmin:zmax+1, ymin:ymax+1, xmin:xmax+1].copy()
		allmask = mask[zmin:zmax+1, ymin:ymax+1, xmin:xmax+1].copy()
		otherobjs = (allmask > 0) * (allmask != sourceIDs[i])
		
		if (otherobjs).sum():
			# Ensure that objects with different source IDs within dilatePixMax, dilateChanMax are not
			# included in the flux growth calculation
			err.warning("Object {0:d} has possible overlapping objects within {1:d} pix, {2:d} chan.".format(sourceIDs[i], dilatePixMax, dilateChanMax))
			objcube[(allmask > 0) * (allmask != sourceIDs[i])] = 0
		
		fluxes = []
		
		# Loop through Z dilation kernels until the flux converges or the maximum allowed Z dilation is reached
		for dilchan in range(dilateChanMax + 1):
			dd = dilchan * 2 + 1
			dilstruct = np.ones((dd,1,1))
			fluxes.append(objcube[nd.morphology.binary_dilation(objmask==sourceIDs[i], structure=dilstruct)].sum())
			if dilchan > 0 and (fluxes[-1] - fluxes[-2]) / fluxes[-1] < dilateThreshold:
				dilchan -= 1
				break
		# Pick the best Z dilation kernel for current object and update mask
		dd = dilchan * 2 + 1
		dilstruct = np.ones((dd,1,1))
		# Only grow the mask of object sourceIDs[i] even when other objects are present in objmask
		objmask[nd.morphology.binary_dilation(objmask==sourceIDs[i], structure=dilstruct).astype(int) == 1] = sourceIDs[i]

		# Loop through XY dilation kernels until the flux converges or the maximum allowed XY dilation is reached
		for dilpix in range(dilatePixMax + 1):
			dd = dilpix * 2 + 1
			dilstruct = (np.sqrt(((np.indices((dd, dd)) - dilpix)**2).sum(axis=0)) <= dilpix).astype(int)
			dilstruct.resize((1, dilstruct.shape[0], dilstruct.shape[1]))
			fluxes.append(objcube[nd.morphology.binary_dilation(objmask==sourceIDs[i], structure=dilstruct)].sum())
			if dilpix > 0 and (fluxes[-1] - fluxes[-2]) / fluxes[-1] < dilateThreshold:
				dilpix -= 1
				break
		# Pick the best XY dilation kernel for current object and update mask
		dd = dilpix * 2 + 1
		dilstruct = (np.sqrt(((np.indices((dd, dd)) - dilpix)**2).sum(axis=0)) <= dilpix).astype(int)
		dilstruct.resize((1, dilstruct.shape[0], dilstruct.shape[1]))
		# Only grow the mask of object sourceIDs[i] even when other objects are present in objmask
		objmask[nd.morphology.binary_dilation(objmask==sourceIDs[i], structure=dilstruct).astype(int) == 1] = sourceIDs[i]
		
		err.message("Mask of source {0:d} dilated by {2:d} chan and then by {1:d} pix.".format(sourceIDs[i], dilpix, dilchan))
		# Put back in objmask objects != sourceIDs[i] that may have been inside objmask before 
		# dilation or may have been temporarily replaced by the dilated object sourceIDs[i]
		if (otherobjs).sum():
			objmask[otherobjs] = allmask[otherobjs]
		mask[zmin:zmax+1, ymin:ymax+1, xmin:xmax+1] = objmask
		
		# Update n_pix, x_geo and n_chan
		n_pix = objmask[objmask == sourceIDs[i]].sum() / sourceIDs[i]
		ind = np.vstack(np.where(objmask == sourceIDs[i]))
		cgeo = (ind.sum(axis=1)).astype(float) / float(n_pix)
		x_geo, y_geo, z_geo = cgeo[2] + xmin, cgeo[1] + ymin, cgeo[0] + zmin
		zmin, zmax = min(ind[0]), max(ind[0]) + 1
		n_chan = zmax - zmin
		
		# Update n_los
		objmask[objmask != sourceIDs[i]] = 0
		maskSumA0 = objmask.sum(axis=0)
		maskSumA0[maskSumA0 > 1] = 1
		n_los = maskSumA0.sum()
		

		del objcube
		del objmask
		del allmask
		del otherobjs
	
		objects[i,list(cathead).index("x_min")]  = max(0, obj[list(cathead).index("x_min")] - dilpix)
		objects[i,list(cathead).index("x_max")]  = min(cube.shape[2] - 1, obj[list(cathead).index("x_max")] + dilpix)
		objects[i,list(cathead).index("y_min")]  = max(0, obj[list(cathead).index("y_min")] - dilpix)
		objects[i,list(cathead).index("y_max")]  = min(cube.shape[1] - 1, obj[list(cathead).index("y_max")] + dilpix)
		objects[i,list(cathead).index("z_min")]  = max(0, obj[list(cathead).index("z_min")] - dilchan)
		objects[i,list(cathead).index("z_max")]  = min(cube.shape[0] - 1, obj[list(cathead).index("z_max")] + dilchan)
		objects[i,list(cathead).index("n_pix")]  = n_pix
		objects[i,list(cathead).index("n_chan")] = n_chan
		objects[i,list(cathead).index("n_los")]  = n_los
		objects[i,list(cathead).index("x_geo")]  = x_geo
		objects[i,list(cathead).index("y_geo")]  = y_geo
		objects[i,list(cathead).index("z_geo")]  = z_geo
		
		
        
	return mask, objects
Ejemplo n.º 17
0
def parametrise(cube, mask, objects, cathead, catformt, catparunits, Parameters, dunits):
	cathead = np.array(cathead)
	objects = np.array(objects)
	initcatalog = cp.PySourceCatalog()
	
	for obj in objects:
		# Check flags
		source_flag = create_source_flags(cube, mask, cathead, obj[cathead == "id"], obj[cathead == "x_min"], obj[cathead == "x_max"], obj[cathead == "y_min"], obj[cathead == "y_max"], obj[cathead == "z_min"], obj[cathead == "z_max"])
		
		newSource = cp.PySource()
		newSource.ID = obj[cathead == "id"]
		newParamsDict = {
			"flag": cp.PyMeasurement("flag", source_flag, 0.0, ""),
			"x": cp.PyMeasurement("x", obj[cathead == "x_geo"], 0.0, ""),
			"y": cp.PyMeasurement("y", obj[cathead == "y_geo"], 0.0, ""),
			"z": cp.PyMeasurement("z", obj[cathead == "z_geo"], 0.0, ""),
			"x_min": cp.PyMeasurement("x_min", obj[cathead == "x_min"], 0.0, ""),
			"x_max": cp.PyMeasurement("x_max", obj[cathead == "x_max"], 0.0, ""),
			"y_min": cp.PyMeasurement("y_min", obj[cathead == "y_min"], 0.0, ""),
			"y_max": cp.PyMeasurement("y_max", obj[cathead == "y_max"], 0.0, ""),
			"z_min": cp.PyMeasurement("z_min", obj[cathead == "z_min"], 0.0, ""),
			"z_max": cp.PyMeasurement("z_max", obj[cathead == "z_max"], 0.0, "")
			}
		newSource.setParameters(newParamsDict)
		initcatalog.insert(newSource)
	
	moduleParametrizer = cp.PyModuleParametrisation()
	moduleParametrizer.setFlags(Parameters["parameters"]["optimiseMask"], Parameters["parameters"]["fitBusyFunction"])
	
	cube = cube.astype("<f4", copy=False)
	mask = mask.astype("<i2", copy=False)
	
	moduleParametrizer.run(cube, mask, initcatalog)
	results = moduleParametrizer.getCatalog()
	
	# Append the results to the objects array or reset
	replParam = ["x_min", "x_max", "y_min", "y_max", "z_min", "z_max", "id", "x", "y", "z", "n_pix"]
	origParam = ["x_min", "x_max", "y_min", "y_max", "z_min", "z_max", "id", "x", "y", "z", "n_pix"]
	d = results.getSources()
	
	# Select data set with maximum number of parameters
	parsListLen = [len(d[list(d.keys())[i]].getParameters()) for i in range(0, len(d))]
	index = parsListLen.index(max(parsListLen))
	
	# Add parameter names from parameterisation
	pars = d[list(d.keys())[index]].getParameters()
	cathead = list(cathead)
	newunits = {
		"id": "-",
		"flag": "-",
		"x": "pix",
		"y": "pix",
		"z": "pix",
		"err_x": "pix",
		"err_y": "pix",
		"err_z": "pix",
		"x_min": "pix",
		"x_max": "pix",
		"y_min": "pix",
		"y_max": "pix",
		"z_min": "chan",
		"z_max": "chan",
		"w50": "chan",
		"w20": "chan",
		"err_w50": "chan",
		"err_w20": "chan",
		"wm50": "chan",
		"f_wm50": dunits,
		"ell_maj": "pix",
		"ell_min": "pix",
		"ell_pa": "deg",
		"ell3s_maj": "pix",
		"ell3s_min": "pix",
		"ell3s_pa": "deg",
		"kin_pa": "deg",
		"f_int": dunits,
		"bf_flag": "-",
		"bf_chi2": "-",
		"bf_z": "chan",
		"bf_a": dunits,
		"bf_b1": "chan**(-1)",
		"bf_b2": "chan**(-1)",
		"bf_c": "chan**(-2)",
		"bf_xe": "chan",
		"bf_xp": "chan",
		"bf_w": "chan",
		"bf_w50": "chan",
		"bf_w20": "chan",
		"bf_f_peak": dunits,
		"bf_f_int": dunits,
		"rms": dunits,
		"f_peak": dunits,
		"snr_int": "-"
		}
	catformt = list(catformt)
	catparunits = list(catparunits)
	
	for i in sorted(pars):
		if i not in replParam:
			cathead.append(i)
			catformt.append("%16.8f")
			catparunits.append(newunits[i])
	
	# Extend the parameter array
	tmpObjects = np.empty((objects.shape[0], len(cathead)))
	tmpObjects[:, :] = np.nan
	tmpObjects[:, 0:objects.shape[1]] = objects
	objects = tmpObjects
	
	for i in d:
		source_dict = d[i].getParameters()
		
		# Check source index
		ID = int(source_dict["id"].getValue())
		IDind = cathead.index("id")
		
		ind = np.where(objects[:,IDind]==ID)[0][0]

		for j in sorted(source_dict):
			if j in replParam:
				objects[ind][cathead.index(origParam[replParam.index(j)])] = source_dict[j].getValue()
			else:
				objects[ind][cathead.index(j)] = source_dict[j].getValue()
	
	objects = np.array(objects)
	cathead = np.array(cathead)
	catparunits = np.array(catparunits)
	catformt = np.array(catformt)
	
	# if mask optimization is enabled, some parameters from the linker have to be updated
	if Parameters["parameters"]["optimiseMask"]:
		for i in range(objects.shape[0]):
			# bounding box coordinates
			coord = []
			for c in ["x_min", "x_max", "y_min", "y_max", "z_min", "z_max"]:
				coord.append(int(objects[i, cathead == c]))
			# cut out object submask
			submask = mask[coord[4]:coord[5] + 1, coord[2]:coord[3] + 1, coord[0]:coord[1] + 1]
			objID = objects[i, cathead == "id"]
			submask[submask!=objID] = 0
			
			# Update n_pix, x_geo and n_chan
			n_pix = submask.sum() / objID
			ind = np.vstack(np.where(submask == objID))
			cgeo = (ind.sum(axis=1)).astype(float) / float(n_pix)
			x_geo, y_geo, z_geo = cgeo[2] + coord[0], cgeo[1] + coord[2], cgeo[0] + coord[4]
			zmin, zmax = min(ind[0]), max(ind[0]) + 1
			n_chan = zmax - zmin
			
			# Update n_los
			submaskSumA0 = submask.sum(axis=0)
			submaskSumA0[submaskSumA0 > 1] = 1
			n_los = submaskSumA0.sum()
			
			objects[i, cathead == "n_pix"]  = n_pix
			objects[i, cathead == "n_chan"] = n_chan
			objects[i, cathead == "n_los"]  = n_los
			objects[i, cathead == "x_geo"]  = x_geo
			objects[i ,cathead == "y_geo"]  = y_geo
			objects[i, cathead == "z_geo"]  = z_geo
		del submask
	
	err.message("Parameterisation complete.")
	
	return cube, mask, objects, cathead, catformt, catparunits
Ejemplo n.º 18
0
def sigma_scale(cube, scaleX=False, scaleY=False, scaleZ=True, edgeX=0, edgeY=0, edgeZ=0, statistic="mad", fluxRange="all", method="global", windowSpatial=20, windowSpectral=20, gridSpatial=0, gridSpectral=0, interpolation="none"):
	# Print some informational messages
	err.message("Generating noise-scaled data cube:")
	err.message("  Selecting " + str(method) + " noise measurement method.")
	
	if statistic == "mad": err.message("  Applying median absolute deviation to " + str(fluxRange) + " pixels.")
	if statistic == "std": err.message("  Applying standard deviation to " + str(fluxRange) + " pixels.")
	if statistic == "gauss": err.message("  Applying Gaussian fit to " + str(fluxRange) + " pixels.")
	if statistic == "negative": err.message("  Applying Gaussian fit to negative pixels.")
	
	# Check the dimensions of the cube (could be obtained from header information)
	dimensions = np.shape(cube)
	
	# LOCAL noise measurement within running window (slower and less memory-friendly)
	if method == "local":
		# Make window sizes integers >= 1
		windowSpatial = max(int(windowSpatial), 1)
		windowSpectral = max(int(windowSpectral), 1)
		
		# Ensure that window sizes are odd
		windowSpatial += (1 - windowSpatial % 2)
		windowSpectral += (1 - windowSpectral % 2)
		
		# Set grid sizes to half the window sizes if undefined
		if not gridSpatial: gridSpatial = windowSpatial // 2
		if not gridSpectral: gridSpectral = windowSpectral // 2
		
		# Make grid sizes integers >= 1
		gridSpatial = max(int(gridSpatial), 1)
		gridSpectral = max(int(gridSpectral), 1)
		
		# Ensure that grid sizes are odd
		gridSpatial += (1 - gridSpatial % 2)
		gridSpectral += (1 - gridSpectral % 2)
		
		# Print grid and window sizes adopted
		err.message("  Using grid size of [" + str(gridSpatial) + ", " + str(gridSpectral) + "]")
		err.message("  and window size of [" + str(windowSpatial) + ", " + str(windowSpectral) + "].")
		
		# Generate grid points to be used
		gridPointsZ = np.arange((dimensions[0] - gridSpectral * (int(math.ceil(float(dimensions[0]) / float(gridSpectral))) - 1)) // 2, dimensions[0], gridSpectral)
		gridPointsY = np.arange((dimensions[1] - gridSpatial  * (int(math.ceil(float(dimensions[1]) / float(gridSpatial)))  - 1)) // 2, dimensions[1], gridSpatial)
		gridPointsX = np.arange((dimensions[2] - gridSpatial  * (int(math.ceil(float(dimensions[2]) / float(gridSpatial)))  - 1)) // 2, dimensions[2], gridSpatial)
		
		# Divide grid and window sizes by 2 to get radii
		radiusGridSpatial = gridSpatial // 2
		radiusGridSpectral = gridSpectral // 2
		radiusWindowSpatial = windowSpatial // 2
		radiusWindowSpectral = windowSpectral // 2
		
		# Create empty cube (filled with NaN) to hold noise values
		rms_cube = np.full(cube.shape, np.nan, dtype=cube.dtype)
		
		# Determine RMS across window centred on grid cell
		for z in gridPointsZ:
			for y in gridPointsY:
				for x in gridPointsX:
					grid = (max(0, z - radiusGridSpectral), min(dimensions[0], z + radiusGridSpectral + 1), max(0, y - radiusGridSpatial), min(dimensions[1], y + radiusGridSpatial + 1), max(0, x - radiusGridSpatial), min(dimensions[2], x + radiusGridSpatial + 1))
					
					window = (max(0, z - radiusWindowSpectral), min(dimensions[0], z + radiusWindowSpectral + 1), max(0, y - radiusWindowSpatial), min(dimensions[1], y + radiusWindowSpatial + 1), max(0, x - radiusWindowSpatial), min(dimensions[2], x + radiusWindowSpatial + 1))
					
					if not np.all(np.isnan(cube[window[0]:window[1], window[2]:window[3], window[4]:window[5]])):
						if interpolation == "linear" or interpolation == "cubic":
							# Write value into grid point for later interpolation
							rms_cube[z, y, x] = GetRMS(cube[window[0]:window[1], window[2]:window[3], window[4]:window[5]], rmsMode=statistic, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=0)
						else:
							# Fill entire grid cell
							rms_cube[grid[0]:grid[1], grid[2]:grid[3], grid[4]:grid[5]] = GetRMS(cube[window[0]:window[1], window[2]:window[3], window[4]:window[5]], rmsMode=statistic, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=0)
					del grid, window
		
		# Carry out interpolation if requested, taking NaNs into account
		if interpolation == "linear" or interpolation == "cubic":
			err.message("  Interpolating in between grid points (" + str(interpolation) + ").")
			
			# First across each spatial plane
			if gridSpatial > 1:
				for z in gridPointsZ:
					for y in gridPointsY:
						data_values   = rms_cube[z, y, gridPointsX]
						not_nan = np.logical_not(np.isnan(data_values))
						if any(not_nan):
							interp_coords = np.arange(0, dimensions[2])
							if interpolation == "cubic":
								spline = InterpolatedUnivariateSpline(gridPointsX[not_nan], data_values[not_nan])
								rms_cube[z, y, 0:dimensions[2]] = spline(interp_coords)
								del spline
							else:
								interp_values = np.interp(interp_coords, gridPointsX[not_nan], data_values[not_nan])
								rms_cube[z, y, 0:dimensions[2]] = interp_values
								del interp_values
							del interp_coords
						del data_values, not_nan
					for x in range(dimensions[2]):
						data_values   = rms_cube[z, gridPointsY, x]
						not_nan = np.logical_not(np.isnan(data_values))
						if any(not_nan):
							interp_coords = np.arange(0, dimensions[1])
							if interpolation == "cubic":
								spline = InterpolatedUnivariateSpline(gridPointsY[not_nan], data_values[not_nan])
								rms_cube[z, 0:dimensions[1], x] = spline(interp_coords)
								del spline
							else:
								interp_values = np.interp(interp_coords, gridPointsY[not_nan], data_values[not_nan])
								rms_cube[z, 0:dimensions[1], x] = interp_values
								del interp_values
							del interp_coords
						del data_values, not_nan
					# Alternative option: 2-D spatial interpolation using SciPy's interp2d
					#from scipy.interpolate import interp2d
					#xx, yy = np.meshgrid(gridPointsX, gridPointsY)
					#data_values = rms_cube[z, yy, xx]
					#f = interp2d(gridPointsX, gridPointsY, data_values, kind="cubic")
					#interp_coords_x = np.arange(0, dimensions[2])
					#interp_coords_y = np.arange(0, dimensions[1])
					#rms_cube[z, :, :] = f(interp_coords_x, interp_coords_y)
			
			# Then along the spectral axis
			if gridSpectral > 1:
				for y in range(dimensions[1]):
					for x in range(dimensions[2]):
						data_values   = rms_cube[gridPointsZ, y, x]
						not_nan = np.logical_not(np.isnan(data_values))
						if any(not_nan):
							interp_coords = np.arange(0, dimensions[0])
							if interpolation == "cubic":
								spline = InterpolatedUnivariateSpline(gridPointsZ[not_nan], data_values[not_nan])
								rms_cube[0:dimensions[0], y, x] = spline(interp_coords)
								del spline
							else:
								interp_values = np.interp(interp_coords, gridPointsZ[not_nan], data_values[not_nan])
								rms_cube[0:dimensions[0], y, x] = interp_values
								del interp_values
							del interp_coords
						del data_values, not_nan
		
		# Replace any invalid RMS values with NaN
		with np.errstate(invalid="ignore"):
			rms_cube[rms_cube <= 0] = np.nan
		
		# Divide data cube by RMS cube
		cube /= rms_cube
		
		# Delete the RMS cube again to release its memory
		#del rms_cube
	
	# GLOBAL noise measurement on entire 2D plane (faster and more memory-friendly)
	else:
		# Define the range over which statistics are calculated
		z1 = int(edgeZ)
		z2 = int(dimensions[0] - edgeZ)
		y1 = int(edgeY)
		y2 = int(dimensions[1] - edgeY)
		x1 = int(edgeX)
		x2 = int(dimensions[2] - edgeX)
		
		# Make sure edges don't exceed cube size
		err.ensure(z1 < z2 and y1 < y2 and x1 < x2, "Edge size exceeds cube size for at least one axis.")
		
		# Create empty cube (filled with 1) to hold noise values
		rms_cube = np.ones(cube.shape, dtype=cube.dtype)
		
		# Measure noise across 2D planes and scale cube accordingly
		if scaleZ:
			for i in range(dimensions[0]):
				if not np.all(np.isnan(cube[i, y1:y2, x1:x2])):
					rms = GetRMS(cube[i, y1:y2, x1:x2], rmsMode=statistic, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=0)
					if rms > 0:
						rms_cube[i, :, :] *= rms
						cube[i, :, :] /= rms
		
		if scaleY:
			for i in range(dimensions[1]):
				if not np.all(np.isnan(cube[z1:z2, i, x1:x2])):
					rms = GetRMS(cube[z1:z2, i, x1:x2], rmsMode=statistic, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=0)
					if rms > 0:
						rms_cube[:, i, :] *= rms
						cube[:, i, :] /= rms
		
		if scaleX:
			for i in range(dimensions[2]):
				if not np.all(np.isnan(cube[z1:z2, y1:y2, i])):
					rms = GetRMS(cube[z1:z2, y1:y2, i], rmsMode=statistic, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=0)
					if rms > 0:
						rms_cube[:, :, i] *= rms
						cube[:, :, i] /= rms
	
	err.message("Noise-scaled data cube generated.\n")
	
	return cube, rms_cube
Ejemplo n.º 19
0
def import_mask(maskFile, header, axis_size, subcube):
	err.message("Loading mask cube:\n  " + str(maskFile))
	
	try:
		f = fits.open(maskFile, memmap=False)
		header_mask = f[0].header
	except:
		err.error("Failed to read mask cube.")
	
	# Extract axis sizes and types
	n_axes_mask, axis_size_mask, axis_type_mask = extract_axis_size(header_mask)
	
	# Ensure correct dimensionality
	check_cube_dimensions(n_axes_mask, axis_size_mask, cube_name="mask cube", min_dim = 1, max_dim = 4)
	
	# 1-D spectrum
	if n_axes_mask == 1:
		err.warning("Mask cube has 1 axis; interpreted as spectrum.\nAdding first and second axis.")
		ensure(header_mask['CRVAL1'] == header['CRVAL1'], "Input cube and mask are not on the same WCS grid.")
		
		if len(subcube) == 6:
			if header_mask["NAXIS1"] == axis_size[2]:
				err.message("  Input mask cube already matches size of data subcube.\n  No subcube selection applied.")
				mask = np.reshape(f[0].data, (-1, 1, 1))
			elif header_mask["NAXIS1"] == fullshape[0]:
				err.message("  Subcube selection applied to input mask cube.")
				mask = np.reshape(f[0].section[subcube[4]:subcube[5]], (-1, 1, 1))
			else:
				err.error("Data subcube does not match size of mask subcube or full mask.")
		elif not len(subcube):
			mask = np.reshape(f[0].data, (-1, 1, 1))
		else:
			err.error("The subcube list must have 6 entries ({0:d} given).".format(len(subcube)))
	
	# 2-D image
	elif n_axes_mask == 2:
		err.ensure(header_mask["CRVAL1"] == header["CRVAL1"] and header_mask["CRVAL2"] == header["CRVAL2"],
			"Input cube and mask are not on the same WCS grid.")
		
		if len(subcube) == 6 or len(subcube) == 4:
			if header_mask["NAXIS1"] == axis_size[0] and header_mask["NAXIS2"] == axis_size[1]:
				err.message("  Input mask cube already matches size of data subcube.\n  No subcube selection applied.")
				mask = np.array([f[0].data])
			elif header_mask["NAXIS1"] == fullshape[2] and header_mask["NAXIS2"] == fullshape[1]:
				err.message("  Subcube selection applied to input mask cube.")
				mask = np.array([f[0].section[subcube[2]:subcube[3], subcube[0]:subcube[1]]])
			else:
				err.error("Data subcube does not match size of mask subcube or full mask.")
		else: mask = np.array([f[0].data])
	
	# 3-D cube
	elif n_axes_mask == 3:
		err.ensure(header_mask["CRVAL1"] == header["CRVAL1"] and header_mask["CRVAL2"] == header["CRVAL2"] and header_mask["CRVAL3"] == header["CRVAL3"], "Input cube and mask are not on the same WCS grid.")
		
		if len(subcube) == 6:
			if header_mask["NAXIS1"] == axis_size[0] and header_mask["NAXIS2"] == axis_size[1] and header_mask["NAXIS3"] == axis_size[2]:
				err.message("  Input mask cube already matches size of data subcube.\n  No subcube selection applied.")
				mask = f[0].data
			elif header_mask["NAXIS1"] == fullshape[2] and header_mask["NAXIS2"] == fullshape[1] and header_mask["NAXIS3"] == fullshape[0]:
				err.message("  Subcube selection applied to input mask cube.")
				mask = f[0].section[subcube[4]:subcube[5], subcube[2]:subcube[3], subcube[0]:subcube[1]]
			else:
				err.error("Data subcube does not match size of mask subcube or full mask.")
		else: mask = f[0].data
	
	# 4-D hypercube
	else:
		err.ensure(header_mask["CRVAL1"] == header["CRVAL1"] and header_mask["CRVAL2"] == header["CRVAL2"] and header_mask["CRVAL3"] == header["CRVAL3"], "Input cube and mask are not on the same WCS grid.")
		
		if len(subcube) == 6:
			if header_mask["NAXIS1"] == axis_size[0] and header_mask["NAXIS2"] == axis_size[1] and header_mask["NAXIS3"] == axis_size[2]:
				err.message("  Input mask cube already matches size of data subcube.\n  No subcube selection applied.")
				mask = f[0].section[0]
			elif header_mask["NAXIS1"] == fullshape[2] and header_mask["NAXIS2"] == fullshape[1] and header_mask["NAXIS3"] == fullshape[0]:
				err.message("  Subcube selection applied to input mask cube.")
				mask = f[0].section[0, subcube[4]:subcube[5], subcube[2]:subcube[3], subcube[0]:subcube[1]]
			else:
				err.error("Data subcube does not match size of mask subcube or full mask.")
		else: mask = f[0].section[0]
	
	mask[mask > 0] = 1
	f.close()
	err.message("Mask cube loaded.")
	
	# In all cases, convert mask to Boolean with masked pixels set to 1.
	return (mask > 0).astype(bool)
Ejemplo n.º 20
0
def apply_flagging(data, flagFile, flagRegions, subcube):
	# -------------------------------
	# Apply flagging cube if provided
	# -------------------------------
	if flagFile:
		err.message("Applying flagging cube:\n  " + str(flagFile))
		
		try:
			f = fits.open(flagFile, memmap=False)
			header_flags = f[0].header
		except:
			err.error("Failed to read flagging cube.")
			
		# Extract axis sizes and types
		n_axes_flags, axis_size_flags, axis_type_flags = extract_axis_size(header_flags)
		
		# Ensure correct dimensionality
		check_cube_dimensions(n_axes_flags, axis_size_flags, cube_name="flagging cube")
		
		# Apply flagging
		# 2-D image
		if n_axes_flags == 2:
			for chan in range(data.shape[0]):
				if len(subcube) == 6 or len(subcube) == 4:
					data[chan][np.isnan(f[0].section[subcube[2]:subcube[3], subcube[0]:subcube[1]])] = np.nan
				else:
					data[chan][np.isnan(np.array([f[0].data]))] = np.nan
		
		# 3-D cube
		elif n_axes_flags == 3:
			if len(subcube) == 6:
				data[np.isnan(f[0].section[subcube[4]:subcube[5], subcube[2]:subcube[3], subcube[0]:subcube[1]])] = np.nan
			else:
				data[np.isnan(f[0].data)] = np.nan
		
		# 4-D hypercube
		else:
			if len(subcube) == 6:
				data[np.isnan(f[0].section[0, subcube[4]:subcube[5], subcube[2]:subcube[3], subcube[0]:subcube[1]])] = np.nan
			else:
				data[np.isnan(f[0].section[0])] = np.nan
		
		f.close()
		err.message("Flagging cube applied.")
	
	# ----------------------------------
	# Apply flagging regions if provided
	# ----------------------------------
	if flagRegions:
		err.message("Applying flagging regions:\n  " + str(flagRegions))
		dim = len(data.shape)
		
		try:
			for region in flagRegions:
				for i in range(0, len(region) / 2):
					if region[2 * i + 1] == "":
						region[2 * i + 1] = data.shape[dim - i - 1]
				if len(region) == 2:
					data[0, region[2]:region[3], region[0]:region[1]] = np.nan
				else:
					data[region[4]:region[5], region[2]:region[3], region[0]:region[1]] = np.nan
			err.message("Flagging regions applied.")
		except:
			err.error("Flagging did not succeed. Please check the dimensions\nof your data cube and flagging regions.")
	
	return data
Ejemplo n.º 21
0
def get_subcube_range(header, n_axes, axis_size, subcube, subcubeMode):
	# Basic sanity checks
	err.ensure(
		subcubeMode in {"pixel", "world"},
		"Subcube mode must be 'pixel' or 'world'.")
	err.ensure(
		(len(subcube) == 4 and n_axes == 2) or (len(subcube) == 6 and n_axes > 2),
		"Subcube range must contain 4 values for 2-D cubes\n"
		"or 6 values for 3-D/4-D cubes.")
	
	# -----------------
	# World coordinates
	# -----------------
	if subcubeMode == "world":
		# Read WCS information
		try:
			wcsin = wcs.WCS(header)
		except:
			err.error("Failed to read WCS information from data cube header.")
		
		# Calculate cos(dec) correction for RA range:
		if wcsin.wcs.cunit[0] == "deg" and wcsin.wcs.cunit[1] == "deg":
			corrfact = math.cos(math.radians(subcube[1]))
		
		if n_axes == 4:
			subcube = wcsin.wcs_world2pix(np.array([[subcube[0] - subcube[3] / corrfact, subcube[1] - subcube[4], subcube[2] - subcube[5], 0], [subcube[0] + subcube[3] / corrfact, subcube[1] + subcube[4], subcube[2] + subcube[5], 0]]), 0)[:, :3]
		elif n_axes == 3:
			subcube = wcsin.wcs_world2pix(np.array([[subcube[0] - subcube[3] / corrfact, subcube[1] - subcube[4], subcube[2] - subcube[5]], [subcube[0] + subcube[3] / corrfact, subcube[1] + subcube[4], subcube[2] + subcube[5]]]), 0)
		elif n_axes == 2:
			subcube = wcsin.wcs_world2pix(np.array([[subcube[0] - subcube[2] / corrfact, subcube[1] - subcube[3]], [subcube[0] + subcube[2] / corrfact, subcube[1] + subcube[3]]]), 0)
		else:
			err.error("Unsupported number of axes.")
		
		# Flatten array
		subcube = np.ravel(subcube, order="F")
		
		# Ensure that min pix coord < max pix coord for all axes.
		# This operation is meaningful because wcs_world2pix returns negative pixel coordinates
		# only for pixels located before an axis' start (i.e., negative pixel coordinates should
		# not be interpreted as counting backward from an axis' end).
		subcube[0], subcube[1] = correct_order(subcube[0], subcube[1])
		subcube[2], subcube[3] = correct_order(subcube[2], subcube[3])
		if len(subcube) == 6: subcube[4], subcube[5] = correct_order(subcube[4], subcube[5])
		
		# Convert to integer
		subcube = list(subcube.astype(int))
		
		# Constrain subcube to be within cube boundaries
		for axis in range(min(3, n_axes)):
			err.ensure(subcube[2 * axis + 1] >= 0 and subcube[2 * axis] < axis_size[axis],
				"Subcube outside input cube range for axis {0:d}.".format(axis))
			subcube[2 * axis] = max(subcube[2 * axis], 0)
			subcube[2 * axis + 1] = min(subcube[2 * axis + 1] + 1, axis_size[axis])
	
	# -----------------
	# Pixel coordinates
	# -----------------
	else:
		# Ensure that pixel coordinates are integers
		for value in subcube:
			err.ensure(type(value) == int, "Subcube boundaries must be integer values.")
		
		# Sanity checks on boundaries
		for axis in range(min(3, n_axes)):
			# Ensure correct order
			err.ensure(subcube[2 * axis] < subcube[2 * axis + 1],
				"Lower subcube boundary greater than upper boundary.\nPlease check your input.")
			# Adjust lower boundary
			subcube[2 * axis] = max(subcube[2 * axis], 0)
			subcube[2 * axis] = min(subcube[2 * axis], axis_size[axis] - 1)
			# Adjust upper boundary:
			subcube[2 * axis + 1] = max(subcube[2 * axis + 1], 1)
			subcube[2 * axis + 1] = min(subcube[2 * axis + 1], axis_size[axis])
	
	# Report final subcube boundaries
	err.message("  Loading subcube of range " + str(subcube) + '.')
	
	return subcube
Ejemplo n.º 22
0
			"The directory already exists and is not empty. You can do one\n"
			"of the following:\n\n"
			"1) Enable automatic overwrite in the GUI or parameter file\n"
			"2) Change base name and/or output directory in the GUI or\n"
			"   parameter file\n"
			"3) Delete or rename the existing directory", fatal=True, frame=True)
	return



# -----------------------------------------------
# ---- Check if parameter file name provided ----
# -----------------------------------------------

if len(sys.argv) != 2:
	err.message("\n\033[1;4mUsage:\033[24m sofia_pipeline.py \033[3m<filename>\033[0m\n\nThe filename of a valid SoFiA parameter file must be specified. Please\nadd the full path if the file is not located in the current directory.\n\n")
	sys.exit(1)



# -----------------------------------------------
# ---- Print some initial status information ----
# -----------------------------------------------

err.print_progress_message("Running the SoFiA pipeline")
err.message(
	"    Using: SoFiA   " + sofia_version + "\n"
	"           Python  " + str(sys.version_info[0]) + "." + str(sys.version_info[1]) + "." + str(sys.version_info[2]) + "\n"
	"           NumPy   " + np.__version__ + "\n"
	"           SciPy   " + scipy_version + "\n"
	"           Astropy " + astropy_version + "\n")
Ejemplo n.º 23
0
def GetRMS(cube, rmsMode="negative", fluxRange="all", zoomx=1, zoomy=1, zoomz=1, verbose=0, min_hist_peak=0.05, sample=1, twoPass=False):
	"""
	Description of arguments
	------------------------
	rmsMode    Select which algorithm should be used for calculating the noise.
	           Allowed options:
	             'std'       Standard deviation about 0.
	             'mad'       Median absolute deviation about 0.
	             'moment'    2nd moment of flux histogram, assuming a 1st moment of 0.
	             'gauss'     Width of Gaussian fitted to flux histogram, assuming a centroid of 0.
	             'negative'  Width of Gaussian fitted to negative side of the flux histogram,
	                         again assuming a centroid of 0. This is a legacy option and may be
	                         removed from SoFiA in the future.
	fluxRange  Define which part of the data are to be used in the noise measurement.
	           Allowed options:
	             'negative'  Use only pixels with negative flux.
	             'positive'  Use only pixels with positive flux.
	             'all'       Use both positive and negative (i.e. all) pixels.
	verbose    Print additional progress messages if set to True.
	twoPass    Run a second pass of MAD and STD, this time with a clip level of 5 times
	           the RMS from the first pass.
	"""
	
	# Check input for sanity
	if fluxRange != "all" and fluxRange != "positive" and fluxRange != "negative":
		sys.stderr.write("WARNING: Illegal value of fluxRange = '" + str(fluxRange) + "'.\n")
		sys.stderr.write("         Using default value of 'all' instead.\n")
		fluxRange = "all"
	if rmsMode != "std" and rmsMode != "mad" and rmsMode != "negative" and rmsMode != "gauss" and rmsMode != "moment":
		sys.stderr.write("WARNING: Illegal value of rmsMode = '" + str(rmsMode) + "'.\n")
		sys.stderr.write("         Using default value of 'mad' instead.\n")
		rmsMode = "mad"
	
	# Ensure that we have a 3D cube
	if len(cube.shape) == 2: cube = np.array([cube])
	
	x0, x1 = int(math.ceil((1 - 1.0 / zoomx) * cube.shape[2] / 2)), int(math.floor((1 + 1.0 / zoomx) * cube.shape[2] / 2)) + 1
	y0, y1 = int(math.ceil((1 - 1.0 / zoomy) * cube.shape[1] / 2)), int(math.floor((1 + 1.0 / zoomy) * cube.shape[1] / 2)) + 1
	z0, z1 = int(math.ceil((1 - 1.0 / zoomz) * cube.shape[0] / 2)), int(math.floor((1 + 1.0 / zoomz) * cube.shape[0] / 2)) + 1
	err.message("    Estimating rms on subcube (x,y,z zoom = %.0f,%.0f,%.0f) ..." % (zoomx, zoomy, zoomz), verbose)
	err.message("    Estimating rms on subcube sampling every %i voxels ..." % (sample), verbose)
	err.message("    ... Subcube shape is " + str(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample].shape) + " ...", verbose)
	
	
	# Check if only negative or positive pixels are to be used:
	if fluxRange == "negative":
		with np.errstate(invalid="ignore"):
			halfCube = cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][cube[z0:z1:sample, y0:y1:sample, x0:x1:sample] < 0]
		err.ensure(halfCube.size, "Cannot measure noise from negative flux values.\nNo negative fluxes found in data cube.")
	elif fluxRange == "positive":
		with np.errstate(invalid="ignore"):
			halfCube = cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][cube[z0:z1:sample, y0:y1:sample, x0:x1:sample] > 0]
		err.ensure(halfCube.size, "Cannot measure noise from positive flux values.\nNo positive fluxes found in data cube.")
	# NOTE: The purpose of the with... statement is to temporarily disable certain warnings, as otherwise the
	#       Python interpreter would print a warning whenever a value of NaN is compared to 0. The comparison
	#       is defined to yield False, which conveniently removes NaNs by default without having to do that
	#       manually in a separate step, but the associated warning message is unfortunately a nuisance.
	
	
	# GAUSSIAN FIT TO NEGATIVE FLUXES
	if rmsMode == "negative":
		nrbins = max(100, int(math.ceil(float(cube.size) / 1e+5)))
		
		cubemin = np.nanmin(cube)
		err.ensure(cubemin < 0, "Cannot estimate noise from Gaussian fit to negative flux\nhistogram; no negative fluxes found in data cube.")
		
		bins = np.arange(cubemin, abs(cubemin) / nrbins - 1e-12, abs(cubemin) / nrbins)
		fluxval = (bins[:-1] + bins[1:]) / 2
		rmshisto = np.histogram(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][~np.isnan(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])], bins=bins)[0]
		
		nrsummedbins = 0
		while rmshisto[-nrsummedbins-1:].sum() < min_hist_peak * rmshisto.sum(): nrsummedbins += 1
		
		if nrsummedbins:
			if verbose: sys.stdout.write("    ... adjusting bin size to get a fraction of voxels in central bin >= " + str(min_hist_peak) + "\n")
			nrbins /= (nrsummedbins + 1)
			bins = np.arange(cubemin, abs(cubemin) / nrbins - 1e-12, abs(cubemin) / nrbins)
			fluxval = (bins[:-1] + bins[1:]) / 2.0
			rmshisto = np.histogram(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][~np.isnan(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])], bins=bins)[0]
		
		rms = abs(sp.optimize.curve_fit(Gaussian, fluxval, rmshisto, p0=[rmshisto.max(), -fluxval[rmshisto < rmshisto.max() / 2.0].max() * 2.0 / 2.355])[0][1])
	
	# GAUSSIAN FIT TO FLUX HISTOGRAM / SECOND MOMENT OF FLUX HISTOGRAM
	elif rmsMode == "gauss" or rmsMode == "moment":
		nBins = 100
		dataMin = float(np.nanmin(cube))
		dataMax = float(np.nanmax(cube))
		err.ensure(dataMin < dataMax, "Maximum not greater than minimum. Cannot determine noise level.")
		
		if fluxRange == "negative":
			# Set upper limit to 0
			err.ensure(dataMin < 0.0, "Minimum > 0. Cannot determine noise level for negative pixels.")
			dataMax = 0.0
		elif fluxRange == "positive":
			# Set lower limit to 0
			err.ensure(dataMax > 0.0, "Maximum < 0. Cannot determine noise level for positive pixels.")
			dataMin = 0.0
		else:
			# Select the smallest of the two for both limits
			err.ensure(dataMin < 0.0 and dataMax > 0.0, "Noise values not scattered around 0. Cannot measure noise level.")
			dataMin = -min(abs(dataMin), abs(dataMax))
			dataMax =  min(abs(dataMin), abs(dataMax))
		
		binWidth = (dataMax - dataMin) / float(nBins)
		bins = np.arange(dataMin, dataMax, binWidth)
		binCtr = (bins[:-1] + bins[1:]) / 2.0
		hist = np.histogram(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][~np.isnan(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])], bins=bins)[0]
		
		# Calculate 2nd moment
		mom2 = moment2(binCtr, hist)
		
		# Adjust bin size if necessary
		counter = 0
		while mom2 < 5.0 * binWidth and counter < 2:
			counter += 1
			err.message("Increasing number of bins by factor of " + str(int(20.0 * binWidth / mom2)) + " for Gaussian fit.")
			nBins = int(nBins * 20.0 * binWidth / mom2)
			binWidth = (dataMax - dataMin) / float(nBins)
			binCtr = (bins[:-1] + bins[1:]) / 2.0
			hist = np.histogram(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][~np.isnan(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])], bins=bins)[0]
			mom2 = moment2(binCtr, hist)
		
		# Carry out Gaussian fitting if requested
		if rmsMode == "gauss": rms = abs(sp.optimize.curve_fit(Gaussian, binCtr, hist, p0=[hist.max(), mom2])[0][1])
		else: rms = mom2
	
	# MEDIAN ABSOLUTE DEVIATION
	elif rmsMode == "mad":
		if fluxRange == "all":
			# NOTE: Here we assume that the median of the data is zero!
			rms = 1.4826 * nanmedian(abs(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample]), axis=None)
			if twoPass:
				err.message("Repeating noise estimation with 5-sigma clip.", verbose)
				with np.errstate(invalid="ignore"):
					rms = 1.4826 * nanmedian(abs(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][abs(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample]) < 5.0 * rms]), axis=None)
		else:
			# NOTE: Here we assume that the median of the data is zero! There are no more NaNs in halfCube.
			rms = 1.4826 * np.median(abs(halfCube), axis=None)
			if twoPass:
				err.message("Repeating noise estimation with 5-sigma clip.", verbose)
				rms = 1.4826 * np.median(abs(halfCube[abs(halfCube) < 5.0 * rms]), axis=None)
	
	# STANDARD DEVIATION
	elif rmsMode == "std":
		if fluxRange == "all":
			# NOTE: Here we assume that the mean of the data is zero!
			rms = nan_standard_deviation(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])
			if twoPass:
				err.message("Repeating noise estimation with 5-sigma clip.", verbose)
				with np.errstate(invalid="ignore"):
					rms = nan_standard_deviation(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][abs(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample]) < 5.0 * rms])
		else:
			# NOTE: Here we assume that the mean of the data is zero! There are no more NaNs in halfCube.
			rms = standard_deviation(halfCube)
			if twoPass:
				err.message("Repeating noise estimation with 5-sigma clip.", verbose)
				rms = standard_deviation(halfCube[abs(halfCube) < 5.0 * rms])
	
	err.message("    ... %s rms = %.2e (data units)" % (rmsMode, rms), verbose)
	
	return rms
Ejemplo n.º 24
0
def SCfinder_mem(cube, mask, header, t0, kernels=[[0, 0, 0, "b"],], threshold=3.5, sizeFilter=0, maskScaleXY=2.0, maskScaleZ=2.0, kernelUnit="pixel", edgeMode="constant", rmsMode="negative", fluxRange="all", verbose=0):
	# Define a few constants
	FWHM_CONST    = 2.0 * math.sqrt(2.0 * math.log(2.0))   # Conversion between sigma and FWHM of Gaussian function
	MAX_PIX_CONST = 1.0e+6                                 # Maximum number of pixels for noise calculation; sampling is set accordingly
	
	# Check for NaN in cube
	found_nan = np.isnan(cube).any()
	
	# Set sampling sampleRms for rms measurement
	sampleRms = max(1, int((float(cube.size) / MAX_PIX_CONST)**(1.0 / min(3, len(cube.shape)))))
	
	# Measure noise in original cube with sampling "sampleRms"
	rms = GetRMS(cube, rmsMode=rmsMode, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=verbose, sample=sampleRms)
	
	# Loop over all kernels
	for kernel in kernels:
		[kx, ky, kz, kt] = kernel
		if verbose:
			err.linebreak()
			err.print_progress_time(t0)
			err.message("    Filter {0:} {1:} {2:} {3:} ...".format(kx, ky, kz, kt))
		if kernelUnit == "world" or kernelUnit == "w":
			if verbose: err.message("    Converting filter size to pixels ...")
			kx = abs(float(kx) / header["CDELT1"])
			ky = abs(float(ky) / header["CDELT2"])
			kz = abs(float(kz) / header["CDELT3"])
		if kt == "b":
			if kz != int(math.ceil(kz)) and verbose: err.warning("Rounding width of boxcar z kernel to next integer.")
			kz = int(math.ceil(kz))
		
		# Create a copy of the original cube
		cube_smooth = np.copy(cube)
		
		# Replace all NaNs with zero
		if found_nan:
			cube_smooth[np.isnan(cube)] = 0.0
		
		cube_smooth[(cube_smooth > 0) & (mask > 0)] = maskScaleXY * rms
		cube_smooth[(cube_smooth < 0) & (mask > 0)] = -maskScaleXY * rms
		
		# Spatial smoothing
		if kx + ky:
			cube_smooth = ndimage.filters.gaussian_filter(cube_smooth, [0, ky / FWHM_CONST, kx / FWHM_CONST], mode=edgeMode)
		
		# Spectral smoothing
		if kz:
			if   kt == "b": cube_smooth = ndimage.filters.uniform_filter1d(cube_smooth, kz, axis=0, mode=edgeMode)
			elif kt == "g": cube_smooth = ndimage.filters.gaussian_filter1d(cube_smooth, kz / FWHM_CONST, axis=0, mode=edgeMode)
		
		# Re-insert the NaNs taken out earlier
		if found_nan:
			cube_smooth[np.isnan(cube)] = np.nan
		
		# Calculate the RMS of the smoothed cube:
		rms_smooth = GetRMS(cube_smooth, rmsMode=rmsMode, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=verbose, sample=sampleRms)
		
		# Add pixels above threshold to mask by setting bit 1
		with np.errstate(invalid="ignore"):
			mask |= (np.absolute(cube_smooth) >= threshold * rms_smooth)
			#mask = np.bitwise_or(mask, np.greater_equal(np.absolute(cube_smooth), threshold * rms_smooth))
		
		# Delete smoothed cube again
		del cube_smooth
	return
Ejemplo n.º 25
0
def writeMoments(datacube, maskcube, filename, debug, header, compress, write_mom, flagOverwrite):
	# Exit if nothing is to be done
	if not any(write_mom):
		err.warning("No moment maps requested; skipping moment map generation.")
		return
	
	# ---------------------------
	# Number of detected channels
	# ---------------------------
	nrdetchan = (maskcube > 0).sum(axis=0)
	if np.nanmax(nrdetchan) < 65535:
		nrdetchan = nrdetchan.astype("int16")
	else:
		nrdetchan = nrdetchan.astype("int32")
	
	hdu = pyfits.PrimaryHDU(data=nrdetchan, header=header)
	hdu.header["BUNIT"] = "Nchan"
	hdu.header["DATAMIN"] = np.nanmin(nrdetchan)
	hdu.header["DATAMAX"] = np.nanmax(nrdetchan)
	hdu.header["ORIGIN"] = sofia_version_full
	glob.delete_header(hdu.header, "CTYPE3")
	glob.delete_header(hdu.header, "CRPIX3")
	glob.delete_header(hdu.header, "CRVAL3")
	glob.delete_header(hdu.header, "CDELT3")
	
	name = str(filename) + "_nrch.fits"
	if compress: name += ".gz"
	
	# Check for overwrite flag
	if not flagOverwrite and os.path.exists(name):
		err.error("Output file exists: " + str(name) + ".", fatal=False)
	else:
		hdu.writeto(name, output_verify="warn", **__astropy_arg_overwrite__)
	
	# ----------------------
	# Moment 0, 1 and 2 maps
	# ----------------------
	# WARNING: The generation of moment maps will mask the copy of the data cube held
	#          in memory by SoFiA. If you wish to use the original data cube after
	#          this point, please reload it first!
	datacube[maskcube == 0] = 0
	
	# Regrid cube if necessary
	if "CELLSCAL" in header and header["CELLSCAL"] == "1/F":
		err.warning(
			"CELLSCAL keyword with value of 1/F found.\n"
			"Will regrid data cube before creating moment images.")
		datacube = glob.regridMaskedChannels(datacube, maskcube, header)
	
	# ALERT: Why are we doing this?
	#datacube = np.array(datacube, dtype=np.single)
	
	# Extract relevant WCS parameters
	if glob.check_wcs_info(header):
		width = header["CDELT3"]
		chan0 = header["CRPIX3"]
		freq0 = header["CRVAL3"]
		mom_scale_factor = 1.0
		
		# Velocity
		if glob.check_header_keywords(glob.KEYWORDS_VELO, header["CTYPE3"]):
			if not "CUNIT3" in header or header["CUNIT3"].lower() == "m/s":
				# Assuming m/s and converting to km/s
				mom_scale_factor = 1.0e-3
				unit_spec = "km/s"
			elif header["CUNIT3"].lower() == "km/s":
				# Assuming km/s
				unit_spec = "km/s"
			else:
				# Working with whatever velocity units the cube has
				unit_spec = str(header["CUNIT3"])
		# Frequency
		elif glob.check_header_keywords(glob.KEYWORDS_FREQ, header["CTYPE3"]):
			if not "CUNIT3" in header or header["CUNIT3"].lower() == "hz":
				# Assuming Hz
				unit_spec = "Hz"
			elif header["CUNIT3"].lower() == "khz":
				# Assuming kHz and converting to Hz
				mom_scale_factor = 1.0e+3
				unit_spec = "Hz"
			else:
				# Working with whatever frequency units the cube has
				unit_spec = str(header["CUNIT3"])
	else:
		err.warning("Axis descriptors missing from FITS file header.\nMoment maps will not be scaled!")
		width = 1.0
		chan0 = 0.0
		freq0 = 0.0
		mom_scale_factor = 1.0
		unit_spec = "chan"
	
	# Prepare moment maps
	# NOTE: We are making use of NumPy's array broadcasting rules here to avoid
	#       having to cast array sizes to the full 3-D data cube size!
	moments = [None, None, None]
	with np.errstate(invalid="ignore"):
		if any(write_mom):
			# Definition of moment 0
			moments[0] = np.nansum(datacube, axis=0)
		
		if write_mom[1] or write_mom[2]:
			# Definition of moment 1
			velArr = ((np.arange(datacube.shape[0]) + 1.0 - chan0) * width + freq0).reshape((datacube.shape[0], 1, 1))
			moments[1] = np.divide(np.nansum(velArr * datacube, axis=0), moments[0])
		
		if write_mom[2]:
			# Definition of moment 2
			velArr = velArr - moments[1]
			moments[2] = np.sqrt(np.divide(np.nansum(velArr * velArr * datacube, axis=0), moments[0]))
	
	# Multiply moment 0 by channel width
	moments[0] *= abs(width)
	
	# Set up unit strings
	if "BUNIT" in header:
		unit_flux = str(header["BUNIT"])
		# Correct for common misspellings of "Jy[/beam]"
		if unit_flux.lower() == "jy":
			unit_flux = "Jy." + unit_spec
		elif unit_flux.lower() == "jy/beam":
			unit_flux = "Jy/beam." + unit_spec
		else:
			unit_flux += "." + unit_spec
	else:
		err.warning("Cannot determine flux unit; BUNIT missing from header.")
		unit_flux = ""
	unit_mom = [unit_flux, unit_spec, unit_spec]
	
	# Writing moment maps to disk
	for i in range(3):
		if write_mom[i] and moments[i] is not None:
			err.message("Writing moment {0:d} image.".format(i))
			moments[i] *= mom_scale_factor
			
			hdu = pyfits.PrimaryHDU(data=moments[i], header=header)
			hdu.header["BUNIT"] = unit_mom[i]
			hdu.header["DATAMIN"] = np.nanmin(moments[i])
			hdu.header["DATAMAX"] = np.nanmax(moments[i])
			hdu.header["ORIGIN"] = sofia_version_full
			hdu.header["CELLSCAL"] = "CONSTANT"
			glob.delete_header(hdu.header, "CRPIX3")
			glob.delete_header(hdu.header, "CRVAL3")
			glob.delete_header(hdu.header, "CDELT3")
			glob.delete_header(hdu.header, "CTYPE3")
			
			if debug:
				hdu.writeto(str(filename) + "_mom{0:d}.debug.fits".format(i), output_verify="warn", **__astropy_arg_overwrite__)
			else:
				name = str(filename) + "_mom{0:d}.fits".format(i)
				if compress: name += ".gz"
				
				# Check for overwrite flag
				if not flagOverwrite and os.path.exists(name):
					err.error("Output file exists: " + str(name) + ".", fatal=False)
				else:
					hdu.writeto(name, output_verify="warn", **__astropy_arg_overwrite__)
	
	return
Ejemplo n.º 26
0
def SCfinder_mem(cube, header, t0, kernels=[[0, 0, 0, "b"],], threshold=3.5, sizeFilter=0, maskScaleXY=2.0, maskScaleZ=2.0, kernelUnit="pixel", edgeMode="constant", rmsMode="negative", fluxRange="all", verbose=0):
	# Define a few constants
	FWHM_CONST    = 2.0 * math.sqrt(2.0 * math.log(2.0))   # Conversion between sigma and FWHM of Gaussian function
	MAX_PIX_CONST = 1e+6                                   # Maximum number of pixels for noise calculation; sampling is set accordingly
	
	# Create binary mask array
	msk = np.zeros(cube.shape, np.bool)
	found_nan = np.isnan(cube).sum()
	
	# Set sampling sampleRms for rms measurement
	sampleRms = max(1, int((float(np.array(cube.shape).prod()) / MAX_PIX_CONST)**(1.0 / min(3, len(cube.shape)))))
	
	# Measure noise in original cube with sampling "sampleRms"
	rms = GetRMS(cube, rmsMode=rmsMode, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=verbose, sample=sampleRms)
	
	# Loop over all kernels
	for kernel in kernels:
		[kx, ky, kz, kt] = kernel
		if verbose:
			err.linebreak()
			err.print_progress_time(t0)
			err.message("    Filter %s %s %s %s ..." % (kx, ky, kz, kt))
		if kernelUnit == "world" or kernelUnit == "w":
			if verbose: err.message("    Converting filter size to pixels ...")
			kx = abs(float(kx) / header["CDELT1"])
			ky = abs(float(ky) / header["CDELT2"])
			kz = abs(float(kz) / header["CDELT3"])
		if kt == "b":
			if kz != int(math.ceil(kz)) and verbose: err.warning("Rounding width of boxcar z kernel to next integer.")
			kz = int(math.ceil(kz))
		
		# Create a copy of the original cube
		smoothedCube = np.copy(cube)
		
		# Replace all NaNs with zero (and INFs with a finite number)
		if found_nan: smoothedCube = np.nan_to_num(smoothedCube)
		
		smoothedCube[(smoothedCube > 0) & (msk > 0)] = +maskScaleXY * rms
		smoothedCube[(smoothedCube < 0) & (msk > 0)] = -maskScaleXY * rms
		
		# Spatial smoothing
		if kx + ky:
			smoothedCube = ndimage.filters.gaussian_filter(smoothedCube, [0, ky / FWHM_CONST, kx / FWHM_CONST], mode=edgeMode)
		
		# Spectral smoothing
		if kz:
			if   kt == "b": smoothedCube = ndimage.filters.uniform_filter1d(smoothedCube, kz, axis=0, mode=edgeMode)
			elif kt == "g": smoothedCube = ndimage.filters.gaussian_filter1d(smoothedCube, kz / FWHM_CONST, axis=0, mode=edgeMode)
		
		# Re-insert the NaNs (but not the INFs) taken out earlier
		if found_nan: smoothedCube[np.isnan(cube)] = np.nan
		
		# Calculate the RMS of the smoothed cube:
		smoothedrms = GetRMS(smoothedCube, rmsMode=rmsMode, fluxRange=fluxRange, zoomx=1, zoomy=1, zoomz=1, verbose=verbose, sample=sampleRms)
		
		# Get rid of the NaNs a second time
		#if found_nan: smoothedCube = np.nan_to_num(smoothedCube)
		# NOTE: This should not be necessary because any comparison with NaN will always yield False.
		#       Hence, NaN pixels will never be included in the mask below.
		
		# Add pixels above threshold to mask by setting bit 1
		with np.errstate(invalid="ignore"):
			msk = np.bitwise_or(msk, np.greater_equal(np.absolute(smoothedCube), threshold * smoothedrms))
		
		# Delete smoothed cube again
		del smoothedCube
	return msk
Ejemplo n.º 27
0
def parametrise(cube, mask, objects, cathead, catformt, catparunits,
                Parameters, dunits):
    cathead = np.array(cathead)
    objects = np.array(objects)
    initcatalog = cp.PySourceCatalog()

    for obj in objects:
        # Check flags
        source_flag = create_source_flags(
            cube, mask, cathead, obj[cathead == "id"], obj[cathead == "x_min"],
            obj[cathead == "x_max"], obj[cathead == "y_min"],
            obj[cathead == "y_max"], obj[cathead == "z_min"],
            obj[cathead == "z_max"])

        newSource = cp.PySource()
        newSource.ID = obj[cathead == "id"]
        newParamsDict = {
            "flag": cp.PyMeasurement("flag", source_flag, 0.0, ""),
            "x": cp.PyMeasurement("x", obj[cathead == "x_geo"], 0.0, ""),
            "y": cp.PyMeasurement("y", obj[cathead == "y_geo"], 0.0, ""),
            "z": cp.PyMeasurement("z", obj[cathead == "z_geo"], 0.0, ""),
            "x_min": cp.PyMeasurement("x_min", obj[cathead == "x_min"], 0.0,
                                      ""),
            "x_max": cp.PyMeasurement("x_max", obj[cathead == "x_max"], 0.0,
                                      ""),
            "y_min": cp.PyMeasurement("y_min", obj[cathead == "y_min"], 0.0,
                                      ""),
            "y_max": cp.PyMeasurement("y_max", obj[cathead == "y_max"], 0.0,
                                      ""),
            "z_min": cp.PyMeasurement("z_min", obj[cathead == "z_min"], 0.0,
                                      ""),
            "z_max": cp.PyMeasurement("z_max", obj[cathead == "z_max"], 0.0,
                                      "")
        }
        newSource.setParameters(newParamsDict)
        initcatalog.insert(newSource)

    moduleParametrizer = cp.PyModuleParametrisation()
    moduleParametrizer.setFlags(Parameters["parameters"]["optimiseMask"],
                                Parameters["parameters"]["fitBusyFunction"])

    cube = cube.astype("<f4", copy=False)
    mask = mask.astype("<i2", copy=False)

    moduleParametrizer.run(cube, mask, initcatalog)
    results = moduleParametrizer.getCatalog()

    # Append the results to the objects array or reset
    replParam = [
        "x_min", "x_max", "y_min", "y_max", "z_min", "z_max", "id", "x", "y",
        "z", "n_pix"
    ]
    origParam = [
        "x_min", "x_max", "y_min", "y_max", "z_min", "z_max", "id", "x", "y",
        "z", "n_pix"
    ]
    d = results.getSources()

    # Select data set with maximum number of parameters
    parsListLen = [
        len(d[list(d.keys())[i]].getParameters()) for i in range(0, len(d))
    ]
    index = parsListLen.index(max(parsListLen))

    # Add parameter names from parameterisation
    pars = d[list(d.keys())[index]].getParameters()
    cathead = list(cathead)
    newunits = {
        "id": "-",
        "flag": "-",
        "x": "pix",
        "y": "pix",
        "z": "pix",
        "err_x": "pix",
        "err_y": "pix",
        "err_z": "pix",
        "x_min": "pix",
        "x_max": "pix",
        "y_min": "pix",
        "y_max": "pix",
        "z_min": "chan",
        "z_max": "chan",
        "w50": "chan",
        "w20": "chan",
        "err_w50": "chan",
        "err_w20": "chan",
        "wm50": "chan",
        "f_wm50": dunits,
        "ell_maj": "pix",
        "ell_min": "pix",
        "ell_pa": "deg",
        "ell3s_maj": "pix",
        "ell3s_min": "pix",
        "ell3s_pa": "deg",
        "kin_pa": "deg",
        "f_int": dunits,
        "bf_flag": "-",
        "bf_chi2": "-",
        "bf_z": "chan",
        "bf_a": dunits,
        "bf_b1": "chan**(-1)",
        "bf_b2": "chan**(-1)",
        "bf_c": "chan**(-2)",
        "bf_xe": "chan",
        "bf_xp": "chan",
        "bf_w": "chan",
        "bf_w50": "chan",
        "bf_w20": "chan",
        "bf_f_peak": dunits,
        "bf_f_int": dunits,
        "rms": dunits,
        "f_peak": dunits,
        "snr_int": "-"
    }
    catformt = list(catformt)
    catparunits = list(catparunits)

    for i in sorted(pars):
        if i not in replParam:
            cathead.append(i)
            catformt.append("%18.6e")
            catparunits.append(newunits[i])

    # Extend the parameter array
    tmpObjects = np.empty((objects.shape[0], len(cathead)))
    tmpObjects[:, :] = np.nan
    tmpObjects[:, 0:objects.shape[1]] = objects
    objects = tmpObjects

    for i in d:
        source_dict = d[i].getParameters()

        # Check source index
        ID = int(source_dict["id"].getValue())
        IDind = cathead.index("id")

        ind = np.where(objects[:, IDind] == ID)[0][0]

        for j in sorted(source_dict):
            if j in replParam:
                objects[ind][cathead.index(origParam[replParam.index(
                    j)])] = source_dict[j].getValue()
            else:
                objects[ind][cathead.index(j)] = source_dict[j].getValue()

    objects = np.array(objects)
    cathead = np.array(cathead)
    catparunits = np.array(catparunits)
    catformt = np.array(catformt)

    # if mask optimization is enabled, some parameters from the linker have to be updated
    if Parameters["parameters"]["optimiseMask"]:
        for i in range(objects.shape[0]):
            # bounding box coordinates
            coord = []
            for c in ["x_min", "x_max", "y_min", "y_max", "z_min", "z_max"]:
                coord.append(int(objects[i, cathead == c]))
            # cut out object submask
            submask = mask[coord[4]:coord[5] + 1, coord[2]:coord[3] + 1,
                           coord[0]:coord[1] + 1]
            objID = objects[i, cathead == "id"]
            submask[submask != objID] = 0

            # Update n_pix, x_geo and n_chan
            n_pix = submask.sum() / objID
            ind = np.vstack(np.where(submask == objID))
            cgeo = (ind.sum(axis=1)).astype(float) / float(n_pix)
            x_geo, y_geo, z_geo = cgeo[2] + coord[0], cgeo[1] + coord[2], cgeo[
                0] + coord[4]
            zmin, zmax = min(ind[0]), max(ind[0]) + 1
            n_chan = zmax - zmin

            # Update n_los
            submaskSumA0 = submask.sum(axis=0)
            submaskSumA0[submaskSumA0 > 1] = 1
            n_los = submaskSumA0.sum()

            objects[i, cathead == "n_pix"] = n_pix
            objects[i, cathead == "n_chan"] = n_chan
            objects[i, cathead == "n_los"] = n_los
            objects[i, cathead == "x_geo"] = x_geo
            objects[i, cathead == "y_geo"] = y_geo
            objects[i, cathead == "z_geo"] = z_geo
        del submask

    err.message("Parameterisation complete.")

    return cube, mask, objects, cathead, catformt, catparunits
Ejemplo n.º 28
0
def fix_gipsy_header(header_orig):
    # GIPSY keys for spectral axis
    key_opt = ["FREQ-OHEL", "FREQ-OLSR"]
    key_rad = ["FREQ-RHEL", "FREQ-RLSR"]
    header = header_orig.copy()
    naxis = header["NAXIS"]

    for i in range(1, naxis + 1):
        ctype = header["CTYPE%d" % i]
        if ctype in key_opt + key_rad:
            axis = i
            # Read reference velocity - from VELR or DRVAL
            try:
                if "VELR" in header:
                    vel = header["VELR"]
                elif "DRVAL%d" % axis in header:
                    vel = header["VELR"]
                    unit = header["DUNIT%d" % axis]
                    if unit.lower() == "km/s":
                        vel = vel * 1000.0
                    elif unit.lower() != "m/s":
                        break
            except:
                err.warning("Problem with reference velocity.")
                break

            # Convert reference frequency to Hz
            try:
                freq = header["CRVAL%d" % axis]
                dfreq = header["CDELT%d" % axis]
                unit = header["CUNIT%d" % axis]
                freqUnits = ["hz", "khz", "mhz", "ghz"]
                j = freqUnits.index(unit.lower())
                freq *= 10**j
                dfreq *= 10**j
            except:
                err.warning("Problem with reference frequency.")
                break

            # Need rest frequency for conversion
            try:
                freq0Names = ["FREQ0", "FREQR", "RESTFRQ"]
                for key in freq0Names:
                    try:
                        freq0 = header[key]
                        #foundFreq0 = 1
                    except:
                        pass
                header["RESTFRQ"] = freq0
                #foundFreq0
            except:
                err.warning("Rest frequency not found.")
                break

            # Calculate reference frequency in the barycentric system
            if ctype in key_opt:
                freqB = freq0 / (1.0 + vel / scipy.constants.c)
            else:
                freqB = freq0 / (1.0 - vel / scipy.constants.c)

            # Calculate topocentric velocity
            velT = scipy.constants.c * ((freqB**2 - freq**2) /
                                        (freqB**2 + freq**2))
            dfreqB = dfreq * math.sqrt(
                (scipy.constants.c - velT) / (scipy.constants.c + velT))
            header["CTYPE%d" % axis] = "FREQ"
            header["CUNIT%d" % axis] = "Hz"
            header["CRVAL%d" % axis] = freqB
            header["CDELT%d" % axis] = dfreqB
            ## GIPSY headers seem to contain the unit "DEGREE" for RA/Dec
            ## WCS lib does not like that
            for key in header:
                if "CUNIT" in key and header[key] == "DEGREE":
                    header[key] = "deg"
            err.message("Header repaired successfully.")

            return header
Ejemplo n.º 29
0
def apply_flagging(data, flagFile, flagRegions, subcube):
    # -------------------------------
    # Apply flagging cube if provided
    # -------------------------------
    if flagFile:
        err.message("Applying flagging cube:\n  " + str(flagFile))

        try:
            f = fits.open(flagFile, memmap=False)
            header_flags = f[0].header
        except:
            err.error("Failed to read flagging cube.")

        # Extract axis sizes and types
        n_axes_flags, axis_size_flags, axis_type_flags = extract_axis_size(
            header_flags)

        # Ensure correct dimensionality
        check_cube_dimensions(n_axes_flags,
                              axis_size_flags,
                              cube_name="flagging cube")

        # Apply flagging
        # 2-D image
        if n_axes_flags == 2:
            for chan in range(data.shape[0]):
                if len(subcube) == 6 or len(subcube) == 4:
                    data[chan][np.isnan(
                        f[0].section[subcube[2]:subcube[3],
                                     subcube[0]:subcube[1]])] = np.nan
                else:
                    data[chan][np.isnan(np.array([f[0].data]))] = np.nan

        # 3-D cube
        elif n_axes_flags == 3:
            if len(subcube) == 6:
                data[np.isnan(f[0].section[subcube[4]:subcube[5],
                                           subcube[2]:subcube[3],
                                           subcube[0]:subcube[1]])] = np.nan
            else:
                data[np.isnan(f[0].data)] = np.nan

        # 4-D hypercube
        else:
            if len(subcube) == 6:
                data[np.isnan(f[0].section[0, subcube[4]:subcube[5],
                                           subcube[2]:subcube[3],
                                           subcube[0]:subcube[1]])] = np.nan
            else:
                data[np.isnan(f[0].section[0])] = np.nan

        f.close()
        err.message("Flagging cube applied.")

    # ----------------------------------
    # Apply flagging regions if provided
    # ----------------------------------
    if flagRegions:
        err.message("Applying flagging regions:\n  " + str(flagRegions))
        dim = len(data.shape)

        try:
            for region in flagRegions:
                for i in range(0, len(region) / 2):
                    if region[2 * i + 1] == "":
                        region[2 * i + 1] = data.shape[dim - i - 1]
                if len(region) == 2:
                    data[0, region[2]:region[3], region[0]:region[1]] = np.nan
                else:
                    data[region[4]:region[5], region[2]:region[3],
                         region[0]:region[1]] = np.nan
            err.message("Flagging regions applied.")
        except:
            err.error(
                "Flagging did not succeed. Please check the dimensions\nof your data cube and flagging regions."
            )

    return data
Ejemplo n.º 30
0
def smooth(indata, kernel, edgeMode, kernelX, kernelY, kernelZ):
    """
	Smooth a data cube with the specified kernel type and size.
	
	Arguments:
	  indata:       The input data cube.
	  kernel:       The smoothing kernel; "gaussian", "boxcar" or "median".
	  edgeMode:     Determines how borders are handled; "reflect", "constant", "nearest", "mirror" or "wrap".
	  kernelX/Y/Z:  Size of the kernel (standard deviation in the case of a Gaussian kernel).
	
	Returns:
	  Smoothed copy of the data cube.
	"""

    err.message("Smoothing data cube")

    # Sanity checks of user input
    err.ensure(
        kernel in {"gaussian", "boxcar", "median"},
        "Smoothing failed. Illegal smoothing type: '" + str(kernel) + "'.")
    err.ensure(
        edgeMode in {"reflect", "constant", "nearest", "mirror", "wrap"},
        "Smoothing failed. Illegal edge mode: '" + str(edgeMode) + "'.")
    err.ensure(kernelX or kernelY or kernelZ,
               "Smoothing failed. All smoothing kernels are zero.")
    err.ensure(
        kernel != "median" or (kernelX and kernelY and kernelZ),
        "Smoothing failed. Cannot determine median for kernel size of zero.")

    # Print some information
    err.message("  Kernel type: " + str(kernel).title())
    err.message("  Kernel size: [" + str(kernelX) + ", " + str(kernelY) +
                ", " + str(kernelZ) + "]")
    err.message("  Edge mode:   " + str(edgeMode))

    # Create copy of input cube to be smoothed
    outdata = np.copy(indata)

    # Remove NaNs (and INFs) if necessary
    found_nan = np.isnan(indata).sum()
    if found_nan: outdata = np.nan_to_num(outdata)

    # Smooth with the selected kernel
    if kernel == "gaussian":
        outdata = ndimage.filters.gaussian_filter(outdata,
                                                  sigma=(kernelZ, kernelX,
                                                         kernelY),
                                                  mode=edgeMode)
    elif kernel == "boxcar":
        outdata = ndimage.filters.uniform_filter(outdata,
                                                 size=(kernelZ, kernelX,
                                                       kernelY),
                                                 mode=edgeMode)
    else:  # kernel == "median"
        outdata = ndimage.filters.median_filter(outdata,
                                                size=(kernelZ, kernelX,
                                                      kernelY),
                                                mode=edgeMode)

    # Put NaNs back in if necessary
    if found_nan: outdata[np.isnan(indata)] = np.nan

    return outdata
Ejemplo n.º 31
0
def write_catalog_from_array(mode, objects, catHeader, catUnits, catFormat,
                             parList, outName, flagCompress, flagOverwrite,
                             flagUncertainties):
    # Check output format and compression
    availableModes = ["ASCII", "XML", "SQL"]
    if mode not in availableModes:
        err.warning("Unknown catalogue format: " + str(mode) +
                    ". Defaulting to ASCII.")
        mode = "ASCII"
    modeIndex = availableModes.index(mode)

    if flagCompress: outName += ".gz"
    err.message("Writing " + availableModes[modeIndex] + " catalogue: " +
                outName + ".")

    # Exit if file exists and overwrite flag is set to false
    func.check_overwrite(outName, flagOverwrite, fatal=True)

    # Do we need to write all parameters?
    if parList == ["*"] or not parList: parList = list(catHeader)

    # Remove undefined parameters
    parList = [item for item in parList if item in catHeader]

    # Remove statistical uncertainties if not requested
    if not flagUncertainties:
        for item in ["err_x", "err_y", "err_z", "err_w20", "err_w50"]:
            while item in parList:
                parList.remove(item)

    # Check whether there is anything left
    if not len(parList):
        err.error(
            "No valid output parameters selected. No output catalogue written.",
            fatal=False)
        return

    # Create and write catalogue in requested format
    # -------------------------------------------------------------------------
    if mode == "XML":
        # Define basic XML header information
        votable = Element("VOTABLE")
        resource = SubElement(votable,
                              "RESOURCE",
                              name="SoFiA catalogue (version %s)" %
                              sofia_version)
        description = SubElement(resource, "DESCRIPTION")
        description.text = "Source catalogue from the Source Finding Application (SoFiA) version %s" % sofia_version
        coosys = SubElement(resource, "COOSYS", ID="J2000")
        table = SubElement(resource, "TABLE", ID="sofia_cat", name="sofia_cat")

        # Load list of parameters and unified content descriptors (UCDs)
        ucdList = {}
        fileUcdPath = os.environ["SOFIA_PIPELINE_PATH"]
        fileUcdPath = fileUcdPath.replace("sofia_pipeline.py",
                                          "SoFiA_source_parameters.dat")

        try:
            with open(fileUcdPath) as fileUcd:
                for line in fileUcd:
                    (key, value) = line.split()
                    ucdList[key] = value
        except:
            err.warning("Failed to read UCD file.")

        # Create parameter fields
        for par in parList:
            ucdEntity = ucdList[par] if par in ucdList else ""
            index = list(catHeader).index(par)
            if catFormat[index] == "%30s":
                field = SubElement(table,
                                   "FIELD",
                                   name=par,
                                   ucd=ucdEntity,
                                   datatype="char",
                                   arraysize="30",
                                   unit=catUnits[index])
            else:
                field = SubElement(table,
                                   "FIELD",
                                   name=par,
                                   ucd=ucdEntity,
                                   datatype="float",
                                   unit=catUnits[index])

        # Create data table entries
        data = SubElement(table, "DATA")
        tabledata = SubElement(data, "TABLEDATA")

        for obj in objects:
            tr = SubElement(tabledata, "TR")
            for par in parList:
                td = SubElement(tr, "TD")
                index = list(catHeader).index(par)
                td.text = (catFormat[index] % obj[index]).strip()

        # Write XML catalogue:
        try:
            f1 = gzopen(outName, "wb") if flagCompress else open(outName, "w")
        except:
            err.error("Failed to write to XML catalogue: " + outName + ".",
                      fatal=False)
            return
        f1.write(prettify(votable))
        #f1.write(tostring(votable, "utf-8")) // without prettifying, which is faster and uses much less memory
        f1.close

    # -----------------------------------------------------------------End-XML-

    elif mode == "SQL":
        # Record if there is an ID column in the catalogue
        # (if no ID is present, we will later create one for use as primary key)
        noID = "id" not in parList

        # Write some header information:
        content = "-- SoFiA catalogue (version %s)\n\nSET SQL_MODE = \"NO_AUTO_VALUE_ON_ZERO\";\n\n" % sofia_version

        # Construct and write table structure:
        flagProgress = False
        content += "CREATE TABLE IF NOT EXISTS `SoFiA-Catalogue` (\n"
        if noID: content += "  `id` INT NOT NULL,\n"
        for par in parList:
            index = list(catHeader).index(par)
            if flagProgress: content += ",\n"
            content += "  " + sqlHeaderItem(par) + sqlFormat(catFormat[index])
            flagProgress = True
        content += ",\n  PRIMARY KEY (`id`),\n  KEY (`id`)\n) DEFAULT CHARSET=utf8 COMMENT=\'SoFiA source catalogue\';\n\n"

        # Insert data:
        flagProgress = False
        content += "INSERT INTO `SoFiA-Catalogue` ("
        if noID: content += "`id`, "
        for par in parList:
            if flagProgress: content += ", "
            content += sqlHeaderItem(par)
            flagProgress = True
        content += ") VALUES\n"

        source_count = 0
        for obj in objects:
            flagProgress = False
            source_count += 1
            content += "("
            if noID: content += str(source_count) + ", "

            for par in parList:
                index = list(catHeader).index(par)
                if flagProgress: content += ", "
                content += sqlDataItem(obj[index], catFormat[index])
                flagProgress = True

            if (source_count < len(objects)): content += "),\n"
            else: content += ");\n"

        # Write catalogue
        try:
            fp = gzopen(outName, "wb") if flagCompress else open(outName, "w")
        except:
            err.error("Failed to write to SQL catalogue: " + outName + ".",
                      fatal=False)
            return
        fp.write(content)
        fp.close()

    # -----------------------------------------------------------------End-SQL-

    else:  # mode == "ASCII" by default
        # Determine header sizes based on variable-length formatting
        lenCathead = []
        for j in catFormat:
            lenCathead.append(
                int(
                    j.split("%")[1].split("e")[0].split("f")[0].split("i")
                    [0].split("d")[0].split(".")[0].split("s")[0]) + 1)

        # Create header
        headerName = ""
        headerUnit = ""
        headerCol = ""
        outFormat = ""
        colCount = 0
        header = "SoFiA catalogue (version %s)\n" % sofia_version

        for par in parList:
            index = list(catHeader).index(par)
            headerName += catHeader[index].rjust(lenCathead[index])
            headerUnit += catUnits[index].rjust(lenCathead[index])
            headerCol += ("(%i)" % (colCount + 1)).rjust(lenCathead[index])
            outFormat += catFormat[index] + " "
            colCount += 1
        header += headerName[3:] + '\n' + headerUnit[3:] + '\n' + headerCol[3:]

        # Create catalogue
        outObjects = []
        for obj in objects:
            outObjects.append([])
            for par in parList:
                outObjects[-1].append(obj[list(catHeader).index(par)])

        # Write ASCII catalogue
        try:
            np.savetxt(outName,
                       np.array(outObjects, dtype=object),
                       fmt=outFormat,
                       header=header)

        except:
            err.error("Failed to write to ASCII catalogue: " + outName + ".",
                      fatal=False)
            return

    # ---------------------------------------------------------------End-ASCII-

    return
Ejemplo n.º 32
0
def get_subcube_range(header, n_axes, axis_size, subcube, subcubeMode):
    # Basic sanity checks
    err.ensure(subcubeMode in {"pixel", "world"},
               "Subcube mode must be 'pixel' or 'world'.")
    err.ensure((len(subcube) == 4 and n_axes == 2)
               or (len(subcube) == 6 and n_axes > 2),
               "Subcube range must contain 4 values for 2-D cubes\n"
               "or 6 values for 3-D/4-D cubes.")

    # -----------------
    # World coordinates
    # -----------------
    if subcubeMode == "world":
        # Read WCS information
        try:
            wcsin = wcs.WCS(header)
        except:
            err.error("Failed to read WCS information from data cube header.")

        # Calculate cos(dec) correction for RA range:
        if wcsin.wcs.cunit[0] == "deg" and wcsin.wcs.cunit[1] == "deg":
            corrfact = math.cos(math.radians(subcube[1]))

        if n_axes == 4:
            subcube = wcsin.wcs_world2pix(
                np.array([[
                    subcube[0] - subcube[3] / corrfact,
                    subcube[1] - subcube[4], subcube[2] - subcube[5], 0
                ],
                          [
                              subcube[0] + subcube[3] / corrfact,
                              subcube[1] + subcube[4], subcube[2] + subcube[5],
                              0
                          ]]), 0)[:, :3]
        elif n_axes == 3:
            subcube = wcsin.wcs_world2pix(
                np.array([[
                    subcube[0] - subcube[3] / corrfact,
                    subcube[1] - subcube[4], subcube[2] - subcube[5]
                ],
                          [
                              subcube[0] + subcube[3] / corrfact,
                              subcube[1] + subcube[4], subcube[2] + subcube[5]
                          ]]), 0)
        elif n_axes == 2:
            subcube = wcsin.wcs_world2pix(
                np.array([[
                    subcube[0] - subcube[2] / corrfact, subcube[1] - subcube[3]
                ], [
                    subcube[0] + subcube[2] / corrfact, subcube[1] + subcube[3]
                ]]), 0)
        else:
            err.error("Unsupported number of axes.")

        # Flatten array
        subcube = np.ravel(subcube, order="F")

        # Ensure that min pix coord < max pix coord for all axes.
        # This operation is meaningful because wcs_world2pix returns negative pixel coordinates
        # only for pixels located before an axis' start (i.e., negative pixel coordinates should
        # not be interpreted as counting backward from an axis' end).
        subcube[0], subcube[1] = correct_order(subcube[0], subcube[1])
        subcube[2], subcube[3] = correct_order(subcube[2], subcube[3])
        if len(subcube) == 6:
            subcube[4], subcube[5] = correct_order(subcube[4], subcube[5])

        # Convert to integer
        subcube = list(subcube.astype(int))

        # Constrain subcube to be within cube boundaries
        for axis in range(min(3, n_axes)):
            err.ensure(
                subcube[2 * axis + 1] >= 0
                and subcube[2 * axis] < axis_size[axis],
                "Subcube outside input cube range for axis {0:d}.".format(
                    axis))
            subcube[2 * axis] = max(subcube[2 * axis], 0)
            subcube[2 * axis + 1] = min(subcube[2 * axis + 1] + 1,
                                        axis_size[axis])

    # -----------------
    # Pixel coordinates
    # -----------------
    else:
        # Ensure that pixel coordinates are integers
        for value in subcube:
            err.ensure(
                type(value) == int,
                "Subcube boundaries must be integer values.")

        # Sanity checks on boundaries
        for axis in range(min(3, n_axes)):
            # Ensure correct order
            err.ensure(
                subcube[2 * axis] < subcube[2 * axis + 1],
                "Lower subcube boundary greater than upper boundary.\nPlease check your input."
            )
            # Adjust lower boundary
            subcube[2 * axis] = max(subcube[2 * axis], 0)
            subcube[2 * axis] = min(subcube[2 * axis], axis_size[axis] - 1)
            # Adjust upper boundary:
            subcube[2 * axis + 1] = max(subcube[2 * axis + 1], 1)
            subcube[2 * axis + 1] = min(subcube[2 * axis + 1], axis_size[axis])

    # Report final subcube boundaries
    err.message("  Loading subcube of range " + str(subcube) + '.')

    return subcube
Ejemplo n.º 33
0
def fix_gipsy_header(header_orig):
	# GIPSY keys for spectral axis
	key_opt = ["FREQ-OHEL","FREQ-OLSR"]
	key_rad = ["FREQ-RHEL","FREQ-RLSR"]
	header = header_orig.copy()
	naxis = header["NAXIS"]
	
	for i in range(1, naxis + 1):
		ctype = header["CTYPE%d" % i]
		if ctype in key_opt + key_rad:
			axis = i
			# Read reference velocity - from VELR or DRVAL
			try:
				if "VELR" in header:
					vel = header["VELR"]
				elif "DRVAL%d" % axis in header:
					vel = header["VELR"]
					unit = header["DUNIT%d" % axis]
					if unit.lower() == "km/s":
						vel = vel * 1000.0
					elif unit.lower() != "m/s":
						break
			except:
				err.warning("Problem with reference velocity.")
				break
			
			# Convert reference frequency to Hz
			try:
				freq  = header["CRVAL%d" % axis]
				dfreq = header["CDELT%d" % axis]
				unit  = header["CUNIT%d" % axis]
				freqUnits = ["hz", "khz", "mhz", "ghz"]
				j = freqUnits.index(unit.lower())
				freq  *= 10**j
				dfreq *= 10**j
			except:
				err.warning("Problem with reference frequency.")
				break
			
			# Need rest frequency for conversion
			try:
				freq0Names = ["FREQ0", "FREQR", "RESTFRQ"]
				for key in freq0Names:
					try:
						freq0 = header[key]
						#foundFreq0 = 1
					except:
						pass
				header["RESTFRQ"] = freq0
				#foundFreq0
			except:
				err.warning("Rest frequency not found.")
				break
			
			# Calculate reference frequency in the barycentric system
			if ctype in key_opt:
				freqB = freq0 / (1.0 + vel / scipy.constants.c)
			else:
				freqB = freq0 / (1.0 - vel / scipy.constants.c)
			
			# Calculate topocentric velocity
			velT = scipy.constants.c * ((freqB**2 - freq**2) / (freqB**2 + freq**2))
			dfreqB = dfreq * math.sqrt((scipy.constants.c - velT) / (scipy.constants.c + velT))
			header["CTYPE%d" % axis] = "FREQ"
			header["CUNIT%d" % axis] = "Hz"
			header["CRVAL%d" % axis] = freqB
			header["CDELT%d" % axis] = dfreqB
			## GIPSY headers seem to contain the unit "DEGREE" for RA/Dec
			## WCS lib does not like that
			for key in header:
				if "CUNIT" in key and header[key] == "DEGREE":
					header[key] = "deg"
			err.message("Header repaired successfully.")
			
			return header
Ejemplo n.º 34
0
def dilate(cube, mask, objects, cathead, Parameters):
    dilateThreshold = Parameters["parameters"]["dilateThreshold"]
    dilatePixMax = Parameters["parameters"]["dilatePixMax"]
    dilateChanMax = Parameters["parameters"]["dilateChanMax"]

    # Stops dilating when (flux_new - flux_old) / flux_new < dilateThreshold
    sourceIDs = np.unique(mask)
    # remove first element which should be zero
    if sourceIDs[0] == 0:
        sourceIDs = np.delete(sourceIDs, 0)

    for i in range(0, len(sourceIDs)):
        obj = objects[i]
        xmin = max(0, obj[list(cathead).index("x_min")] - dilatePixMax)
        xmax = min(cube.shape[2] - 1,
                   obj[list(cathead).index("x_max")] + dilatePixMax)
        ymin = max(0, obj[list(cathead).index("y_min")] - dilatePixMax)
        ymax = min(cube.shape[1] - 1,
                   obj[list(cathead).index("y_max")] + dilatePixMax)
        zmin = max(0, obj[list(cathead).index("z_min")] - dilateChanMax)
        zmax = min(cube.shape[0] - 1,
                   obj[list(cathead).index("z_max")] + dilateChanMax)

        [zmin, zmax, ymin, ymax, xmin,
         xmax] = map(int, [zmin, zmax, ymin, ymax, xmin, xmax])

        objcube = cube[zmin:zmax + 1, ymin:ymax + 1, xmin:xmax + 1].copy()
        objmask = mask[zmin:zmax + 1, ymin:ymax + 1, xmin:xmax + 1].copy()
        allmask = mask[zmin:zmax + 1, ymin:ymax + 1, xmin:xmax + 1].copy()
        otherobjs = (allmask > 0) * (allmask != sourceIDs[i])

        if (otherobjs).sum():
            # Ensure that objects with different source IDs within dilatePixMax, dilateChanMax are not
            # included in the flux growth calculation
            err.warning(
                "Object {0:d} has possible overlapping objects within {1:d} pix, {2:d} chan."
                .format(np.int(sourceIDs[i]), dilatePixMax, dilateChanMax))
            objcube[(allmask > 0) * (allmask != sourceIDs[i])] = 0

        fluxes = []

        # Loop through Z dilation kernels until the flux converges or the maximum allowed Z dilation is reached
        for dilchan in range(dilateChanMax + 1):
            dd = dilchan * 2 + 1
            dilstruct = np.ones((dd, 1, 1))
            fluxes.append(objcube[nd.morphology.binary_dilation(
                objmask == sourceIDs[i], structure=dilstruct)].sum())
            if dilchan > 0 and (fluxes[-1] -
                                fluxes[-2]) / fluxes[-1] < dilateThreshold:
                dilchan -= 1
                break
        # Pick the best Z dilation kernel for current object and update mask
        dd = dilchan * 2 + 1
        dilstruct = np.ones((dd, 1, 1))
        # Only grow the mask of object sourceIDs[i] even when other objects are present in objmask
        objmask[nd.morphology.binary_dilation(objmask == sourceIDs[i],
                                              structure=dilstruct).astype(int)
                == 1] = sourceIDs[i]

        # Loop through XY dilation kernels until the flux converges or the maximum allowed XY dilation is reached
        for dilpix in range(dilatePixMax + 1):
            dd = dilpix * 2 + 1
            dilstruct = (np.sqrt(((np.indices(
                (dd, dd)) - dilpix)**2).sum(axis=0)) <= dilpix).astype(int)
            dilstruct.resize((1, dilstruct.shape[0], dilstruct.shape[1]))
            fluxes.append(objcube[nd.morphology.binary_dilation(
                objmask == sourceIDs[i], structure=dilstruct)].sum())
            if dilpix > 0 and (fluxes[-1] -
                               fluxes[-2]) / fluxes[-1] < dilateThreshold:
                dilpix -= 1
                break
        # Pick the best XY dilation kernel for current object and update mask
        dd = dilpix * 2 + 1
        dilstruct = (np.sqrt(((np.indices(
            (dd, dd)) - dilpix)**2).sum(axis=0)) <= dilpix).astype(int)
        dilstruct.resize((1, dilstruct.shape[0], dilstruct.shape[1]))
        # Only grow the mask of object sourceIDs[i] even when other objects are present in objmask
        objmask[nd.morphology.binary_dilation(objmask == sourceIDs[i],
                                              structure=dilstruct).astype(int)
                == 1] = sourceIDs[i]

        err.message(
            "Mask of source {0:d} dilated by {2:d} chan and then by {1:d} pix."
            .format(np.int(sourceIDs[i]), dilpix, dilchan))
        # Put back in objmask objects != sourceIDs[i] that may have been inside objmask before
        # dilation or may have been temporarily replaced by the dilated object sourceIDs[i]
        if (otherobjs).sum():
            objmask[otherobjs] = allmask[otherobjs]
        mask[zmin:zmax + 1, ymin:ymax + 1, xmin:xmax + 1] = objmask

        # Update n_pix, x_geo and n_chan
        n_pix = objmask[objmask == sourceIDs[i]].sum() / sourceIDs[i]
        ind = np.vstack(np.where(objmask == sourceIDs[i]))
        cgeo = (ind.sum(axis=1)).astype(float) / float(n_pix)
        x_geo, y_geo, z_geo = cgeo[2] + xmin, cgeo[1] + ymin, cgeo[0] + zmin
        zmin, zmax = min(ind[0]), max(ind[0]) + 1
        n_chan = zmax - zmin

        # Update n_los
        objmask[objmask != sourceIDs[i]] = 0
        maskSumA0 = objmask.sum(axis=0)
        maskSumA0[maskSumA0 > 1] = 1
        n_los = maskSumA0.sum()

        del objcube
        del objmask
        del allmask
        del otherobjs

        objects[i, list(cathead).index("x_min")] = max(
            0, obj[list(cathead).index("x_min")] - dilpix)
        objects[i, list(cathead).index("x_max")] = min(
            cube.shape[2] - 1, obj[list(cathead).index("x_max")] + dilpix)
        objects[i, list(cathead).index("y_min")] = max(
            0, obj[list(cathead).index("y_min")] - dilpix)
        objects[i, list(cathead).index("y_max")] = min(
            cube.shape[1] - 1, obj[list(cathead).index("y_max")] + dilpix)
        objects[i, list(cathead).index("z_min")] = max(
            0, obj[list(cathead).index("z_min")] - dilchan)
        objects[i, list(cathead).index("z_max")] = min(
            cube.shape[0] - 1, obj[list(cathead).index("z_max")] + dilchan)
        objects[i, list(cathead).index("n_pix")] = n_pix
        objects[i, list(cathead).index("n_chan")] = n_chan
        objects[i, list(cathead).index("n_los")] = n_los
        objects[i, list(cathead).index("x_geo")] = x_geo
        objects[i, list(cathead).index("y_geo")] = y_geo
        objects[i, list(cathead).index("z_geo")] = z_geo

    return mask, objects
Ejemplo n.º 35
0
def import_data(doSubcube, inFile, weightsFile, maskFile, weightsFunction=None, subcube=[], subcubeMode="pixel", doFlag=False, flagRegions=False, flagFile="", cubeOnly=False):
	# Basic sanity checks on user input
	err.ensure(
		os.path.isfile(inFile),
		"Data file not found:\n  " + str(inFile))
	
	# -------------------------------
	# Open input cube and read header
	# -------------------------------
	err.message("Loading input data cube.")
	try:
		f = fits.open(inFile, mode="readonly", memmap=False, do_not_scale_image_data=False)
		header = f[0].header
	except:
		err.error("Failed to load primary HDU of data file:\n  " + str(inFile))
	
	# Extract axis sizes and types
	n_axes, axis_size, axis_type = extract_axis_size(header)
	
	# Check dimensionality of data cube
	check_cube_dimensions(n_axes, axis_size, cube_name="data cube")
	
	# Print some information
	err.message("  Data cube has {0:d} axes.".format(header["NAXIS"]))
	err.message("    Types: " + str(axis_type))
	err.message("    Sizes: " + str(axis_size))
	
	# Extract subcube boundaries if requested
	if len(subcube): subcube = get_subcube_range(header, n_axes, axis_size, subcube, subcubeMode)
	else: subcube = []
	
	# --------------------------------
	# Read requested subregion of data
	# --------------------------------
	# 2-D image
	if n_axes == 2:
		fullshape = [axis_size[1], axis_size[0]]
		if len(subcube):
			data = np.array([f[0].section[subcube[2]:subcube[3], subcube[0]:subcube[1]]])
			header["CRPIX1"] -= subcube[0]
			header["CRPIX2"] -= subcube[2]
			header["NAXIS1"] = subcube[1] - subcube[0]
			header["NAXIS2"] = subcube[3] - subcube[2]
		else:
			data = np.array([f[0].data])
	
	# 3-D cube
	elif n_axes == 3:
		fullshape = [axis_size[2], axis_size[1], axis_size[0]]
		if len(subcube):
			data = f[0].section[subcube[4]:subcube[5], subcube[2]:subcube[3], subcube[0]:subcube[1]]
			header["CRPIX1"] -= subcube[0]
			header["CRPIX2"] -= subcube[2]
			header["CRPIX3"] -= subcube[4]
			header["NAXIS1"] = subcube[1] - subcube[0]
			header["NAXIS2"] = subcube[3] - subcube[2]
			header["NAXIS3"] = subcube[5] - subcube[4]
		else:
			data = f[0].data
	
	#4-D hypercube
	else:
		fullshape = [axis_size[2], axis_size[1], axis_size[0]]
		if len(subcube):
			data = f[0].section[0, subcube[4]:subcube[5], subcube[2]:subcube[3], subcube[0]:subcube[1]]
			header["CRPIX1"] -= subcube[0]
			header["CRPIX2"] -= subcube[2]
			header["CRPIX3"] -= subcube[4]
			header["NAXIS1"] = subcube[1] - subcube[0]
			header["NAXIS2"] = subcube[3] - subcube[2]
			header["NAXIS3"] = subcube[5] - subcube[4]
		else:
			data = f[0].section[0]
	
	# Close input cube
	f.close()
	err.message("Input data cube loaded.")
	
	# ---------------------------------------------------------
	# If no additional actions required, return data and header
	# ---------------------------------------------------------
	if cubeOnly: return data, header
	
	# ---------------------------------------------------
	# Otherwise carry out additional actions as requested
	# ---------------------------------------------------
	# Weighting
	if weightsFile:
		data = apply_weights_file(data, weightsFile, subcube)
	elif weightsFunction:
		data = apply_weights_function(data, weightsFunction)
	
	# Flagging
	if doFlag:
		data = apply_flagging(data, flagFile, flagRegions, subcube)
	
	# Masking
	if maskFile:
		mask = import_mask(maskFile, header, axis_size, subcube)
	else:
		# Create an empty mask if none is provided.
		mask = np.zeros(data.shape, dtype=bool)
	
	return data, header, mask, subcube
Ejemplo n.º 36
0
def import_mask(maskFile, header, axis_size, subcube):
    err.message("Loading mask cube:\n  " + str(maskFile))

    try:
        f = fits.open(maskFile, memmap=False)
        header_mask = f[0].header
    except:
        err.error("Failed to read mask cube.")

    # Extract axis sizes and types
    n_axes_mask, axis_size_mask, axis_type_mask = extract_axis_size(
        header_mask)

    # Ensure correct dimensionality
    check_cube_dimensions(n_axes_mask,
                          axis_size_mask,
                          cube_name="mask cube",
                          min_dim=1,
                          max_dim=4)

    # 1-D spectrum
    if n_axes_mask == 1:
        err.warning(
            "Mask cube has 1 axis; interpreted as spectrum.\nAdding first and second axis."
        )
        ensure(header_mask['CRVAL1'] == header['CRVAL1'],
               "Input cube and mask are not on the same WCS grid.")

        if len(subcube) == 6:
            if header_mask["NAXIS1"] == axis_size[2]:
                err.message(
                    "  Input mask cube already matches size of data subcube.\n  No subcube selection applied."
                )
                mask = np.reshape(f[0].data, (-1, 1, 1))
            elif header_mask["NAXIS1"] == fullshape[0]:
                err.message("  Subcube selection applied to input mask cube.")
                mask = np.reshape(f[0].section[subcube[4]:subcube[5]],
                                  (-1, 1, 1))
            else:
                err.error(
                    "Data subcube does not match size of mask subcube or full mask."
                )
        elif not len(subcube):
            mask = np.reshape(f[0].data, (-1, 1, 1))
        else:
            err.error(
                "The subcube list must have 6 entries ({0:d} given).".format(
                    len(subcube)))

    # 2-D image
    elif n_axes_mask == 2:
        err.ensure(
            header_mask["CRVAL1"] == header["CRVAL1"]
            and header_mask["CRVAL2"] == header["CRVAL2"],
            "Input cube and mask are not on the same WCS grid.")

        if len(subcube) == 6 or len(subcube) == 4:
            if header_mask["NAXIS1"] == axis_size[0] and header_mask[
                    "NAXIS2"] == axis_size[1]:
                err.message(
                    "  Input mask cube already matches size of data subcube.\n  No subcube selection applied."
                )
                mask = np.array([f[0].data])
            elif header_mask["NAXIS1"] == fullshape[2] and header_mask[
                    "NAXIS2"] == fullshape[1]:
                err.message("  Subcube selection applied to input mask cube.")
                mask = np.array([
                    f[0].section[subcube[2]:subcube[3], subcube[0]:subcube[1]]
                ])
            else:
                err.error(
                    "Data subcube does not match size of mask subcube or full mask."
                )
        else:
            mask = np.array([f[0].data])

    # 3-D cube
    elif n_axes_mask == 3:
        err.ensure(
            header_mask["CRVAL1"] == header["CRVAL1"]
            and header_mask["CRVAL2"] == header["CRVAL2"]
            and header_mask["CRVAL3"] == header["CRVAL3"],
            "Input cube and mask are not on the same WCS grid.")

        if len(subcube) == 6:
            if header_mask["NAXIS1"] == axis_size[0] and header_mask[
                    "NAXIS2"] == axis_size[1] and header_mask[
                        "NAXIS3"] == axis_size[2]:
                err.message(
                    "  Input mask cube already matches size of data subcube.\n  No subcube selection applied."
                )
                mask = f[0].data
            elif header_mask["NAXIS1"] == fullshape[2] and header_mask[
                    "NAXIS2"] == fullshape[1] and header_mask[
                        "NAXIS3"] == fullshape[0]:
                err.message("  Subcube selection applied to input mask cube.")
                mask = f[0].section[subcube[4]:subcube[5],
                                    subcube[2]:subcube[3],
                                    subcube[0]:subcube[1]]
            else:
                err.error(
                    "Data subcube does not match size of mask subcube or full mask."
                )
        else:
            mask = f[0].data

    # 4-D hypercube
    else:
        err.ensure(
            header_mask["CRVAL1"] == header["CRVAL1"]
            and header_mask["CRVAL2"] == header["CRVAL2"]
            and header_mask["CRVAL3"] == header["CRVAL3"],
            "Input cube and mask are not on the same WCS grid.")

        if len(subcube) == 6:
            if header_mask["NAXIS1"] == axis_size[0] and header_mask[
                    "NAXIS2"] == axis_size[1] and header_mask[
                        "NAXIS3"] == axis_size[2]:
                err.message(
                    "  Input mask cube already matches size of data subcube.\n  No subcube selection applied."
                )
                mask = f[0].section[0]
            elif header_mask["NAXIS1"] == fullshape[2] and header_mask[
                    "NAXIS2"] == fullshape[1] and header_mask[
                        "NAXIS3"] == fullshape[0]:
                err.message("  Subcube selection applied to input mask cube.")
                mask = f[0].section[0, subcube[4]:subcube[5],
                                    subcube[2]:subcube[3],
                                    subcube[0]:subcube[1]]
            else:
                err.error(
                    "Data subcube does not match size of mask subcube or full mask."
                )
        else:
            mask = f[0].section[0]

    mask[mask > 0] = 1
    f.close()
    err.message("Mask cube loaded.")

    # In all cases, convert mask to Boolean with masked pixels set to 1.
    return (mask > 0).astype(bool)
Ejemplo n.º 37
0
def SCfinder_mem(cube,
                 mask,
                 header,
                 t0,
                 kernels=[
                     [0, 0, 0, "b"],
                 ],
                 threshold=3.5,
                 sizeFilter=0,
                 maskScaleXY=2.0,
                 maskScaleZ=2.0,
                 kernelUnit="pixel",
                 edgeMode="constant",
                 rmsMode="negative",
                 fluxRange="all",
                 verbose=0,
                 perSCkernel=False,
                 scaleX=False,
                 scaleY=False,
                 scaleZ=True,
                 edgeX=0,
                 edgeY=0,
                 edgeZ=0,
                 method="1d2d",
                 windowSpatial=20,
                 windowSpectral=20,
                 gridSpatial=0,
                 gridSpectral=0,
                 interpolation="none"):
    # Define a few constants
    FWHM_CONST = 2.0 * math.sqrt(2.0 * math.log(
        2.0))  # Conversion between sigma and FWHM of Gaussian function
    MAX_PIX_CONST = 1.0e+6  # Maximum number of pixels for noise calculation; sampling is set accordingly

    # Check for NaN in cube
    found_nan = np.isnan(cube).any()

    # Set sampling sampleRms for rms measurement
    sampleRms = max(
        1,
        int((float(cube.size) / MAX_PIX_CONST)**(1.0 /
                                                 min(3, len(cube.shape)))))

    # Measure noise in original cube with sampling "sampleRms"
    rms = GetRMS(cube,
                 rmsMode=rmsMode,
                 fluxRange=fluxRange,
                 zoomx=1,
                 zoomy=1,
                 zoomz=1,
                 verbose=verbose,
                 sample=sampleRms)

    # Loop over all kernels
    for kernel in kernels:
        [kx, ky, kz, kt] = kernel
        if verbose:
            err.linebreak()
            err.print_progress_time(t0)
            err.message("    Filter {0:} {1:} {2:} {3:} ...".format(
                kx, ky, kz, kt))
        if kernelUnit == "world" or kernelUnit == "w":
            if verbose: err.message("    Converting filter size to pixels ...")
            kx = abs(float(kx) / header["CDELT1"])
            ky = abs(float(ky) / header["CDELT2"])
            kz = abs(float(kz) / header["CDELT3"])
        if kt == "b":
            if kz != int(math.ceil(kz)) and verbose:
                err.warning(
                    "Rounding width of boxcar z kernel to next integer.")
            kz = int(math.ceil(kz))

        # Create a copy of the original cube
        cube_smooth = np.copy(cube)

        # Replace all NaNs with zero
        if found_nan:
            cube_smooth[np.isnan(cube)] = 0.0

        cube_smooth[(cube_smooth > 0) & (mask > 0)] = maskScaleXY * rms
        cube_smooth[(cube_smooth < 0) & (mask > 0)] = -maskScaleXY * rms

        # Spatial smoothing
        if kx + ky:
            cube_smooth = ndimage.filters.gaussian_filter(
                cube_smooth, [0, ky / FWHM_CONST, kx / FWHM_CONST],
                mode=edgeMode)

        # Spectral smoothing
        if kz:
            if kt == "b":
                cube_smooth = ndimage.filters.uniform_filter1d(cube_smooth,
                                                               kz,
                                                               axis=0,
                                                               mode=edgeMode)
            elif kt == "g":
                cube_smooth = ndimage.filters.gaussian_filter1d(cube_smooth,
                                                                kz /
                                                                FWHM_CONST,
                                                                axis=0,
                                                                mode=edgeMode)

        # Re-insert the NaNs taken out earlier
        if found_nan:
            cube_smooth[np.isnan(cube)] = np.nan

        # Per-kernel noise normalisation (Time consuming!)
        if perSCkernel:
            cube_smooth, noise_smooth = sigma_scale(
                cube_smooth,
                scaleX=scaleX,
                scaleY=scaleY,
                scaleZ=scaleZ,
                edgeX=edgeX,
                edgeY=edgeY,
                edgeZ=edgeZ,
                statistic=rmsMode,
                fluxRange=fluxRange,
                method=method,
                windowSpatial=windowSpatial,
                windowSpectral=windowSpectral,
                gridSpatial=gridSpatial,
                gridSpectral=gridSpectral,
                interpolation=interpolation)

        # Calculate the RMS of the smoothed (possibly normalised) cube
        rms_smooth = GetRMS(cube_smooth,
                            rmsMode=rmsMode,
                            fluxRange=fluxRange,
                            zoomx=1,
                            zoomy=1,
                            zoomz=1,
                            verbose=verbose,
                            sample=sampleRms)

        # Add pixels above threshold to mask by setting bit 1
        err.message("    Applying +/- {0:} sigma detection threshold".format(
            threshold))
        with np.errstate(invalid="ignore"):
            mask |= (np.absolute(cube_smooth) >= threshold * rms_smooth)
            #mask = np.bitwise_or(mask, np.greater_equal(np.absolute(cube_smooth), threshold * rms_smooth))

        # Delete smoothed cube again
        del cube_smooth
    return
Ejemplo n.º 38
0
def add_wcs_coordinates(objects, catParNames, catParFormt, catParUnits, Parameters):
	try:
		hdulist = fits.open(Parameters["import"]["inFile"])
		header = hdulist[0].header
		hdulist.close()
		
		# Fix headers where "per second" is written "/S" instead of "/s"
		# (assuming they mean "per second" and not "per Siemens").
		if "cunit3" in header and "/S" in header["cunit3"]:
			err.warning("Converting '/S' to '/s' in CUNIT3.")
			header["cunit3"] = header["cunit3"].replace("/S","/s")
		
		# Check if there is a Nmap/GIPSY FITS header keyword value present
		gipsyKey = [k for k in ["FREQ-OHEL", "FREQ-OLSR", "FREQ-RHEL", "FREQ-RLSR"] if (k in [header[key] for key in header if ("CTYPE" in key)])]
		if gipsyKey:
			err.message("GIPSY header found. Trying to convert to FITS standard.")
			from astropy.wcs import Wcsprm
			header = fix_gipsy_header(header)
			wcsin = Wcsprm(str(header))
			wcsin.sptr("VOPT-F2W")
			#if header["naxis"] == 4:
			#	objects = np.concatenate((objects, wcsin.p2s(np.concatenate((objects[:, catParNames.index("x"):catParNames. index("x") + 3], np.zeros((objects.shape[0], 1))), axis=1), 0)["world"][:,:-1]), axis=1)
			#else:
			#	objects = np.concatenate((objects, wcsin.p2s(objects[:, catParNames.index("x"):catParNames.index("x") + 3], 0)["world"]), axis=1)
			objects = np.concatenate((objects, wcsin.p2s(objects[:, catParNames.index("x"):catParNames.index("x") + 3], 0)["world"]), axis=1)
			catParUnits = tuple(list(catParUnits) + [str(cc).replace(" ", "") for cc in wcsin.cunit])
			catParNames = tuple(list(catParNames) + [(cc.split("--")[0]).lower() for cc in wcsin.ctype])
			catParFormt = tuple(list(catParFormt) + ["%15.7e", "%15.7e", "%15.7e"])
		
		else:
			# Constrain the RA axis reference value CRVAL_ to be between 0 and 360 deg
			rafound = 0
			for kk in range(header["naxis"]):
				if header["ctype1"][:2] == "RA":
					rafound = 1
					break
			if rafound:
				if header["crval%i" % (kk + 1)] < 0:
					err.warning("Adding 360 deg to RA reference value.")
					header["crval%i" % (kk + 1)] += 360
				elif header["crval%i" % (kk + 1)] > 360:
					err.warning("Subtracting 360 deg from RA reference value.")
					header["crval%i" % (kk + 1)] -= 360
			
			#if header["naxis"] == 4: wcsin = wcs.WCS(header, naxis=[wcs.WCSSUB_CELESTIAL, wcs.WCSSUB_SPECTRAL, wcs.WCSSUB_STOKES])
			#else: wcsin = wcs.WCS(header, naxis=[wcs.WCSSUB_CELESTIAL, wcs.WCSSUB_SPECTRAL])
			wcsin = wcs.WCS(header, naxis=[wcs.WCSSUB_CELESTIAL, wcs.WCSSUB_SPECTRAL])
			xyz = objects[:, catParNames.index("x"):catParNames.index("x") + 3].astype(float)
			if "cellscal" in header and header["cellscal"] == "1/F":
				err.warning(
					"CELLSCAL keyword with value of 1/F found.\n"
					"Will account for varying pixel scale in WCS coordinate calculation.")
				x0, y0 = header["crpix1"] - 1, header["crpix2"] - 1
				# Will calculate the pixscale factor of each channel as:
				# pixscale = ref_frequency / frequency
				if header["ctype3"] == "VELO-HEL":
					pixscale = (1 - header["crval3"] / scipy.constants.c) / (1 - (((xyz[:, 2] + 1) - header["crpix3"]) * header["cdelt3"] + header["crval3"]) / scipy.constants.c)
				else:
					err.warning("Cannot convert 3rd axis coordinates to frequency. Ignoring the effect of CELLSCAL = 1/F.")
					pixscale = 1.0
				xyz[:, 0] = (xyz[:, 0] - x0) * pixscale + x0
				xyz[:, 1] = (xyz[:, 1] - y0) * pixscale + y0
			#if header["naxis"] == 4: objects = np.concatenate((objects, wcsin.wcs_pix2world(np.concatenate((xyz, np.zeros((objects.shape[0], 1))), axis=1), 0)[:, :-1]), axis=1)
			#else: objects = np.concatenate((objects, wcsin.wcs_pix2world(xyz, 0)), axis=1)
			objects = np.concatenate((objects, wcsin.wcs_pix2world(xyz, 0)), axis=1)
			catParUnits = tuple(list(catParUnits) + [str(cc).replace(" ", "") for cc in wcsin.wcs.cunit])
			catParNames = tuple(list(catParNames) + [(cc.split("--")[0]).lower() for cc in wcsin.wcs.ctype])
			catParFormt = tuple(list(catParFormt) + ["%15.7e", "%15.7e", "%15.7e"])
		#if header["naxis"] == 4:
		#	catParUnits = catParUnits[:-1]
		#	catParNames= catParNames[:-1]
		err.message("WCS coordinates added to catalogue.")
		
		# Create IAU-compliant source name:
		# WARNING: This currently assumes a regular, ≥ 2-dim. data cube where the first two axes are longitude and latitude.
		n_src = objects.shape[0]
		n_par = objects.shape[1]
		
		iau_names = np.empty([n_src, 1], dtype=object)
		
		if header["ctype1"][:4] == "RA--":
			# Equatorial coordinates; try to figure out equinox:
			iau_coord = "equ"
			if "equinox" in header:
				if int(header["equinox"]) >= 2000: iau_equinox = "J"
				else: iau_equinox = "B"
			elif "epoch" in header:
				# Assume that EPOCH has been abused to record the equinox:
				if int(header["epoch"]) >= 2000: iau_equinox = "J"
				else: iau_equinox = "B"
			else:
				# Equinox undefined:
				iau_equinox = "X"
		elif header["ctype1"][:4] == "GLON":
			# Galactic coordinates:
			iau_coord = "gal"
			iau_equinox = "G"
		else:
			# Unsupported coordinate system:
			iau_coord = ""
			iau_equinox = ""
		
		for src in xrange(n_src):
			lon = objects[src][n_par - 3]
			lat = objects[src][n_par - 2]
			
			if iau_coord == "equ":
				ra = Longitude(lon, unit=u.deg)
				dec = Latitude(lat, unit=u.deg)
				iau_pos = ra.to_string(unit=u.h, decimal=False, sep="", precision=2, alwayssign=False, pad=True, fields=3)
				iau_pos += dec.to_string(unit=u.deg, decimal=False, sep="", precision=1, alwayssign=True, pad=True, fields=3)
			else:
				iau_pos = "{0:08.4f}".format(lon)
				if lat < 0.0: iau_pos += "-"
				else: iau_pos += "+"
				iau_pos += "{0:07.4f}".format(abs(lat))
			
			iau_names[src][0] = "SoFiA " + iau_equinox + iau_pos
		
		objects = np.concatenate((objects, iau_names), axis = 1)
		catParUnits = tuple(list(catParUnits) + ["-"])
		catParNames = tuple(list(catParNames) + ["name"])
		catParFormt = tuple(list(catParFormt) + ["%30s"])
	except:
		err.warning("WCS conversion of parameters failed.")
	
	return (objects, catParNames, catParFormt, catParUnits)
Ejemplo n.º 39
0
def EstimateRel(data, pdfoutname, parNames, parSpace=["snr_sum", "snr_max", "n_pix"], logPars=[1, 1, 1], autoKernel=True, scaleKernel=1, negPerBin=1, skellamTol=-0.5, kernel=[0.15, 0.05, 0.1], usecov=False, doscatter=1, docontour=1, doskellam=1, dostats=0, saverel=1, threshold=0.99, fMin=0, verb=0, makePlot=False):

	# Always work on logarithmic parameter values; the reliability.logPars parameter should be removed
	if 0 in logPars: err.warning("  Setting all reliability.logPars entries to 1. This parameter is no longer editable by users.")
	logPars=[1 for pp in parSpace]
	
	# Import Matplotlib if diagnostic plots requested
	if makePlot:
		import matplotlib
		# The following line is necessary to run SoFiA remotely
		matplotlib.use("Agg")
		import matplotlib.pyplot as plt
	
	# --------------------------------
	# Build array of source parameters
	# --------------------------------
	
	idCOL   = parNames.index("id")
	ftotCOL = parNames.index("snr_sum")
	fmaxCOL = parNames.index("snr_max")
	fminCOL = parNames.index("snr_min")
	
	# Get columns of requested parameters
	parCol = []
	for ii in range(len(parSpace)): parCol.append(parNames.index(parSpace[ii]))
	
	# Get position and number of positive and negative sources
	pos  = data[:, ftotCOL] >  0
	neg  = data[:, ftotCOL] <= 0
	Npos = pos.sum()
	Nneg = neg.sum()
	
	err.ensure(Npos, "No positive sources found; cannot proceed.")
	err.ensure(Nneg, "No negative sources found; cannot proceed.")
	
	# Get array of relevant source parameters (and take log of them if requested)
	ids = data[:,idCOL]
	pars = np.empty((data.shape[0], 0))
	
	for ii in range(len(parSpace)):
		if parSpace[ii] == "snr_max":
			parsTmp = data[:,fmaxCOL] * pos - data[:,fminCOL] * neg
			if logPars[ii]: parsTmp = np.log10(parsTmp)
			pars = np.concatenate((pars, parsTmp.reshape(-1, 1)), axis=1)
		elif parSpace[ii] == "snr_sum" or parSpace[ii] == "snr_mean":
			parsTmp = abs(data[:,parCol[ii]].reshape(-1, 1))
			if logPars[ii]: parsTmp = np.log10(parsTmp)
			pars = np.concatenate((pars, parsTmp), axis=1)
		else:
			parsTmp = data[:,parCol[ii]].reshape(-1, 1)
			if logPars[ii]: parsTmp = np.log10(parsTmp)
			pars = np.concatenate((pars, parsTmp), axis=1)
	
	err.message("  Working in parameter space {0:}".format(str(parSpace)))
	err.message("  Will convolve the distribution of positive and negative sources in this space to derive the P and N density fields")
	pars = np.transpose(pars)
	
	
	# ----------------------------------------------------------
	# Set parameters to work with and gridding/plotting for each
	# ----------------------------------------------------------
	
	# Axis labels when plotting
	labs = []
	for ii in range(len(parSpace)):
		labs.append("")
		if logPars[ii]: labs[ii] += "log "
		labs[ii] += parSpace[ii]
	
	# Axis limits when plotting
	pmin, pmax = pars.min(axis=1), pars.max(axis=1)
	pmin, pmax = pmin - 0.1 * (pmax - pmin), pmax + 0.1 * (pmax - pmin)
	lims = [[pmin[i], pmax[i]] for i in range(len(parSpace))]
	
	# Grid on which to evaluate Np and Nn in order to plot contours
	grid = [[pmin[i], pmax[i], 0.02 * (pmax[i] - pmin[i])] for i in range(len(parSpace))]
	
	# Calculate the number of rows and columns in figure
	projections = [subset for subset in combinations(range(len(parSpace)), 2)]
	nr = int(np.floor(np.sqrt(len(projections))))
	nc = int(np.ceil(float(len(projections)) / nr))
	
	
	# ---------------------------------------
	# Set smoothing kernel in parameter space
	# ---------------------------------------
	
	# If autoKernel is True, then the initial kernel is taken as a scaled version of the covariance matrix
	# of the negative sources. The kernel size along each axis is such that the number of sources per kernel
	# width (sigma**2) is equal to "negPerBin". Optionally, the user can decide to use only the diagonal
	# terms of the covariance matrix. The kernel is then grown until convergence is reached on the Skellam
	# plot. If autoKernel is False, then use the kernel given by "kernel" parameter (argument of EstimateRel);
	# this is sigma, and is squared to be consistent with the auto kernel above.
	
	if autoKernel:
		# Set the kernel shape to that of the variance or covariance matrix
		kernel = np.cov(pars[:, neg])
		kernelType = "covariance"
		# Check if kernel matrix can be inverted
		try:
			np.linalg.inv(kernel)
		except:
			err.error(
				"The reliability cannot be calculated because the smoothing kernel\n"
				"derived from " + str(pars[:,neg].shape[1]) + " negative sources cannot be inverted.\n"
				"This is likely due to an insufficient number of negative sources.\n"
				"Try to increase the number of negative sources by changing the\n"
				"source finding and/or filtering settings.", fatal=True, frame=True)
		
		if np.isnan(kernel).sum():
			err.error(
				"The reliability cannot be calculated because the smoothing kernel\n"
				"derived from " + str(pars[:,neg].shape[1]) + " negative sources contains NaNs.\n"
				"A good kernel is required to calculate the density field of positive\n"
				"and negative sources in parameter space.\n"
				"Try to increase the number of negative sources by changing the\n"
				"source finding and/or filtering settings.", fatal=True, frame=True)
		
		if not usecov:
			kernel = np.diag(np.diag(kernel))
			kernelType = "variance"
		
		kernelIter = 0.0
		deltplot = []
		
		# Scale the kernel size as requested by the user (scaleKernel>0) or use the autoscale algorithm (scaleKernel=0)
		if scaleKernel>0:
			# Scale kernel size as requested by the user
			# Note that the scale factor is squared because users are asked to give a factor to apply to sqrt(kernel)
			kernel *= scaleKernel**2
			err.message("  Using the {0:s} matrix scaled by a factor {1:.2f} as convolution kernel".format(kernelType, scaleKernel))
			err.message("  The sqrt(kernel) size is:")
			err.message(" " + str(np.sqrt(np.abs(kernel))))
		elif scaleKernel==0:
			# Scale kernel size to get started the kernel-growing loop
			# The scale factor for sqrt(kernel) is elevated to the power of 1.0 / len(parCol)
			err.message("  Will search for the best convolution kernel by scaling the {0:s} matrix".format(kernelType))
			err.message("  The {0:s} matrix has sqrt:".format(kernelType))
			err.message(" " + str(np.sqrt(np.abs(kernel))))
			# negPerBin must be >=1
			err.ensure(negPerBin>=1,"The parameter reliability.negPerBin used to start the convolution kernel search was set to {0:.1f} but must be >= 1. Please change your settings.".format(negPerBin))
			kernel *= ((negPerBin + kernelIter) / Nneg)**(2.0 / len(parCol))
			err.message("  Search starting from the kernel with sqrt:")
			err.message(" " + str(np.sqrt(np.abs(kernel))))
			err.message("  Iteratively growing kernel until the distribution of (P-N)/sqrt(P+N) reaches median/width = {0:.2f} ...".format(skellamTol))
			err.ensure(skellamTol<=0,"The parameter reliability.skellamTol was set to {0:.2f} but must be <= 0. Please change your settings.".format(skellamTol))
		else:
			err.ensure(scaleKernel>=0,\
				"The reliability.scaleKernel parameter cannot be negative.\n"\
				"It should be = 0 if you want SoFiA to find the optimal kernel scaling\n"\
				"or > 0 if you want to set the scaling yourself.\n"\
				"Please change your settings.")
		
		#deltOLD=-1e+9 # Used to stop kernel growth if P-N stops moving closer to zero [NOT USED CURRENTLY]
		if doskellam and makePlot: fig0 = plt.figure()
	else:
		# Note that the user must give sigma, which then gets squared
		err.message("  Using user-defined variance kernel with sqrt(kernel) size: {0}".format(kernel))
		err.ensure(len(parSpace)==len(kernel),"The number of entries in the kernel above does not match the number of parameters you requested for the reliability calculation.")
		kernel = np.identity(len(kernel)) * np.array(kernel)**2
	
	# Set grow_kernel to 1 to start the kernel growing loop below.
	grow_kernel = 1
	
	# This loop will estimate the reliability, check whether the kernel is large enough,
	# and if not pick a larger kernel. If autoKernel = 0 or scaleKernel = 0, we will do
	# just one pass (i.e., we will not grow the kernel).
	while grow_kernel:
		# ------------------------
		# Evaluate N-d reliability
		# ------------------------
		
		if verb: err.message("   estimate normalised positive and negative density fields ...")
		
		Np = gaussian_kde_set_covariance(pars[:,pos], kernel)
		Nn = gaussian_kde_set_covariance(pars[:,neg], kernel)
		
		# Calculate the number of positive and negative sources at the location of positive sources
		Nps = Np(pars[:,pos]) * Npos
		Nns = Nn(pars[:,pos]) * Nneg
		
		# Calculate the number of positive and negative sources at the location of negative sources
		nNps = Np(pars[:,neg]) * Npos
		nNns = Nn(pars[:,neg]) * Nneg
		
		# Calculate the reliability at the location of positive sources
		Rs = (Nps - Nns) / Nps
		
		# The reliability must be <= 1. If not, something is wrong.
		err.ensure(Rs.max() <= 1, "Maximum reliability greater than 1; something is wrong.\nPlease ensure that enough negative sources are detected\nand decrease your source finding threshold if necessary.", frame=True)
		
		# Find pseudo-reliable sources (taking maximum(Rs, 0) in order to include objects with Rs < 0
		# if threshold == 0; Rs may be < 0 because of insufficient statistics)
		# These are called pseudo-reliable because some objects may be discarded later based on additional criteria below
		pseudoreliable = np.maximum(Rs, 0) >= threshold

		# Find reliable sources (taking maximum(Rs, 0) in order to include objects with Rs < 0 if
		# threshold == 0; Rs may be < 0 because of insufficient statistics)
		#reliable=(np.maximum(Rs, 0)>=threshold) * (data[pos, ftotCOL].reshape(-1,) > fMin) * (data[pos, fmaxCOL].reshape(-1,) > 4)
		reliable = (np.maximum(Rs, 0) >= threshold) * ((data[pos, ftotCOL] / np.sqrt(data[pos, parNames.index("n_pix")])).reshape(-1,) > fMin)
		
		if autoKernel:
			# Calculate quantities needed for comparison to Skellam distribution
			delt = (nNps - nNns) / np.sqrt(nNps + nNns)
			deltstd = delt.std()
			deltmed = np.median(delt)
			deltmin = delt.min()
			deltmax = delt.max()
			
			if deltmed / deltstd > -100 and doskellam and makePlot:
				plt.hist(delt / deltstd, bins=np.arange(deltmin / deltstd, max(5.1, deltmax / deltstd), 0.01), cumulative=True, histtype="step", color=(min(1, float(max(1.,negPerBin) + kernelIter) / Nneg), 0,0), normed=True)
				deltplot.append([((max(1.,negPerBin) + kernelIter) / Nneg)**(1.0 / len(parCol)), deltmed / deltstd])
						
			if scaleKernel: grow_kernel = 0
			else:
				err.message("  iteration, median, width, median/width = %3i, %9.2e, %9.2e, %9.2e" % (kernelIter, deltmed, deltstd, deltmed / deltstd))

				if deltmed / deltstd > skellamTol or negPerBin + kernelIter >= Nneg:
					grow_kernel = 0
					err.message("  Found good kernel after %i kernel growth iterations. The sqrt(kernel) size is:" % kernelIter)
					err.message(np.sqrt(np.abs(kernel)))
				elif deltmed / deltstd < 5 * skellamTol:
					kernel *= (float(negPerBin + kernelIter + 20) / (negPerBin + kernelIter))**(2.0 / len(parCol)) 
					kernelIter += 20
				elif deltmed / deltstd < 2 * skellamTol:
					kernel *= (float(negPerBin + kernelIter + 10) / (negPerBin + kernelIter))**(2.0 / len(parCol))
					kernelIter += 10
				elif deltmed / deltstd < 1.5 * skellamTol:
					kernel *= (float(negPerBin + kernelIter + 3) / (negPerBin + kernelIter))**(2.0 / len(parCol))
					kernelIter += 3
				else:
					kernel *= (float(negPerBin + kernelIter + 1) / (negPerBin + kernelIter))**(2.0 / len(parCol))
					kernelIter += 1
		else:
			grow_kernel = 0
	
	
	# ------------
	# Skellam plot
	# ------------
	
	if autoKernel and deltmed / deltstd > -100 and doskellam and makePlot:
		plt.plot(np.arange(-10, 10, 0.01), stats.norm().cdf(np.arange(-10, 10, 0.01)), "k-")
		plt.plot(np.arange(-10, 10, 0.01), stats.norm(scale=0.4).cdf(np.arange(-10, 10, 0.01)), "k:")
		plt.legend(("Gaussian (sigma=1)", "Gaussian (sigma=0.4)"), loc="lower right", prop={"size":13})
		plt.hist(delt / deltstd, bins=np.arange(deltmin / deltstd, max(5.1, deltmax / deltstd), 0.01), cumulative=True, histtype="step", color="r", normed=True)
		plt.xlim(-5, 5)
		plt.ylim(0, 1)
		plt.xlabel("(P-N)/sqrt(N+P)")
		plt.ylabel("cumulative distribution")
		plt.plot([0, 0], [0, 1], "k--")
		fig0.savefig("%s_rel_skellam.pdf" % pdfoutname, rasterized=True)
		
		if not scaleKernel:
			fig3 = plt.figure()
			deltplot = np.array(deltplot)
			plt.plot(deltplot[:,0], deltplot[:,1], "ko-")
			plt.xlabel("kernel size (1D-sigma, aribtrary units)")
			plt.ylabel("median/std of (P-N)/sqrt(P+N)")
			plt.axhline(y=skellamTol, linestyle="--", color="r")
			fig3.savefig("%s_rel_skellam-delta.pdf" % pdfoutname, rasterized=True)
	
	
	# -----------------------
	# Scatter plot of sources
	# -----------------------
	
	specialids = []
	
	if doscatter and makePlot:
		if verb: err.message("  plotting sources ...")
		fig1 = plt.figure(figsize=(18, 4.5 * nr))
		plt.subplots_adjust(left=0.06, bottom=0.15/nr, right = 0.97, top=1-0.08/nr, wspace=0.35, hspace=0.25)
		
		n_p = 0
		for jj in projections:
			if verb: err.message("    projection %i/%i" % (projections.index(jj) + 1, len(projections)))
			n_p, p1, p2 = n_p + 1, jj[0], jj[1]
			plt.subplot(nr, nc, n_p)
			plt.scatter(pars[p1,pos], pars[p2,pos], marker="o", c="b", s=10, edgecolor="face", alpha=0.5)
			plt.scatter(pars[p1,neg], pars[p2,neg], marker="o", c="r", s=10, edgecolor="face", alpha=0.5)
			for si in specialids: plt.plot(pars[p1, ids==si], pars[p2, ids==si], "kd", zorder=10000, ms=7, mfc="none", mew=2)
			# Plot Integrated SNR threshold
			if fMin>0 and (parSpace[jj[0]],parSpace[jj[1]])==("snr_sum","snr_mean"):
				xArray=np.arange(lims[p1][0],lims[p1][1]+(lims[p1][1]-lims[p1][0])/100,(lims[p1][1]-lims[p1][0])/100)
				plt.plot(xArray,np.log10(fMin)*2-xArray,'k:')
			elif fMin>0 and (parSpace[jj[0]],parSpace[jj[1]])==("snr_mean","snr_sum"):
				yArray=np.arange(lims[p2][0],lims[p2][1]+(lims[p2][1]-lims[p2][0])/100,(lims[p2][1]-lims[p2][0])/100)
				plt.plot(np.log10(fMin)*2-yArray,yArray,'k:')
			plt.xlim(lims[p1][0], lims[p1][1])
			plt.ylim(lims[p2][0], lims[p2][1])
			plt.xlabel(labs[p1])
			plt.ylabel(labs[p2])
			plt.grid(color='k',linestyle='-',linewidth=0.2)
		fig1.savefig("%s_rel_scatter.pdf" % pdfoutname, rasterized=True)
	
	
	# -------------
	# Plot contours
	# -------------
	
	if docontour and makePlot:
		levs = 10**np.arange(-1.5, 2, 0.5)
		
		if verb: err.message("  plotting contours ...")
		fig2 = plt.figure(figsize=(18, 4.5 * nr))
		plt.subplots_adjust(left=0.06, bottom=0.15/nr, right=0.97, top=1-0.08/nr, wspace=0.35, hspace=0.25)
		n_p = 0
		for jj in projections:
			if verb: err.message("    projection %i/%i" % (projections.index(jj) + 1, len(projections)))
			n_p, p1, p2 = n_p + 1, jj[0], jj[1]
			g1, g2 = grid[p1], grid[p2]
			x1 = np.arange(g1[0], g1[1], g1[2])
			x2 = np.arange(g2[0], g2[1], g2[2])
			pshape = (x2.shape[0], x1.shape[0])
			
			# Get array of source parameters on current projection
			parsp = np.concatenate((pars[p1:p1+1], pars[p2:p2+1]), axis=0)
			
			# Derive Np and Nn density fields on the current projection
			setcov = kernel[p1:p2+1:p2-p1,p1:p2+1:p2-p1]
			try:
				Np = gaussian_kde_set_covariance(parsp[:,pos], setcov)
				Nn = gaussian_kde_set_covariance(parsp[:,neg], setcov)
			except:
				err.error(
					"Reliability  determination  failed  because of issues  with the\n"
					"smoothing kernel.  This is likely due to an insufficient number\n"
					"of negative detections. Please review your filtering and source\n"
					"finding settings to ensure that a sufficient number of negative\n"
					"detections is found.", fatal=True, frame=True)
			
			# Evaluate density fields on grid on current projection
			g = np.transpose(np.transpose(np.mgrid[slice(g1[0], g1[1], g1[2]), slice(g2[0], g2[1], g2[2])]).reshape(-1, 2))
			Np = Np(g)
			Nn = Nn(g)
			Np = Np / Np.sum() * Npos
			Nn = Nn / Nn.sum() * Nneg
			Np.resize(pshape)
			Nn.resize(pshape)
			plt.subplot(nr, nc, n_p)
			plt.contour(x1, x2, Np, origin="lower", colors="b", levels=levs, zorder=2)
			plt.contour(x1, x2, Nn, origin="lower", colors="r", levels=levs, zorder=1)
			
			# Plot Integrated SNR threshold
			if fMin>0 and (parSpace[jj[0]],parSpace[jj[1]])==("snr_sum","snr_mean"):
				xArray=np.arange(lims[p1][0],lims[p1][1]+(lims[p1][1]-lims[p1][0])/100,(lims[p1][1]-lims[p1][0])/100)
				plt.plot(xArray,np.log10(fMin)*2-xArray,'k:')
			elif fMin>0 and (parSpace[jj[0]],parSpace[jj[1]])==("snr_mean","snr_sum"):
				yArray=np.arange(lims[p2][0],lims[p2][1]+(lims[p2][1]-lims[p2][0])/100,(lims[p2][1]-lims[p2][0])/100)
				plt.plot(np.log10(fMin)*2-yArray,yArray,'k:')
			
			if reliable.sum(): plt.scatter(pars[p1,pos][reliable], pars[p2,pos][reliable], marker="o", s=10, edgecolor="k", facecolor="k", zorder=4)
			if (pseudoreliable * (reliable == False)).sum(): plt.scatter(pars[p1,pos][pseudoreliable * (reliable == False)], pars[p2,pos][pseudoreliable * (reliable == False)], marker="x", s=40, edgecolor="0.5", facecolor="0.5", zorder=3)
			for si in specialids: plt.plot(pars[p1,ids==si], pars[p2,ids==si], "kd", zorder=10000, ms=7, mfc="none", mew=2)
			plt.xlim(lims[p1][0], lims[p1][1])
			plt.ylim(lims[p2][0], lims[p2][1])
			plt.xlabel(labs[p1])
			plt.ylabel(labs[p2])
			plt.grid(color='k',linestyle='-',linewidth=0.2)
		fig2.savefig("%s_rel_contour.pdf" % pdfoutname, rasterized=True)
	
	
	# -------------------------
	# Add Np, Nn and R to table
	# -------------------------
	
	# This allows me not to calculate R every time I want to do some plot analysis,
	# but just read it from the file
	if saverel:
		if not (docontour or dostats):
			Nps = Np(pars[:,pos]) * Npos
			Nns = Nn(pars[:,pos]) * Nneg
		Np = np.zeros((data.shape[0],))
		Np[pos] = Nps
		Nn = np.zeros((data.shape[0],))
		Nn[pos] = Nns
		R = -np.ones((data.shape[0],)) # R will be -1 for negative sources
		# Set R to zero for positive sources if R < 0 because of Nn > Np
		R[pos] = np.maximum(0, (Np[pos] - Nn[pos]) / Np[pos])
		data = np.concatenate((data, Np.reshape(-1, 1), Nn.reshape(-1, 1), R.reshape(-1, 1)), axis=1)
	
	data = [list(jj) for jj in list(data)]
	return data, ids[pos][reliable].astype(int)
Ejemplo n.º 40
0
def sigma_scale(cube,
                scaleX=False,
                scaleY=False,
                scaleZ=True,
                edgeX=0,
                edgeY=0,
                edgeZ=0,
                statistic="mad",
                fluxRange="all",
                method="global",
                windowSpatial=20,
                windowSpectral=20,
                gridSpatial=0,
                gridSpectral=0,
                interpolation="none"):
    # Print some informational messages
    err.message("Generating noise-scaled data cube:")
    err.message("  Selecting " + str(method) + " noise measurement method.")

    if statistic == "mad":
        err.message("  Applying median absolute deviation to " +
                    str(fluxRange) + " pixels.")
    if statistic == "std":
        err.message("  Applying standard deviation to " + str(fluxRange) +
                    " pixels.")
    if statistic == "gauss":
        err.message("  Applying Gaussian fit to " + str(fluxRange) +
                    " pixels.")
    if statistic == "negative":
        err.message("  Applying Gaussian fit to negative pixels.")

    # Check the dimensions of the cube (could be obtained from header information)
    dimensions = np.shape(cube)

    # LOCAL noise measurement within running window (slower and less memory-friendly)
    if method == "local":
        # Make window sizes integers >= 1
        windowSpatial = max(int(windowSpatial), 1)
        windowSpectral = max(int(windowSpectral), 1)

        # Ensure that window sizes are odd
        windowSpatial += (1 - windowSpatial % 2)
        windowSpectral += (1 - windowSpectral % 2)

        # Set grid sizes to half the window sizes if undefined
        if not gridSpatial: gridSpatial = windowSpatial // 2
        if not gridSpectral: gridSpectral = windowSpectral // 2

        # Make grid sizes integers >= 1
        gridSpatial = max(int(gridSpatial), 1)
        gridSpectral = max(int(gridSpectral), 1)

        # Ensure that grid sizes are odd
        gridSpatial += (1 - gridSpatial % 2)
        gridSpectral += (1 - gridSpectral % 2)

        # Print grid and window sizes adopted
        err.message("  Using grid size of [" + str(gridSpatial) + ", " +
                    str(gridSpectral) + "]")
        err.message("  and window size of [" + str(windowSpatial) + ", " +
                    str(windowSpectral) + "].")

        # Generate grid points to be used
        gridPointsZ = np.arange(
            (dimensions[0] - gridSpectral *
             (int(math.ceil(float(dimensions[0]) / float(gridSpectral))) - 1))
            // 2, dimensions[0], gridSpectral)
        gridPointsY = np.arange(
            (dimensions[1] - gridSpatial *
             (int(math.ceil(float(dimensions[1]) / float(gridSpatial))) - 1))
            // 2, dimensions[1], gridSpatial)
        gridPointsX = np.arange(
            (dimensions[2] - gridSpatial *
             (int(math.ceil(float(dimensions[2]) / float(gridSpatial))) - 1))
            // 2, dimensions[2], gridSpatial)

        # Divide grid and window sizes by 2 to get radii
        radiusGridSpatial = gridSpatial // 2
        radiusGridSpectral = gridSpectral // 2
        radiusWindowSpatial = windowSpatial // 2
        radiusWindowSpectral = windowSpectral // 2

        # Create empty cube (filled with NaN) to hold noise values
        rms_cube = np.full(cube.shape, np.nan, dtype=cube.dtype)

        # Determine RMS across window centred on grid cell
        for z in gridPointsZ:
            for y in gridPointsY:
                for x in gridPointsX:
                    grid = (max(0, z - radiusGridSpectral),
                            min(dimensions[0], z + radiusGridSpectral + 1),
                            max(0, y - radiusGridSpatial),
                            min(dimensions[1], y + radiusGridSpatial + 1),
                            max(0, x - radiusGridSpatial),
                            min(dimensions[2], x + radiusGridSpatial + 1))

                    window = (max(0, z - radiusWindowSpectral),
                              min(dimensions[0], z + radiusWindowSpectral + 1),
                              max(0, y - radiusWindowSpatial),
                              min(dimensions[1], y + radiusWindowSpatial + 1),
                              max(0, x - radiusWindowSpatial),
                              min(dimensions[2], x + radiusWindowSpatial + 1))

                    if not np.all(
                            np.isnan(
                                cube[window[0]:window[1], window[2]:window[3],
                                     window[4]:window[5]])):
                        if interpolation == "linear" or interpolation == "cubic":
                            # Write value into grid point for later interpolation
                            rms_cube[z, y,
                                     x] = GetRMS(cube[window[0]:window[1],
                                                      window[2]:window[3],
                                                      window[4]:window[5]],
                                                 rmsMode=statistic,
                                                 fluxRange=fluxRange,
                                                 zoomx=1,
                                                 zoomy=1,
                                                 zoomz=1,
                                                 verbose=0)
                        else:
                            # Fill entire grid cell
                            rms_cube[grid[0]:grid[1], grid[2]:grid[3],
                                     grid[4]:grid[5]] = GetRMS(
                                         cube[window[0]:window[1],
                                              window[2]:window[3],
                                              window[4]:window[5]],
                                         rmsMode=statistic,
                                         fluxRange=fluxRange,
                                         zoomx=1,
                                         zoomy=1,
                                         zoomz=1,
                                         verbose=0)
                    del grid, window

        # Carry out interpolation if requested, taking NaNs into account
        if interpolation == "linear" or interpolation == "cubic":
            err.message("  Interpolating in between grid points (" +
                        str(interpolation) + ").")

            # First across each spatial plane
            if gridSpatial > 1:
                for z in gridPointsZ:
                    for y in gridPointsY:
                        data_values = rms_cube[z, y, gridPointsX]
                        not_nan = np.logical_not(np.isnan(data_values))
                        if any(not_nan):
                            interp_coords = np.arange(0, dimensions[2])
                            if interpolation == "cubic":
                                spline = InterpolatedUnivariateSpline(
                                    gridPointsX[not_nan], data_values[not_nan])
                                rms_cube[z, y, 0:dimensions[2]] = spline(
                                    interp_coords)
                                del spline
                            else:
                                interp_values = np.interp(
                                    interp_coords, gridPointsX[not_nan],
                                    data_values[not_nan])
                                rms_cube[z, y, 0:dimensions[2]] = interp_values
                                del interp_values
                            del interp_coords
                        del data_values, not_nan
                    for x in range(dimensions[2]):
                        data_values = rms_cube[z, gridPointsY, x]
                        not_nan = np.logical_not(np.isnan(data_values))
                        if any(not_nan):
                            interp_coords = np.arange(0, dimensions[1])
                            if interpolation == "cubic":
                                spline = InterpolatedUnivariateSpline(
                                    gridPointsY[not_nan], data_values[not_nan])
                                rms_cube[z, 0:dimensions[1],
                                         x] = spline(interp_coords)
                                del spline
                            else:
                                interp_values = np.interp(
                                    interp_coords, gridPointsY[not_nan],
                                    data_values[not_nan])
                                rms_cube[z, 0:dimensions[1], x] = interp_values
                                del interp_values
                            del interp_coords
                        del data_values, not_nan
                    # Alternative option: 2-D spatial interpolation using SciPy's interp2d
                    #from scipy.interpolate import interp2d
                    #xx, yy = np.meshgrid(gridPointsX, gridPointsY)
                    #data_values = rms_cube[z, yy, xx]
                    #f = interp2d(gridPointsX, gridPointsY, data_values, kind="cubic")
                    #interp_coords_x = np.arange(0, dimensions[2])
                    #interp_coords_y = np.arange(0, dimensions[1])
                    #rms_cube[z, :, :] = f(interp_coords_x, interp_coords_y)

            # Then along the spectral axis
            if gridSpectral > 1:
                for y in range(dimensions[1]):
                    for x in range(dimensions[2]):
                        data_values = rms_cube[gridPointsZ, y, x]
                        not_nan = np.logical_not(np.isnan(data_values))
                        if any(not_nan):
                            interp_coords = np.arange(0, dimensions[0])
                            if interpolation == "cubic":
                                spline = InterpolatedUnivariateSpline(
                                    gridPointsZ[not_nan], data_values[not_nan])
                                rms_cube[0:dimensions[0], y,
                                         x] = spline(interp_coords)
                                del spline
                            else:
                                interp_values = np.interp(
                                    interp_coords, gridPointsZ[not_nan],
                                    data_values[not_nan])
                                rms_cube[0:dimensions[0], y, x] = interp_values
                                del interp_values
                            del interp_coords
                        del data_values, not_nan

        # Replace any invalid RMS values with NaN
        with np.errstate(invalid="ignore"):
            rms_cube[rms_cube <= 0] = np.nan

        # Divide data cube by RMS cube
        cube /= rms_cube

        # Delete the RMS cube again to release its memory
        #del rms_cube

    # GLOBAL noise measurement on entire 2D plane (faster and more memory-friendly)
    else:
        # Define the range over which statistics are calculated
        z1 = int(edgeZ)
        z2 = int(dimensions[0] - edgeZ)
        y1 = int(edgeY)
        y2 = int(dimensions[1] - edgeY)
        x1 = int(edgeX)
        x2 = int(dimensions[2] - edgeX)

        # Make sure edges don't exceed cube size
        err.ensure(z1 < z2 and y1 < y2 and x1 < x2,
                   "Edge size exceeds cube size for at least one axis.")

        # Create empty cube (filled with 1) to hold noise values
        rms_cube = np.ones(cube.shape, dtype=cube.dtype)

        # Measure noise across 2D planes and scale cube accordingly
        if scaleZ:
            for i in range(dimensions[0]):
                if not np.all(np.isnan(cube[i, y1:y2, x1:x2])):
                    rms = GetRMS(cube[i, y1:y2, x1:x2],
                                 rmsMode=statistic,
                                 fluxRange=fluxRange,
                                 zoomx=1,
                                 zoomy=1,
                                 zoomz=1,
                                 verbose=0)
                    if rms > 0:
                        rms_cube[i, :, :] *= rms
                        cube[i, :, :] /= rms

        if scaleY:
            for i in range(dimensions[1]):
                if not np.all(np.isnan(cube[z1:z2, i, x1:x2])):
                    rms = GetRMS(cube[z1:z2, i, x1:x2],
                                 rmsMode=statistic,
                                 fluxRange=fluxRange,
                                 zoomx=1,
                                 zoomy=1,
                                 zoomz=1,
                                 verbose=0)
                    if rms > 0:
                        rms_cube[:, i, :] *= rms
                        cube[:, i, :] /= rms

        if scaleX:
            for i in range(dimensions[2]):
                if not np.all(np.isnan(cube[z1:z2, y1:y2, i])):
                    rms = GetRMS(cube[z1:z2, y1:y2, i],
                                 rmsMode=statistic,
                                 fluxRange=fluxRange,
                                 zoomx=1,
                                 zoomy=1,
                                 zoomz=1,
                                 verbose=0)
                    if rms > 0:
                        rms_cube[:, :, i] *= rms
                        cube[:, :, i] /= rms

    err.message("Noise-scaled data cube generated.\n")

    return cube, rms_cube
Ejemplo n.º 41
0
def GetRMS(cube, rmsMode="negative", fluxRange="all", zoomx=1, zoomy=1, zoomz=1, verbose=0, min_hist_peak=0.05, sample=1, twoPass=False):
	"""
	Description of arguments
	------------------------
	rmsMode    Select which algorithm should be used for calculating the noise.
	           Allowed options:
	             'std'       Standard deviation about 0.
	             'mad'       Median absolute deviation about 0.
	             'moment'    2nd moment of flux histogram, assuming a 1st moment of 0.
	             'gauss'     Width of Gaussian fitted to flux histogram, assuming a centroid of 0.
	             'negative'  Width of Gaussian fitted to negative side of the flux histogram,
	                         again assuming a centroid of 0. This is a legacy option and may be
	                         removed from SoFiA in the future.
	fluxRange  Define which part of the data are to be used in the noise measurement.
	           Allowed options:
	             'negative'  Use only pixels with negative flux.
	             'positive'  Use only pixels with positive flux.
	             'all'       Use both positive and negative (i.e. all) pixels.
	verbose    Print additional progress messages if set to True.
	twoPass    Run a second pass of MAD and STD, this time with a clip level of 5 times
	           the RMS from the first pass.
	"""
	
	# Check input for sanity
	if fluxRange != "all" and fluxRange != "positive" and fluxRange != "negative":
		sys.stderr.write("WARNING: Illegal value of fluxRange = '" + str(fluxRange) + "'.\n")
		sys.stderr.write("         Using default value of 'all' instead.\n")
		fluxRange = "all"
	if rmsMode != "std" and rmsMode != "mad" and rmsMode != "negative" and rmsMode != "gauss" and rmsMode != "moment":
		sys.stderr.write("WARNING: Illegal value of rmsMode = '" + str(rmsMode) + "'.\n")
		sys.stderr.write("         Using default value of 'mad' instead.\n")
		rmsMode = "mad"
	
	# Ensure that we have a 3D cube
	if len(cube.shape) == 2: cube = np.array([cube])
	
	x0, x1 = int(math.ceil((1 - 1.0 / zoomx) * cube.shape[2] / 2)), int(math.floor((1 + 1.0 / zoomx) * cube.shape[2] / 2)) + 1
	y0, y1 = int(math.ceil((1 - 1.0 / zoomy) * cube.shape[1] / 2)), int(math.floor((1 + 1.0 / zoomy) * cube.shape[1] / 2)) + 1
	z0, z1 = int(math.ceil((1 - 1.0 / zoomz) * cube.shape[0] / 2)), int(math.floor((1 + 1.0 / zoomz) * cube.shape[0] / 2)) + 1
	err.message("    Estimating rms on subcube (x,y,z zoom = %.0f,%.0f,%.0f) ..." % (zoomx, zoomy, zoomz), verbose)
	err.message("    Estimating rms on subcube sampling every %i voxels ..." % (sample), verbose)
	err.message("    ... Subcube shape is " + str(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample].shape) + " ...", verbose)
	
	
	# Check if only negative or positive pixels are to be used:
	if fluxRange == "negative":
		with np.errstate(invalid="ignore"):
			halfCube = cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][cube[z0:z1:sample, y0:y1:sample, x0:x1:sample] < 0]
		err.ensure(halfCube.size, "Cannot measure noise from negative flux values.\nNo negative fluxes found in data cube.")
	elif fluxRange == "positive":
		with np.errstate(invalid="ignore"):
			halfCube = cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][cube[z0:z1:sample, y0:y1:sample, x0:x1:sample] > 0]
		err.ensure(halfCube.size, "Cannot measure noise from positive flux values.\nNo positive fluxes found in data cube.")
	# NOTE: The purpose of the with... statement is to temporarily disable certain warnings, as otherwise the
	#       Python interpreter would print a warning whenever a value of NaN is compared to 0. The comparison
	#       is defined to yield False, which conveniently removes NaNs by default without having to do that
	#       manually in a separate step, but the associated warning message is unfortunately a nuisance.
	
	
	# GAUSSIAN FIT TO NEGATIVE FLUXES
	if rmsMode == "negative":
		nrbins = max(100, int(math.ceil(float(cube.size) / 1e+5)))
		
		cubemin = np.nanmin(cube)
		err.ensure(cubemin < 0, "Cannot estimate noise from Gaussian fit to negative flux\nhistogram; no negative fluxes found in data cube.")
		
		bins = np.arange(cubemin, abs(cubemin) / nrbins - 1e-12, abs(cubemin) / nrbins)
		fluxval = (bins[:-1] + bins[1:]) / 2
		rmshisto = np.histogram(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][~np.isnan(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])], bins=bins)[0]
		
		nrsummedbins = 0
		while rmshisto[-nrsummedbins-1:].sum() < min_hist_peak * rmshisto.sum(): nrsummedbins += 1
		
		if nrsummedbins:
			if verbose: sys.stdout.write("    ... adjusting bin size to get a fraction of voxels in central bin >= " + str(min_hist_peak) + "\n")
			nrbins /= (nrsummedbins + 1)
			bins = np.arange(cubemin, abs(cubemin) / nrbins - 1e-12, abs(cubemin) / nrbins)
			fluxval = (bins[:-1] + bins[1:]) / 2.0
			rmshisto = np.histogram(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][~np.isnan(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])], bins=bins)[0]
		
		rms = abs(sp.optimize.curve_fit(Gaussian, fluxval, rmshisto, p0=[rmshisto.max(), -fluxval[rmshisto < rmshisto.max() / 2.0].max() * 2.0 / 2.355])[0][1])
	
	# GAUSSIAN FIT TO FLUX HISTOGRAM / SECOND MOMENT OF FLUX HISTOGRAM
	elif rmsMode == "gauss" or rmsMode == "moment":
		nBins = 100
		dataMin = float(np.nanmin(cube))
		dataMax = float(np.nanmax(cube))
		err.ensure(dataMin < dataMax, "Maximum not greater than minimum. Cannot determine noise level.")
		
		if fluxRange == "negative":
			# Set upper limit to 0
			err.ensure(dataMin < 0.0, "Minimum > 0. Cannot determine noise level for negative pixels.")
			dataMax = 0.0
		elif fluxRange == "positive":
			# Set lower limit to 0
			err.ensure(dataMax > 0.0, "Maximum < 0. Cannot determine noise level for positive pixels.")
			dataMin = 0.0
		else:
			# Select the smallest of the two for both limits
			err.ensure(dataMin < 0.0 and dataMax > 0.0, "Noise values not scattered around 0. Cannot measure noise level.")
			dataMin = -min(abs(dataMin), abs(dataMax))
			dataMax =  min(abs(dataMin), abs(dataMax))
		
		binWidth = (dataMax - dataMin) / float(nBins)
		bins = np.arange(dataMin, dataMax, binWidth)
		binCtr = (bins[:-1] + bins[1:]) / 2.0
		hist = np.histogram(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][~np.isnan(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])], bins=bins)[0]
		
		# Calculate 2nd moment
		mom2 = moment2(binCtr, hist)
		
		# Adjust bin size if necessary
		counter = 0
		while mom2 < 5.0 * binWidth and counter < 2:
			counter += 1
			err.message("Increasing number of bins by factor of " + str(int(20.0 * binWidth / mom2)) + " for Gaussian fit.")
			nBins = int(nBins * 20.0 * binWidth / mom2)
			binWidth = (dataMax - dataMin) / float(nBins)
			binCtr = (bins[:-1] + bins[1:]) / 2.0
			hist = np.histogram(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][~np.isnan(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])], bins=bins)[0]
			mom2 = moment2(binCtr, hist)
		
		# Carry out Gaussian fitting if requested
		if rmsMode == "gauss": rms = abs(sp.optimize.curve_fit(Gaussian, binCtr, hist, p0=[hist.max(), mom2])[0][1])
		else: rms = mom2
	
	# MEDIAN ABSOLUTE DEVIATION
	elif rmsMode == "mad":
		if fluxRange == "all":
			# NOTE: Here we assume that the median of the data is zero!
			rms = 1.4826 * nanmedian(abs(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample]), axis=None)
			if twoPass:
				err.message("Repeating noise estimation with 5-sigma clip.", verbose)
				with np.errstate(invalid="ignore"):
					rms = 1.4826 * nanmedian(abs(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][abs(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample]) < 5.0 * rms]), axis=None)
		else:
			# NOTE: Here we assume that the median of the data is zero! There are no more NaNs in halfCube.
			rms = 1.4826 * np.median(abs(halfCube), axis=None)
			if twoPass:
				err.message("Repeating noise estimation with 5-sigma clip.", verbose)
				rms = 1.4826 * np.median(abs(halfCube[abs(halfCube) < 5.0 * rms]), axis=None)
	
	# STANDARD DEVIATION
	elif rmsMode == "std":
		if fluxRange == "all":
			# NOTE: Here we assume that the mean of the data is zero!
			rms = nan_standard_deviation(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample])
			if twoPass:
				err.message("Repeating noise estimation with 5-sigma clip.", verbose)
				with np.errstate(invalid="ignore"):
					rms = nan_standard_deviation(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample][abs(cube[z0:z1:sample, y0:y1:sample, x0:x1:sample]) < 5.0 * rms])
		else:
			# NOTE: Here we assume that the mean of the data is zero! There are no more NaNs in halfCube.
			rms = standard_deviation(halfCube)
			if twoPass:
				err.message("Repeating noise estimation with 5-sigma clip.", verbose)
				rms = standard_deviation(halfCube[abs(halfCube) < 5.0 * rms])
	
	err.message("    ... %s rms = %.2e (data units)" % (rmsMode, rms), verbose)
	
	return rms